
Accelerometer: Understanding Acceleration 
Opportunities for Data Center Overheads at 

Hyperscale 

Akshitha Sriraman∗† Abhishek Dhanotia† 

University of Michigan∗ , Facebook† 

akshitha@umich.edu, abhishekd@fb.com 

Abstract 
At global user population scale, important microservices 
in warehouse-scale data centers can grow to account for 
an enormous installed base of servers. With the end of Den-
nard scaling, successive server generations running these mi-
croservices exhibit diminishing performance returns. Hence, 
it is imperative to understand how important microservices 
spend their CPU cycles to determine acceleration oppor-
tunities across the global server feet. To this end, we frst 
undertake a comprehensive characterization of the top seven 
microservices that run on the compute-optimized data center 
feet at Facebook. 
Our characterization reveals that microservices spend as 

few as 18% of CPU cycles executing core application logic 
(e.g., performing a key-value store); the remaining cycles 
are spent in common operations that are not core to the 
application logic (e.g., I/O processing, logging, and compres-
sion). Accelerating such common building blocks can greatly 
improve data center performance. Whereas developing spe-
cialized hardware acceleration for each building block might 
be benefcial, it becomes risky at scale if these accelerators 
do not yield expected gains due to performance bounds pre-
cipitated by ofoad-induced overheads. To identify such per-
formance bounds early in the hardware design phase, we 
develop an analytical model, Accelerometer , for hardware 
acceleration that projects realistic speedup in microservices. 
We validate Accelerometer’s utility in production using three 
retrospective case studies and demonstrate how it estimates 
the real speedup with ≤ 3.7% error. We then use Accelerom-
eter to project gains from accelerating important common 
building blocks identifed by our characterization. 
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1 Introduction 
The increasing user base and feature portfolio of web applica-
tions is driving precipitous growth in the diversity and com-
plexity of the back-end services comprising them [63]. There 
is a growing trend towards microservice implementation 
models [1, 5, 13, 15, 124], wherein a complex application is 
decomposed into distributed microservices [64, 90, 110, 112, 
113] that each provide specialized functionality [115], such 
as HTTP connection termination, key-value serving [46], 
protocol routing [11, 129], or ad serving [52]. At hyperscale, 
this deployment model uses standardized Remote Procedure 
Call (RPC) interfaces to invoke several microservices to serve 
a user’s query. Hence, upon receiving an RPC, a microser-
vice must often perform operations such as I/O processing, 
decompression, deserialization, and decryption, before it can 
execute its core functionality (e.g., key-value serving). 
At global user population scale, important microservices 

can grow to account for an enormous installed base of phys-
ical hardware. Across Facebook’s global server feet, seven 
important microservices in four diverse service domains run 
on hundreds of thousands of servers and occupy a large por-
tion of the compute-optimized installed base. With the end of 
Dennard scaling [45, 120], successive server generations run-
ning these microservices exhibit diminishing performance 
returns. These microservices’ importance begs the question: 
which microservice operations consume the most CPU cy-
cles? Are there common overheads across microservices that 
we might address when designing future hardware? 

To this end, we undertake a comprehensive characteriza-
tion of microservices’ CPU overheads on Facebook produc-
tion systems serving live trafc. Since microservices must 
invoke common leaf functions at the end of a call trace (e.g. 
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Figure 1. Breakdown of cycles spent in core application 
logic vs. orchestration work: orchestration overheads can 
signifcantly dominate. 

memcpy()) [63], we frst characterize their leaf function over-
heads. We then characterize microservice functionalities to 
determine (1) whether diverse microservices execute com-
mon types of operations (e.g., compression, serialization, and 
encryption) and (2) the overheads they induce. Both studies 
can help identify important acceleration opportunities that 
might be addressed in future software or hardware designs. 
We fnd that application logic disaggregation across mi-

croservices at hyperscale has resulted in signifcant leaf func-
tion and microservice functionality overheads. For example, 
several microservices spend only a small fraction of their 
execution time serving core application logic, squandering 
signifcant cycles facilitating the core logic via orchestration 
work that is not core to the application logic (e.g., compres-
sion, serialization, and I/O processing), as shown in Fig.1. 
Accelerating the core application logic alone can yield only 
limited performance gains—an important Machine Learn-
ing (ML) microservice can speed up by only 49% even if 
its ML inference takes no time. Our Web microservice en-
tails surprisingly high overheads from reading and updating 
logs. Caching microservices [34] can spend 52% of cycles 
sending/receiving I/O to support a high request rate and con-
sequent I/O compression and serialization overheads domi-
nate. Copying, allocating, and freeing memory can consume 
37% of cycles, and kernel scheduler and network overheads 
are high with poor IPC scaling. Many microservices face 
common orchestration overheads despite great diversity in 
microservices’ core application logic. 
Such signifcant and common overheads might ofer op-

