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ABSTRACT
Neural network based recommendation models are widely used to
power many internet-scale applications including product recom-
mendation and feed ranking. As the models become more complex
and more training data is required during training, improving the
training scalability of these recommendation models becomes an
urgent need. However, improving the scalability without sacrific-
ing the model quality is challenging. In this paper, we conduct an
in-depth analysis of the scalability bottleneck in existing training ar-
chitecture on large scale CPU clusters. Based on these observations,
we propose a new training architecture calledHierarchical Train-
ing, which exploits both data parallelism and model parallelism for
the neural network part of the model within a group. We implement
hierarchical training with a two-layer design: a tagging system that
decides the operator placement and a net transformation system
that materializes the training plans, and integrate hierarchical train-
ing into existing training stack. We propose several optimizations to
improve the scalability of hierarchical training including model ar-
chitecture optimization, communication compression, and various
system-level improvements. Extensive experiments at massive scale
demonstrate that hierarchical training can speed up distributed rec-
ommendation model training by 1.9x without model quality drop.
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•Computingmethodologies→Distributed algorithms; •Com-
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1 INTRODUCTION
The wide adoption of the recommendation and personalization
applications including apps/news/friends/videos recommendation,
groups suggestions, feed ranking, etc. have greatly improved the
Internet andApps experience [7, 9, 15, 49].With the recent advent of
deep learning, most of these personalization workloads are powered
by neural network based machine learning models, e.g., DLRM [31]
and Wide & Deep [6], for better recommendation accuracy. At
Facebook, the training of these recommendation models takes up
more than 50% of the total AI training cycles [2].

In these recommendation models [6, 13, 28, 31, 50], embeddings
and higher-order interactions are used to learn from the sparse
categorical features, and then deep neural network is applied to
improve the generalization of the models. The embedding tables
learned for the large number of the sparse categorical features
are in general memory-intensive and can consume up to tens of
terabytes of the memory [15, 36, 47]. This makes the recommen-
dation models different from the content understanding models
used in computer vision, speech recognition, etc., which are mainly
compute-intensive and can be better accelerated by GPUs. These
recommendation models can be trained efficiently using large scale
CPU clusters where each training job contains tens to hundreds
of CPU nodes at Facebook [15, 17]. A hybrid of model parallelism
and data parallelism scheme is used to train these recommendation
models for the sparse part and the dense part [48]. More specifically,
the embedding tables of the sparse categorical features are parti-
tioned onto a dedicated set of parameter servers which are accessed
in a model parallel manner, while the deep neural network part (i.e.,
the dense part) of the model is replicated across all trainers and is
trained using data parallelism.

To further improve the user experience and provide more accu-
rate and satisfactory recommendation, the deep learning models are
becoming larger and more complex. For example, more complicated
layers, e.g., deep attention, skip layers, etc., and wider and heavier
layers are added to the models to improve model quality [38, 41]. At
the same time, more training data are used to train these complex
recommendation models. The growing model size and data size call
for the need of improving the training scalability of the large scale
distributed training system.

The existing distributed training architecture presented above
has been demonstrated to have good scalability in terms of the
training throughput [48]. To increase the number of sparse cat-
egorical features, one can add more sparse parameter servers to
the system to hold the additional embedding tables. To boost the
training throughput, more trainers can be added to improve the
processing power. However, increasing the training throughput
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Figure 1: The DLRM-like Model

does not come for free in the existing architecture. When increas-
ing the trainers in the system, we observe a non-negligible model
quality drop which blocks us from scaling out.

In this paper, we identify through experiments that in existing
system, increasing the number of dense replica will hurt the model
quality severely, but increasing the parallelism and staleness within
one dense replica will not degrade the model quality a lot. Based
on these observations, we propose a new distributed training ar-
chitecture called Hierarchical Training to greatly improve the
scalability. In hierarchical training, we replace a trainer with a
group of training nodes, which we call a group. This setup greatly
improves the processing power within a group while at the same
time keeps the number of dense replicas small. To realize hierarchi-
cal training in our existing training stack: we design a two-layer
system: (1) The Tagging System decides the operators placement
strategy in a group using a rule-based tagging process and an itera-
tive greedy refinement process; (2) The Net Transformation System
is the back-end to handle the net partitioning and replication, and
finally materialize the training plans for all nodes.

Our main contributions can be summarized as follows:
• We conduct an in-depth analysis of the scalability limitation
of the current distributed training architecture on recommen-
dation models and identify potential opportunity to increase
the training throughput while at the same time preserve the
model quality. (Section 2)

• We design a novel architecture called Hierarchical Training
(HT) based on the observations and implement it with a
two-layer system. (Sections 3)

• We propose a set of optimizations for HT including model
architecture optimization and communication compression.
We highlight challenges we face when shipping complex
models with HT. (Section 4)

• We conduct a comprehensive evaluation for HT on massive
scale recommendation workloads. (Section 5)

2 BACKGROUND AND MOTIVATION
2.1 DLRM
The models powering most of the deep learning recommendation
workfloads at Facebook are in the form of DLRM [31]. As shown
in Figure 1, a DLRM-like model is composed of four major layers.
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Figure 2: Existing EASGD-based Architecture

The sparse layer contains the embedding tables which are used to
process the sparse categorical features. One can scale the models
by adding more sparse features. The dense layer is several MLPs
(multilayer perceptron) processing the continuous features (i.e., the
dense features). The interaction layer takes the output of the dense
layer and the sparse layer, computes the second-order interaction
among them by taking the dot product between all the combination
among the embedding vectors and the processed dense features.
And then the final layer of MLPs are applied on the interaction and
a sigmoid function will be applied to obtain the final prediction.
Note that this is a high level description of the DLRM-like models,
and each layer can be more complicated in reality.

The model can be expressed as a directed graph in the context of
Caffe2 where each node represents an operator and each directed
edge represents data dependency between two operators [3]. For
example, a FC operator is followed by a Relu operator. The model
graph is also known as the training net. It contains the forward and
backward computation operators for one batch of the training data.
The training process is to iteratively executing the training net until
the model converges or a certain number of samples are processed.
A typical model graph for DLRM-like models have hundreds to
thousands of operators.

2.2 The Existing Training Architecture
Here we describe howwemap the DLRM-like models to the existing
training system at Facebook. In the existing training architecture,
there are mainly three types of nodes: trainers, sparse parameter
servers, dense parameter servers, as shown in Figure 2. From the
system perspective, there are two parts in a DLRM-like model:
the sparse part which is the sparse layer holding the embedding
tables as mentioned in Section 2.1, and the dense part which con-
tains everything else of the model, including the dense layer, the
interaction layer and the final layer. This is because the system
scales the sparse part and the dense part individually using differ-
ent mechanisms. The sparse part (the sparse embedding tables) are
partitioned onto a set of dedicated sparse parameter servers (sparse
PSs). These PSs are shared by all trainers and can be easily scaled
by adding more machines when more embedding tables are added.
The dense part, on the other hand, are replicated on each trainer. In
other words, each trainer holds one copy of the dense parameters
from the dense part of the model. It accesses and updates the local
copy of the dense parameters through local training. The synchro-
nization of the dense parameters across all trainers is executed in
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Figure 3: Effect of Inter-trainer Asynchronicity

background through the dense parameter servers (dense PSs) using
the ShadowSync framework [48] with the EASGD algorithm [46].
This allows the system to scale linearly by adding more trainers as
the synchronization happens in the background and never blocks
the iterative training process.

To fully utilize multiple CPU cores of each machine, trainers
are multi-threaded and each trainer processes a number of copies
of the dense part of the training net iteratively. Though the dense
part of the training net has multiple copies/replicas on one trainer,
there is only one dense parameter copy on each trainer shared
by all training net replicas on the same trainer. The replicas of
the training net are executed by a thread pool concurrently and
they access and update the shared local dense parameters in a lock-
free manner (similar to Hogwild! style update [33]). This design
introduces asynchronicity and staleness in each trainer, because
when a thread/net updates the parameter after reading it, other
threads/nets may have already updated them. We found that such
kind of asynchronicity at a certain range is acceptable.

During the training execution, each net in each trainer executes
the following logic iteratively: reads a batch of data, sends requests
to sparse PSs to perform embedding lookup operations, runs for-
ward/backward computation on the local copy of the dense param-
eters, and finally updates the local dense parameters as well as the
embedding tables on sparse PSs. In the background, each trainer
has a dedicated net talking to the global dense parameter servers
to synchronize the copy of the dense parameters using the EASGD
algorithm [46] asynchronously. For simplicity, we call the existing
training architecture the EASGD-based training system.

The system is expressing both the model parallelism and data
parallelism: model parallelism is used to partition and place the
embedding tables on sparse PSs; data parallelism is used within a
trainer and across the trainers as multiple net replicas within each
trainer are processing different batches of the data concurrently.