portunities to accelerate common building blocks across 
microservices. Indeed, we report acceleration opportunities 
that might inform future software and hardware designs. 
However, introducing hardware acceleration in production 
requires (1) designing new hardware, (2) testing it, and (3) 
carefully planning capacity to provision the hardware to 
match projected load. Given the uncertainties inherent in 
projecting customer demand, deploying diverse custom hard-
ware is risky at scale as the hardware might under-perform 
due to performance bounds from ofoad-induced overheads. 
As such, there is a need for simple analytical models that 
identify performance bounds early in the hardware design 
phase to project gains from accelerating overheads. 

To this end, we develop an analytical model for hard-
ware acceleration, Accelerometer , that identifes performance 
bounds to project microservice speedup. Whereas a few prior 
models [20, 38] estimate speedup from acceleration, they fall 
short in the context of microservices as they assume that the 
CPU waits while the ofoad operates. However, for many 
microservice functionalities, ofoad may be asynchronous; 
the processor may continue doing useful work concurrent 
with the ofoad. We extend prior models [20, 38] to capture 
such concurrency-induced performance bounds to project 
microservice speedup from hardware acceleration. 
We demonstrate Accelerometer’s utility using three ret-

rospective case studies conducted on production systems 
serving live trafc. First, we analyze an on-chip acceleration 
strategy—a specialized hardware instruction for encryption, 
AES-NI [8]. Second, we study an of-chip accelerator—an 
encryption device connected to the host CPU via a PCIe link. 
In the fnal study, we analyze a remote acceleration strategy— 
a general-purpose CPU that solely performs ML inference 
and is connected to the host CPU via a commodity network. 
In all three studies, we show that Accelerometer estimates 
the real microservice speedup with ≤ 3.7% error. Finally, we 
use Accelerometer to project speedup for the acceleration 
recommendations derived from three important common 
overheads identifed by our characterization—compression, 
memory copy, and memory allocation. 
In summary, we contribute: 
• A comprehensive characterization of leaf function over-
heads experienced by production microservices at Face-
book: one of the largest social media platforms today. 

• A detailed study of microservice functionality break-
downs, identifying orchestration overheads and high-
lighting potential design optimizations. 

• Accelerometer1: An analytical model to project mi-
croservice speedup for various acceleration strategies. 

• A detailed demonstration of Accelerometer’s utility 
in Facebook’s production microservices using three 
retrospective case studies. 

The rest of the paper is organized as follows: We describe 
and characterize the production microservices in Sec. 2. We 
explain the Accelerometer analytical model in Sec. 3. We 
validate and apply Accelerometer in Sec. 4 and Sec. 5, compare 
against related work in Sec. 6, and conclude in Sec. 7. 

2 Understanding Microservice Overheads 
We aim to identify how Facebook’s important microservices 
spend their CPU cycles executing (1) leaf functions and (2) 
various microservice functionalities to determine software 
and hardware acceleration opportunities. We frst character-
ize leaf functions (e.g., memcpy()) across diverse microser-
vices. Whereas a leaf function study can provide insight into 

1Available at htps://github.com/akshithasriraman/Accelerometer and htps: 
//doi.org/10.5281/zenodo.3612797 
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common software building blocks, it does not reveal whether 
services share common functionalities that can be acceler-
ated (e.g., compression). Hence, we additionally characterize 
service functionalities to identify common overheads that 
can beneft from acceleration. We also study Instructions Per 
Cycle (IPC) scaling for both the leaf and microservice func-
tionality breakdowns to identify optimizations for overhead 
categories that scale poorly across CPU generations. In this 
section, we (1) describe each microservice, (2) explain our 
characterization approach, (3) characterize leaf functions, (4) 
report on microservice functionality breakdowns, and (5) 
summarize our characterization’s key conclusions. 

2.1 The Production Microservices 
We study seven microservices in four diverse service do-
mains that account for a large portion of Facebook’s data 
center feet. We characterize on production systems serving 
live trafc. We frst detail each microservice’s functionality. 
Web. Web implements the HipHop Virtual Machine, a Just-

In-Time system for PHP and Hack [17, 95, 128], to serve 
web requests from end-users. Web employs request-level par-
allelism to make frequent calls to other microservices: an 
incoming request is assigned to a worker thread, which ser-
vices the request until completion. 