2.3 Asynchronicity Analysis in Existing System
To improve the model quality, more complex models and more train-
ing data are being explored. This calls for the needs of increasing
the training throughput of the system, i.e., improving the training
scalability, while at the same time preserving the model quality.
Following the definition from ShadowSync [48], we use Examples
Per Second (EPS), the number of examples processed by the system
per second, to evaluate the throughput of a training system.

Here we analyze the asynchronicity in the EASGD-based sys-
tem. There are two types of asynchronicity for the dense part:
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Figure 4: Effect of Intra-trainer Asynchronicity

inter-trainer and intra-trainer. Inter-trainer asynchronicity is intro-
duced by the background EASGD synchronization algorithm. This
is because the EASGD is running in the background, and dense
parameters communication is not blocking the forward/backward
training. Intra-trainer asynchronicity is incurred by the asynchro-
nous update within one trainer. In each trainer, there are multiple
replicated nets executing at the same time and they will access and
update the same local copy of the dense parameters asynchronously.
We define the staleness of the dense parameters introduced here as
the number of writes conducted by other net replicas between a net
read (during the forward pass) and write (during the backward pass)
the same parameter. The maximum dense staleness for a trainer is
bounded by the number of concurrent net replicas.

Intuitively both inter-trainer asynchronicity and intra-trainer
asynchronicity may deteriorate the model quality to different ex-
tents and we conduct experiments to better understand their effects.
We first analyze the effect of inter-trainer asynchronicity by chang-
ing the number of trainers for EASGD-based system. As shown in
Figure 3a, the training throughput grows linearly with the num-
ber of trainers. However, we observed non-trivial model quality
degradation when scaling out as shown in Figure 3b (the lower
the better). Specifically, with 40 trainers, we observe 0.25% loss
increase (relative loss compared with the 10-trainer case) which is
significant. We believe it is because of the nature of the background
model averaging algorithm. That is, the model quality drops a lot
when there are many dense replicas in the system. Besides, adding
dense replica will make each trainer see less training data given
the total number of data fed into the system is unchanged.

Observation 2.1. The EASGD-based system incurs non-neglectable
model quality drop when increasing the number of trainers.

We then conduct experiments to test the effect of intra-trainer
asynchronicity as shown in Figure 4. Though the training through-
put is not increasing because each trainer only has 18 physical
CPU cores, we found that increasing the number of concurrent
nets within a trainer will not severely hurt the model quality. The
loss value is increased by around 0.02% for 96 nets compared with
12 nets when training with 9 billions of examples, which is much
smaller compared with the degradation brought by inter-trainer
asynchronicity.

Observation 2.2. The EASGD-based system is not sensitive to
intra-trainer asynchronicity, i.e., increasing the number of net replicas
within a trainer will not severely hurt the model quality.

Based on these observations, we have concluded that model
quality is more sensitive to inter-trainer asynchronicity compared
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Figure 5: Hierarchical Training Architecture

to the intra-trainer asynchronicity. This motivates us to redesign
the system and introduce hierarchical training.

3 DESIGN
3.1 Hierarchical Training
We design Hierarchical Training (HT). We increase the pro-
cessing power for a “trainer" while keeping the total number of
"trainers", i.e., total number of dense replicas, small. We replace
a trainer in the EASGD-based system with a group of nodes to
increase the processing power. We call it a group. A group con-
sists of two types of nodes: a set of trainers and a set of group
parameter servers (group PSs). The model graph (i.e., the train-
ing net) is partitioned to the group PSs and trainers within a
group. An overall architecture is shown in Figure 5 where we
have 2 groups and each group has 2 group PSs and 3 trainers.
The trainers read data batches, conduct embedding lookups with
the sparse PSs and initiate the iterative training loop as in the
EASGD-based system (the sparse PSs are omitted in the figure
for simplicity). The group PSs within a group participate in the
computation and they jointly store one copy of the dense param-
eters of the model. The dense copy in each group are partitioned
among group PSs. In this architecture, the total amount of data
parallelism is 𝑛𝑢𝑚_𝑡𝑟𝑎𝑖𝑛𝑒𝑟𝑠 × 𝑛𝑢𝑚_𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑛𝑒𝑡𝑠_𝑝𝑒𝑟_𝑡𝑟𝑎𝑖𝑛𝑒𝑟
and is preserved as the EASGD-based system. However, we only
create 𝑛𝑢𝑚_𝑔𝑟𝑜𝑢𝑝𝑠 dense replicas instead of 𝑛𝑢𝑚_𝑡𝑟𝑎𝑖𝑛𝑒𝑟𝑠 dense
replicas compared to the EASGD-based system.

3.1.1 Computation and Communication Pattern. We introduce the
computation and communication pattern within a group for hierar-
chical training. We first consider the partitioning of one net replica.
In each group, the training net replica is partitioned into 𝑘 + 1 parts
if there are 𝑘 group PSs per group. Each group PS gets one partition
of the net and all the trainers within a group gets a copy of the
last partition. In other words, operators on trainers are replicated
while operators on group PSs are partitioned; see Figure 5 for an
example of 𝑘 = 2: in each group, each group PS holds one operator,
and each trainer holds the remaining 5 operators. Trainers control
the training loop. When one or more operators are placed on a
group PS, a trainer will send the input tensor to the group PS for
execution. The group PS can then finish all the local execution,
and then the output will be returned to the trainer who initiates
the computation. As all the concurrent net replicas for all trainers
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within a group access and read the same copy of the dense parame-
ters stored on the group PSs, if there are 𝑡 trainers in a group, the
maximum staleness on dense parameters is 𝑡 × 𝑟 , where 𝑟 is the
number of concurrent nets per trainer. This effectively means we
increase the number of threads in Hogwild!-style update within a
group in hierarchical training.

Following the EASGD-based training system, hierarchical train-
ing uses background averaging algorithms, e.g., EASGD, to synchro-
nize the local dense parameter copy among different groups. The
communication is between group PSs and the global dense PSs as all
the dense parameters are stored on group PSs. Note that other back-
ground synchronization algorithms introduced in ShadowSync [48]
can also be used here.

3.1.2 Parallelism Analysis. Hierarchical training introduces model
parallelism within a group as it distributes the operators in a net
to different group PSs. At the same time, it also increases the data
parallelism degree for a dense replica in a group as HT replaces a
trainer with a group of nodes which results in more parallelism.
HT also implies pipeline parallelism as group PSs in a group can be
viewed as pipeline workers each responsible for the computation
of a certain part of the model. They also work on different batches
of the data concurrently due to the data parallel execution.

3.2 System Implementation
Now we address the following questions for hierarchical training:
(1). How dowe realize hierarchical training into the existing system?
(2). How do we decide the net/graph partitioning for nodes in
a group, i.e., which operators should be on trainers and which
operators should be on group PSs? (3). As hierarchical training
introduces extra communication overhead within a group, how do
we minimize the communication overhead?

We answer these questions through a two-layer system design
for hierarchical training as shown in Figure 6. The first layer is the
tagging system for operator placement on group PSs and trainers. It
takes in a user config and generates a single tagged train net. Each
operator in the train net is tagged by a 𝑛𝑜𝑑𝑒_𝑛𝑎𝑚𝑒 field, indicating
which device this operator will be run on. The second layer is the
net transformation system which takes the tagged train net from
the tagging system as the input, applies net transformation on the
net and finally generates the distributed nets for each device, e.g.,
trainers, group PSs, dense PSs, etc., in the system. We describe the
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hierarchical training implementation in the Caffe2 stack [3] while
the design is general and can be applied to other commonly used
deep learning frameworks, e.g., PyTorch [32], Tensorflow [1].

3.2.1 The Tagging System. The tagging system decides the operator
placement for operators in the train net. Specifically, we need to
decide (1). whether an operator should be placed on trainers or
group PSs; and (2). if an operator is going to be placed on group PS,
which group PS it should be placed on. We consider the placement
in one group as the placements for all groups are identical. The goal
of the tagging system is to generate an operator placement strategy
such that: (1). the communication between trainers and group PSs
is minimized; (2). the computation on trainers and group PSs are
balanced; (3). trainers and group PSs will not run out of memory.

The problem can be modeled as a mixed integer linear program-
ming problem and can be solved by a solver like Xpress [43]. How-
ever, the train net can have up to thousands of operators and solving
it using the solver is infeasible. To give a relatively reasonable so-
lution, we develop a rule-based tagging process based on prior
knowledge of the models and a greedy refinement process to refine
the operator placement from the rule-based process.