Feed1 and Feed2. Feed1 and Feed2 are two microser-
vices in our News Feed service. Feed2 aggregates various 
leaf microservices’ responses into discrete “stories” that are 
then characterized into dense feature vectors by feature ex-
tractors and learned models [26, 51, 101, 132]. The feature 
vectors are sent to Feed1, which calculates and returns a 
predicted user relevance vector. Stories are then ranked and 
selected for display based on the relevance vectors. 
Ads1 and Ads2. Ads1 and Ads2 maintain user-specifc 

and ad-specifc data, respectively [52]. When Ads1 receives 
an ad request, it extracts user data from the request and sends 
targeting information to Ads2. Ads2 maintains a sorted ad 
list, which it traverses to return ads meeting the targeting 
criteria to Ads1. Ads1 then ranks the returned ads. 
Cache1 and Cache2. Cache is a large distributed-memory 

object caching service (similar to widely-used caching bench-
marks [34, 35, 46, 123]) that reduces throughput require-
ments of various backing stores. Cache1 and Cache2 cor-
respond to two tiers in each geographic region for Cache. 
Client services contact the Cache2 tier. If a request misses 
in Cache2, it is forwarded to the Cache1 tier. Cache1 misses 
are sent to an underlying database cluster in that region. 

2.2 Characterization Approach 

We characterize the seven microservices by profling each in 
production while serving real-world user queries. We next 
describe the characterization methodology. 
Hardware platforms. We characterize our microservices 

on 18- and 20-core Intel Skylake processors [42] (see Table 1). 
We run Web, Feed1, Feed2, and Ads1 on the 18-core Skylake, 

Table 1. GenA, GenB, and GenC CPU platforms’ attributes. 

µarchitecture 
GenA 

Intel Haswell 
GenB GenC 
Intel 

Broadwell 
Intel Skylake 

Cores / socket 12 16 18 or 20 
SMT 2 2 2 

Cache block size 64 B 64 B 64 B 
L1-I$ / core 32 KiB 32 KiB 32 KiB 
L1-D$ / core 32 KiB 32 KiB 32 KiB 

Private L2$ / core 256 KiB 256 KiB 1 MiB 
Shared LLC 30 MiB 24 MiB 24.75 or 27 

MiB 

and Ads2, Cache1, and Cache2 on the 20-core Skylake. We 
study IPC scaling across three CPU generations (Table 1). 
Experimental setup. We measure each microservice in 

our production environment’s default deployment—stand-
alone with no co-runners on bare metal hardware. There are 
no cross-service contention or interference efects in our data. 
We study each system at peak load to stress performance 
bottlenecks. 

We characterize leaf functions by frst using Strobelight [14] 
to measure instructions and cycles spent in microservices’ 
key leaf functions. We then feed leaf functions and their 
cycle counts to an internal tool that tags each leaf function’s 
category (e.g., tagging memcpy() as “memory”); the tool then 
aggregates cycles spent in each leaf category. 
To characterize microservice functionality, we use Stro-

belight [14] to (1) collect all function call traces of a microser-
vice (e.g., a function call trace can be composed of a function 
sequence starting with cloning a thread and ending with a 
leaf function such as memcpy()) and (2) measure cycles and 
instructions spent in each call trace. We feed the function 
call traces and their cycle counts to an internal tool that 
buckets each function call trace into a microservice function-
ality category (e.g., I/O, serialization, and compression); it 
then aggregates cycles spent in each category. To determine 
a category’s IPC, we determine the ratio of aggregated in-
struction and cycle counts for functions in that category. We 
contrast our measurements with some SPEC CPU2006 [54] 
benchmarks and Google services [63] where possible. 

2.3 Leaf Function Characterization 

We frst present key leaf function breakdowns for our mi-
croservices and compare them with SPEC CPU2006 [54] and 
Google services [25, 63]. We then characterize a few key leaf 
functions in greater detail. Finally, we report IPC scaling 
measurements for Cache1’s leaf functions across three CPU 
generations. 

We defne each leaf function category in Table 2. We report 
the fraction of overall cycles spent in each leaf category 
in Fig. 2 (we omit bars that consume <1% of cycles). We 
also omit bars for 401.bzip2, 429.mcf, 445.gobmk, 456.hmmer, 
458.sjeng, 462.libquantum, 464.h264ref, and 483.xalancbmk 
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Figure 2. Breakdown of cycles spent in leaf functions: mem-
ory functions consume a signifcant portion of total cycles. 