The rule-based tagging process works as the followings. We
consider the operator placement problem as a bi-partition problem
to put operators on trainers or group PSs. First of all, we tag all
operators related to the initialization of the parameter weights, e.g.,
FC weights and bias, to make the initialization run on the group
PSs. This step ensures that there is only one copy of the parameters
in each group. We also tag all the related operators in the same
modules, e.g., the corresponding FC operators and the FCGradient
operators. Second, based on prior knowledge of the deep learning
recommendation models, we develop several rules to tag some
operators on the trainers. Third, we run a connected component
detection algorithm on the train net to identify several connected
components, each corresponds to a set of operators running on one
group PS. Finally, we allocate those components on different group
PSs in a way that balancing the size of the dense weights on each
group PSs. The rule-based tagging process is not optimal but gives
us a reasonably good initial operator placement. We can improve
the placement by plugging in more advanced rules based on the
knowledge of the models.

Then we apply a greedy refinement process to further tune the
operator placement plan generated by the above rule-based process.
The refinement runs as the followings: Given the current place-
ment, it identifies a device which is the bottleneck of the system. A
bottleneck device is a device with the highest resource utilization.
We consider the following three dimensions for utilization: CPU,
network and memory. If one device is the bottleneck, it tries to
move one of the operator from the bottleneck device to another
device if the move can alleviate the bottleneck of the system. The
algorithm runs the above process iteratively until the placement is
balanced or a pre-defined search time limit is reached.

The tagging process is a combination of a knowledge-based
process and a greedy process but in practice it is sufficient to yield
satisfactory operator placement plan. We will show in Section 5.3
about the effectiveness of the tagging process.

3.2.2 The Net Transformation System. We develop a net transfor-
mation system to transform a tagged training net into distributed

training nets running on different hosts. The primary goal here is
to partition some parts of the nets to express model parallelism,
and replicate some other parts to express data parallelism. The
tagging system adds annotations/tags to the train net. With the
annotations, the net transformation framework can infer the model
parallelism and data parallelism schemes used for different parts of
the net. For computations that are related to embedding lookups,
the corresponding operators will be partitioned and placed to the
available sparse PSs. Hierarchical training architecture expresses
model parallelism within a group, and data parallelism among the
groups. Therefore, we need to partition the train nets and place the
operators to the group PSs based on the tagged train net. Then for
the remaining operators that happen on the trainer, we replicate
them and place them on all trainers. For the ShadowSync EASGD
synchronization, we create one net per group PS that iterates over
all the parameters owned by the group PSs and syncs them with
the dense PSs. Once the distributed nets for one group are cre-
ated, we replicate the distributed nets to each group with small
manipulations to place the nets to the correct hosts.

The net transformation system is a generic design which allows
us to define different combinations of model and data parallelism,
and execute partitioned or replicated nets on different hosts.

4 SYSTEM OPTIMIZATIONS
In this section, we introduce several optimizations specific to HT.

4.1 Model Architecture Optimization
We first identify potential improvement by modifying the models.
The fully-connected layer (FC) is one of the most common layers
in the dense part of the DLRM-like recommendation models. It
is represented by the FC Op and FCGradient Op in the forward
and backward computation respectively which are similar to ma-
trix multiplication [3], i.e., AB = C where A is the input matrix
with size 𝑖𝑛𝑝𝑢𝑡_𝑑𝑖𝑚×ℎ𝑖𝑑𝑑𝑒𝑛_𝑑𝑖𝑚, B is the weight matrix with size
ℎ𝑖𝑑𝑑𝑒𝑛_𝑑𝑖𝑚×𝑜𝑢𝑡𝑝𝑢𝑡_𝑑𝑖𝑚 and C is the output. To better parallelize
the FC, we introduce two schemes for FC splits: vertical split and
horizontal split. In vertical split, we split the weight matrix verti-
cally, and the final result of the FC is the concatenation of the sub
matrix multiplication. In horizontal split, we split both the input
matrix and the weight matrix along the ℎ𝑖𝑑𝑑𝑒𝑛_𝑑𝑖𝑚. The result is
the sum of the sub matrix multiplication. Both schemes of FC split
help with paralleling the computation on group PSs and each sub
matrix operation can be placed on one group PS.

We also apply co-partitioning for two consecutive FCs to avoid
unnecessary traffic. If the 𝑜𝑢𝑡𝑝𝑢𝑡_𝑑𝑖𝑚 is larger thanℎ𝑖𝑑𝑑𝑒𝑛_𝑑𝑖𝑚 for
the first FCweight and theℎ𝑖𝑑𝑑𝑒𝑛_𝑑𝑖𝑚 is larger than the𝑜𝑢𝑡𝑝𝑢𝑡_𝑑𝑖𝑚
of the second FC weight, we apply co-partitioning to the two con-
secutive FCs. The first FC is better to use vertical split while the
second one is better to use horizontal split. Before any optimization,
the first FC will be distributed to different group PSs and the results
will be sent back to trainers for aggregation (e.g., concat), and then
for the second FC, we redistribute the input (i.e., the output of the
previous FC) to different group PSs. To avoid the unnecessary traffic,
we enable co-partitioning of the two FCs so that the intermediate
results between the two FCs do not need to be sent back to trainers,
and thus saves precious network bandwidth.
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4.2 Communication Compression
We employ two techniques to reduce the network traffic intro-
duced by the operator partitioning in Hierarchical Training [16] -
𝑸𝒖𝒂𝒏𝒕 𝒊𝒛𝒂𝒕 𝒊𝒐𝒏 can typically reduce the traffic by 2x-4x depending
on the bit precision. We found that using specialized formats like
bfloat16 can compress communication with almost no impact to
model accuracy in lieu of increased latency of quantization and
dequantization operations. Lower bit-precision like INT8 and INT4
can typically provide more compression but also comes at the cost
of model accuracy. We observed that gradient information sent
between sub-networks is extremely sensitive to lower bit precision,
and hence INT8 is only applied to layer activations in the forward
pass, while gradients are quantized to bfloat16. 𝑺𝒑𝒂𝒓𝒔 𝒊𝒇 𝒊𝒄𝒂𝒕 𝒊𝒐𝒏
is another technique we employ that further boosts the EPS by
zeroing out low magnitude values in gradients. This introduces
bias in the system which can be compensated by employing error
correction techniques [24].

Another important lever that helps improve the efficiency of hi-
erarchical training is the batch size for computation. Larger batches
lead to more computation during each batch of training, thereby
boosting EPS and CPU utilization. But this also increases the net-
work communication which scales linearly with the number of
layer activations. Hence communication compression and large
batch can organically complement each other in boosting EPS.

4.3 System Optimizations for Scaling
Hierarchical training increases the number of distributed nodes
from dozens to more than 200. This adds pressure on the underlying
infrastructure to meet end-to-end training latency guarantees while
maintaining high reliability. We applied several optimizations to
improve the model publishing performance, memory management
scheme, and the overall fault-tolerance strategy.

During online training, models incrementally train on fresh data
and publish new inference files at an interval of two hours. The
models stop training to save inference files to disk with low la-
tency and resumes training quickly to avoid loss of training data.
A background thread uploads the files from disk to remote storage
to serve predictor traffic. Hierarchical training allows training of
larger model which increases the write latency of inference files
to local disk and can lead to training data loss. Moreover, a lower
end-to-end publishing latency between two consecutive snapshots
is required to avoid model accuracy degradation from over-fitting.
We optimized our model publishing logic to directly write to remote
storage and avoid the slow temporary write to local disk.

Hierarchical training executes complex computations inside
group PS and trainers. Dynamic memory of these hosts are utilized
while training large models which places heavy computational com-
ponents on a single node. Moreover, sparse PS host large embedding
tables, making these hosts susceptible to run out of memory. We
utilize a detection framework to identify fused components which
cannot be sharded across trainer and group PS and fail early. We
also deploy an auto-tuning framework with dynamic memory ac-
counting to estimate the memory requirements of sparse PS and
shard large embedding tables across multiple nodes.

Training at scale with large number of nodes increases the sur-
face area for failures due to communication challenges between
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Figure 8: Training throughput (EPS)

nodes and routine maintenance of hosts. We use checkpoint-based
failure recovery strategy for fault tolerance and increase the num-
ber of retries. We also implement a controller to defer the host
maintenance events to much later so that we can group multiple
events and perform maintenance on the hosts altogether.

5 EXPERIMENTS
In this section, we conduct experiments to evaluate the effectiveness
of hierarchical training on DLRM-like models for click-through-
rate prediction tasks. We use internal models and dataset for the
experiments. The models consist hundreds of sparse categorical
features and the dense part is of several hundreds megabytes. We
will omit the detailed descriptions for the models and data. Hyper-
parameters, e.g., the learning rate, batch size, etc., are the same
for all the experiments. For all the comparisons except those in
Section 5.3, we employed all system optimization techniques intro-
duced in Section 4. We use enough sparse PSs and readers for all
jobs to ensure they are not the system bottleneck. The total number
of nodes (gang size) we used ranges from 100 to 200.