Table 2. Categorization of leaf functions. 

Leaf category Examples of leaf functions 
Memory Memory copy, allocation, free, compare 
Kernel Task scheduling, interrupt handling, network 

communication, memory management 
Hashing SHA & other hash algorithms 

Synchronization User-space C++ atomics, mutex, spin locks, CAS 
ZSTD Compression, decompression 
Math Intel’s MKL, AVX 
SSL Encryption, decryption 

C Libraries C/C++ search algorithms, array & string 
compute 

Miscellaneous Other assorted function types 

SPEC CPU2006 benchmarks since their leaves are composed 
of either math functions or C libraries. 
We make several observations. First, most microservices 

spend a signifcant fraction of cycles on memory functions 
(e.g., copy and allocation) and kernel operations. Cache1 and 
Cache2 spend more cycles in the kernel as they frequently in-
cur context switches due to a high service throughput [111]. 
We further break down the memory and kernel function cate-
gories (Sec. 2.3.1 and 2.3.2) to identify specifc optimizations. 

Second, ML microservices such as Ads2 and Feed2 spend 
only up to 13% of cycles on mathematical operations that 
constitute ML inference using Multilayer Perceptrons. We 
fnd that these services can also beneft from optimizations 
to C libraries, which we investigate further in Sec. 2.3.4. 
Third, Cache1 and Cache2 spend signifcant cycles syn-

chronizing frequent communication between distinct thread 
pools. Additionally, we fnd that Cache1 spends 6% of cycles 
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Figure 3. Breakdown of cycles spent in memory leaf func-
tions as a fraction of total cycles: memory copy, allocation, 
& free consume signifcant cycles. 

in leaf encryption functions since it encrypts a high number 
of Queries Per Second (QPS). 
Fourth, Google’s breakdown across their global server 

feet [63] is similar to Facebook’s leaf breakdowns. In con-
trast, SPEC CPU2006 [54] benchmarks do not capture key 
leaf overheads (e.g., memory and kernel) faced by our mi-
croservices; their functions primarily belong to the math, C 
libraries, and miscellaneous categories. 

We conclude many leaf function overheads are signifcant 
and common across services. We next investigate leaf func-
tions in greater detail to identify acceleration opportunities. 

2.3.1 Memory. In Fig. 3, we characterize cycles spent in 
various memory leaf functions as a fraction of total cycles 
spent in memory functions. The memory functions include 
memory copy, free, allocation, move, set, and compare. We 
compare our microservices with Google’s services [63] and 
SPEC CPU2006 [54] benchmarks. Note that only the memory 
copy and allocation breakdowns are available for Google’s 
services [63], and they account for 13% of total cycles (repre-
sented by an asterisk in Fig. 3). 
We observe that memory copies are by far the greatest 

consumers of memory cycles. Google’s services also spend 
5% of total feet cycles on memory copies [63]. Although 
403.gcc exhibits a high memory overhead, it spends very 
few cycles in copying memory. Memory copy optimizations 
such as (1) reducing copies in network protocol stacks [16], 
(2) performing dense memory copies via SIMD [4], (3) mov-
ing data in DRAM [105], (4) minimizing I/O copies using 
Intel’s I/O Acceleration Technology (IO AT) [9], (5) process-
ing in memory [18], (6) optimizing memory-based software 
libraries [92, 99], and (7) building hardware accelerators (e.g., 
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Figure 4. Breakdown of service functionalities that invoke 
memory copies: there is signifcant diversity in dominant 
functionalities that perform copies. 

for memory-memory copies [82]) could minimize copy over-
heads. To identify optimizations, we also provide greater 
nuance to our memory copy characterization by attributing 
memory copies to various microservice functionalities. 

We fnd that memory allocation can be a signifcant over-
head despite using fast software allocation libraries [24]. 
Google’s services incur a slightly greater allocation over-
head. This observation suggests the need to continue to build 
software [3, 30, 58, 71, 74, 87, 131] and hardware optimiza-
tions [65, 70] for allocations. Of the SPEC CPU2006 [54] suite, 
471.omnetpp spends the most cycles on allocation (∼5%). 