5.1 HT vs. EASGD
First of all, we demonstrate the model quality and training through-
put improvement for hierarchical training (HT) compared to the
EASGD-based training system. We take two models: Model-A
and Model-B, where Model-A uses full precision computations
on fully-connected layers, and Model-B uses 8-bit low precision
computations for FC layers on the forward pass. Both scenarios
are commonly used in real world recommendation model training.
Both models are trained using 9 billion samples. The loss we use
is the normalized entropy (NE) loss between click-through-rate
prediction probability and the true labels. The detailed description
of the loss can be found in [19]. We use averaged EPS (examples
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Figure 9: CPU and Network Utilization

per second) throughout the training to measure the throughput of
the system. Note that the EPS is stable during training.

In each of the two models, we use EASGD with 40 trainers
(EASGD 40t) as the baseline and compare it with hierarchical train-
ing (HT) with 5, 8, 10 groups (HT 5g, HT 8g, HT 10g), where each
group contains 6 trainers and 6 group PSs. We do not consider
using more nodes in HT as an efficiency loss because sparse PSs
and readers already take up more than half of the total nodes.

We first evaluate the relative loss (the lower the better) for HT
runs compared with 40 trainers EASGD baseline over the training
process in Figure 7. HT versions achieved neutral to better loss
compared with the baseline. The gain is larger when fewer groups,
e.g., 5 groups, are used in HT. This is because fewer dense replicas
can yield to better model quality as also observed in Section 2.
Specifically, with 5 groups, HT achieves more than 0.2% model
quality gain compared with the baseline which is significant.

Figure 8 shows the corresponding training throughput (EPS)
for HT and EASGD baseline. HT with 10 groups is 1.6x and 1.9x
of the EPS compared with the EASGD baseline for Model-A and
Model-B respectively. Also note that with 10 groups, HT achieves
neutral model quality for both models as shown in Figure 7. This
result demonstrates that HT can speedup the training by up to 1.9x
while at the same time preserving the model quality. From another
perspective, it also shows that with similar training throughput,
HT can achieve up to 0.2% loss improvement compared with the
EASGD-based system.

We also report the CPU and network utilization for group PSs
and trainers for the HT 10 groups case on both models in Figure 9.
The utilization of group PSs from different groups are similar so
we only plot the utilization for the first group. Different trainers
also have similar utilization because they are identical, and we only
plot the averaged usage for trainers. Utilization for HT 5 groups
and 8 groups are similar with HT 10 groups because changing the
number of groups does not change the utilization of the group PSs
and trainers within a group. The result suggests that for Model-
A, the CPU and network utilization for the training nodes (group
PSs and trainers) are relatively balanced, and there is no obvious
bottleneck. This demonstrates the effectiveness of our operator
placement strategy, including the rule-based tagging and greedy
refinement process. For Model-B, the CPU and network are more
utilized, and more specifically, the CPU on group PS 4 becomes a
bottleneck. Further improving the efficiency of hierarchical training
will be left as future work.
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5.2 Scalability
In this section, wemeasure the scalability of hierarchical training on
Model-A. We first evaluate the inter-group scalability by increasing
the number of groups in HT as shown in Figure 10a. Each group
has 6 trainers and 6 group PSs. We report the relative speedup
compared with the 2 groups setting. The result shows that HT can
scale linearly to 10 groups as long as other system components
do not become the bottleneck. This is expected as similar to the
EASGD-based system, the model averaging for the dense part is
running in the background and allows HT to increase the training
throughput almost linearly with more groups.

We then evaluate the effect of changing the (# trainers, # group
PSs) pair in each group from (2, 2) to (10, 10) in an 8-group HT run
on Model-A and measure the averaged EPS. Figure 10b shows the
relative speedup compared with the (2 trainers, 2 group PSs) setting.
We found that when we have more nodes per group, the model
split becomes worse and the communication traffic among trainers
and group PSs increased. Thus, the EPS grows sublinearly when
increasing the nodes per group. A reasonable number of nodes per
group could be around 12 (6 trainers and 6 group PSs).