Freeing memory incurs a high overhead for several mi-
croservices, as the free() function does not take a memory 
block size parameter, performing extra work to determine 
the size class to return the block to [65]. TCMalloc performs 
a hash lookup to get the size class. This hash tends to cache 
poorly, especially in the TLB, leading to performance losses. 
Although C++11 ameliorates this problem by allowing com-
pilers to invoke delete() with a parameter for memory 
block size, overheads can still arise from (1) removing pages 
faulted in when memory was written to and (2) merging 
neighboring freed blocks to produce a more valuable large 
free block [7]. While numerous prior works focus on opti-
mizing allocations [58, 63, 70], very few recognize that opti-
mizing free() can result in signifcant performance wins. 

Memory copy origins. In Fig. 4, we attribute memory copies 
to microservice functionalities defned in Table 3. We fnd 
that memory is primarily copied during (1) I/O pre- or post-
processing, (2) I/O sends and receives, (3) RPC serializa-
tion/deserialization, and (4) application logic execution (e.g., 
executing key-value stores in Cache). We observe signif-
cant diversity in dominant service functionalities that in-
voke copies across microservices. This diversity suggests 
a strategy to specialize copy optimizations to suit each mi-
croservice’s distinct needs. For example, Web can beneft 
from reducing copies in I/O pre- or post-processing [9, 105], 
whereas Cache2 can gain from fewer copies in network pro-
tocol stacks [16, 48]. 
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Figure 6. Breakdown of CPU cycles spent in synchronization 
functions: Cache frequently uses spin locks to avoid thread 
wakeup delays. 

2.3.2 Kernel. We depict the cycles spent in kernel leaf 
functions in Fig. 5. We make three observations: (1) Microser-
vices with a high kernel overhead—Cache1 and Cache2— 
invoke scheduler functions frequently. Software/hardware 
optimizations [28, 29, 32, 41, 44, 60, 73, 75, 116] that reduce 
scheduler latency (e.g., intelligent thread switching and coa-
lescing I/O) might considerably improve Cache performance. 
(2) Cache2 spends signifcant cycles in I/O and network in-
teractions. Optimized systems [29, 60, 66, 77, 97, 98] that 
incorporate kernel-bypass and multi-queue NICs might min-
imize Cache2’s kernel overhead. (3) Prior work [63] only 
reports the kernel scheduler overhead for Google’s services. 
They typically mirror overheads seen in Cache1 and Cache2. 

2.3.3 Synchronization. Microservices such as Cache over-
subscribe threads to improve service throughput [111]. Hence, 
such microservices frequently synchronize various thread 
pools. We portray these synchronization overheads in Fig. 6. 
We fnd that Cache, which exhibits a high synchronization 
overhead, spends several cycles in spin locks that are typ-
ically deemed performance inefcient [22, 81]. However, 
Cache implements spin locks since it is a µs-scale microser-
vice [111], and is hence more prone to µs-scale performance 
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Figure 7. Breakdown of CPU cycles spent in C libraries: ML 
services perform several vector operations while dealing 
with large feature vectors. 
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Figure 8. Cache1’s IPC scaling across three CPU generations 
for key leaf funcs.: kernel IPC is typically low & scales poorly. 

penalties that can otherwise arise from thread re-scheduling, 
wakeups, and context switches [113]. 

2.3.4 C Libraries. We characterize overheads from C li-
braries in Fig. 7. We observe that Feed2, Ads1, and Ads2 
perform several vector operations as they deal with large 
feature vectors. Web spends signifcant cycles parsing and 
transforming strings to process queries from the many URL 
endpoints it implements. Web also performs several hash ta-
ble look-ups to (1) maintain query parameters, (2) identify 
services to contact, and (3) merge responses. We conclude 
many microservices can beneft from optimizing vector op-
erations [72], string computations [49, 107], and hash table 
look-ups [108, 118]. 
2.3.5 IPC scaling. We show Cache1’s per-core IPC scal-

ing for key leaf functions in Fig. 8. We report IPC across three 
CPU generations to see whether IPC scales as expected. 

We make several observations: (1) Each leaf function type 
uses less than half of the theoretical execution bandwidth 
of a GenC CPU (theoretical peak IPC of 4.0). As such, simul-
taneous multithreading is efective for these microservices 
and is enabled in our CPUs. Given our production microser-
vices’ larger codebase, larger working set, and more varied 
memory access patterns, we do not fnd a lower typical IPC 
surprising. (2) Kernel IPC is typically low and also scales 
poorly. Accelerating the kernel is non-trivial as it is neither 
small, nor self-contained, and cannot be easily optimized 
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Figure 9. Breakdown of CPU cycles spent in various mi-
croservice functionalities: orchestration overheads are sig-
nifcant & fairly common. 

Table 3. Categorization of microservice functionalities. 