5.3 The Effectiveness of System Optimizations
Finally, we evaluate the effectiveness of various optimization tech-
niques for hierarchical training mentioned in Section 3.2 and Sec-
tion 4. In particular, we look at the following techniques in both
model-A and model-B: (1) greedy refinement tagging process; (2)
rule-based tagging + greedy refinement; (3) model architecture op-
timization, and (4) communication compression. We remove each
of them independently from the HT baseline and measure the EPS.
In both model-A and model-B experiments, we use 5 groups with 6
trainers and 6 group PSs in each group.

Figure 11a and Figure 11b show that the tagging strategy is
important to the efficiency of HT. Disabling both the rule-based
tagging and greedy refinement can reduce the EPS by more than
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40%. The greedy refinement can improve the efficiency considerably
if the rule based tagging strategy is not good enough, e.g., for Model-
A, but gives little improvement if the rule-based process is already
good, e.g., for Model-B. Model architecture optimizations can also
boost the EPS as they help model parallelism to achieve a more
balanced computation/communication among training nodes in a
group. Finally, communication compression does not always help.
The reason is that the compression/decompression operators also
take some CPU cycles and it might outweighs the benefit of less
communication sizes, e.g., for Model-A. This indicates that taking
the CPU cycles for compression/decompression into considerations
in the tagging process can potentially further improve the training
efficiency. We leave this as future work.

6 RELATEDWORK
Models for Recommendation Systems. The recommendation
models has evolved from large scale logistic regression [18] and fac-
torized machine [13, 28, 34] to more advanced neural network such
as DLRM [31] form Facebook and Deep & Wide [6] from Google.
Baidu and Alibaba use a similar architecture for ads recommenda-
tion [47] and product recommendation [49] respectively. Youtube,
Netflix, Microsoft, etc, also report similar architecture for various
personalization workloads [7, 9, 10]. At Facebook, DLRM-like mod-
els are powering the majority of the recommendation products
including instagram story ranking, news feed ranking, and group
recommendation, etc [2, 14, 15, 17]. Our previous work provides
an in-depth analysis about model architecture, hardware and sys-
tem configurations [2]. DLRM-like models are also widely used in
recommendation models research [12, 26, 37].
ParallelismSchemes.Data Parallelism is a commonly used scheme
for distributed training which partitions the input dataset among
multiple devices. Each device holds a replica of the model and the
model are synchronized using parameter server [1, 8, 21, 22, 27,
42] or collective communication primitive [11, 40]. Model Paral-
lelism splits the model into different devices to achieve parallelism,
e.g., STRADS [25], NOMAD [44, 45] and Mesh-Tensorflow [35].
PipeDream [30], GPipe [20] adopt pipeline parallelism and partition
the model into multiple devices and splits a batch of data into mini
batches to fully utilize all the devices in the pipeline. FlexFlow [23],
Tofu [39] and TensorOpt [4] employ different strategies to discover
the parallelism schemes for different operators automatically. Hier-
archical training combines data parallelism and model parallelism
in the execution of each group, and utilizes a two-phase tagging
strategy for operator placement.
Parameter Sychronization. Parameter server architecture stores
the model on distributed parameter servers and allows multiple
workers to update the parameters in RPC-like style, e.g, Parameter
Server [27], Petuum [42], DistBelief [8], etc. At Facebook, we also
use a dedicated set of sparse parameter servers to host the embed-
dings for recommendation models [2]. Hogwild! [33] exploits the
sparsity of data and lets multiple threads update the shared model in
one machine in a lock-free manner. Another line of work focuses on
model averaging algorithms [51], e.g., EASGD [46], BMUF [5]. De-
centralized parallel SGD [29] relies on peer-to-peer communication
to get rid of the centralized parameter servers. ShadowSync [48]
makes the model averaging happen in the background and avoid the

synchronization blocking the training process. Hierarchical train-
ing extends ShadowSync across groups and uses Hogwild!-style
update within each group.

7 CONCLUSION
Scaling deep learning based recommendation models training with-
out sacrificing the model quality is challenging. In this paper, we
provide an in-depth analysis of the challenges and identify that
the model quality is more sensitive to inter-trainer asynchronic-
ity than intra-trainer asynchronicity. Based on these observations,
we propose Hierarchical Training to scale the real-world recom-
mendation models. We address the operator placement problem,
develop optimization strategies for communication reduction, and
integrate hierarchical training into our existing training stack. Our
experiments verify the effectiveness of hierarchical training on
real-world models. Our work demonstrates that a thorough under-
standing of the system asynchronicity and a design that leverages
the characteristic of the models could significantly boost training
scalability on large CPU clusters.
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