Functionality category Examples of service operations 
Secure and insecure I/O Encrypted/plain-text I/O sends & receives 
I/O pre/post processing Allocations, copies, etc before/after I/O 

Compression Compression/decompression logic 
Serialization RPC serialization/deserialization 

Feature extraction Feature vector creation in ML services 
Prediction/ranking ML inference algorithms 
Application logic Core business logic (e.g., Cache’s 

key-value serving) 
Logging Creating, reading, updating logs 

Thread pool 
management 

Creating, deleting, synchronizing threads 

in hardware. However, software optimizations that mini-
mize scheduler, I/O, and network overheads can improve 
kernel IPC [28, 29, 41, 60]. (3) C libraries’ IPC scales well 
across CPU generations. This observation is unsurprising 
as many hardware vendors primarily rely on open-source 
benchmarks [54] that heavily use C libraries (see Fig. 2) to 
make architecture design decisions. (4) Typically, we see only 
a small IPC gain from GenB to GenC. This trend suggests 
the need to specialize hardware for key leaf functions. 

2.4 Service Functionality Characterization 

We attribute CPU cycles to microservice functionalities in 
Fig. 9 to identify key microservice overheads (as motivated 
in Fig. 1). We defne how we pool various functionalities 
in Table 3. Note that each functionality category typically 
includes several leaf function categories. For example, despite 
ML inference being heavy on math leaf functions, it can also 
comprise memory movement and C library leaves. 



We make four observations: First, several microservices 
face signifcant orchestration overheads from performing 
operations that are not core to the application logic, but in-
stead facilitate application logic such as compression, I/O, 
and logging. For example, the microservices that perform 
ML inference—Feed1, Feed2, Ads1, and Ads2—spend as few 
as 33% of cycles on ML inference, consuming 42% - 67% of 
cycles in orchestrating inference; (note that the “applica-
tion logic” for these microservices includes core non-ML 
operations such as merging results). Hence, even if modern 
inference accelerators [23, 62, 125, 127] were to ofer an in-
fnite inference speedup, the net microservice performance 
would only improve by 1.49x - 2.38x. There is hence a great 
need for architects to accelerate the orchestration work that 
facilitates the core application logic. 

Second, several orchestration overheads are common across 
microservices; accelerating them can signifcantly improve 
our global feet’s performance. For example, Web, Cache1, 
and Cache2 spend a signifcant portion of cycles executing 
I/O—i.e., sending and receiving RPCs. Web incurs a high I/O 
overhead since it implements many URL endpoints and com-
municates with a large back-end microservice pool. Cache1 
and Cache2 are leaf microservices that support a high re-
quest rate [111]—they frequently invoke RPCs to communi-
cate with mid-tier microservices. These microservices can 
beneft from RPC optimizations such as kernel-bypass and 
multi-queue NICs [29, 60, 66, 77, 97, 98]. Additionally, Web, 
Feed1, Feed2, and Cache1 spend several cycles in compres-
sion and serialization (similar to Google’s services [63]); they 
can beneft from accelerating these common orchestration 
overheads [21, 27, 36, 47, 68, 106]. 

Third, Web spends only 18% of cycles in core web serving 
logic (parsing and processing client requests), consuming 
23% of cycles in reading and updating logs. It is unusual for 
applications to incur such high logging overheads; only few 
academic studies focus on optimizing them. 

Fourth, Ads1, Feed2, Cache1, and Feed1 incur a high thread 
pool management overhead. Intelligent thread scheduling 
and tuning [50, 59, 69, 100, 119, 126] can help these services. 
We conclude application logic disaggregation across mi-

croservices and the consequent increase in inter-service com-
munication at hyperscale has resulted in signifcant and com-
mon orchestration overheads in modern data centers. 
2.4.1 IPC scaling. In Fig. 10, we show Cache1’s per-core 

IPC for key microservice functionalities across three CPU 
generations. We fnd that the I/O IPC remains low across 
CPU generations. Since I/O calls primarily invoke kernel 
functions, the low kernel IPC (see Fig. 8) contributes to the 
low I/O IPC. Additionally, there is little IPC improvement 
for key-value store operations. Since key-value stores are 
typically memory intensive [34], the low memory IPC (Fig. 8) 
results in a low key-value store IPC. 
We summarize our characterization fndings in Table 4. 
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Figure 10. Cache1’s IPC scaling across three CPU genera-
tions for key functionality categories: a low I/O IPC is pri-
marily due to a low kernel IPC. 

3 The Accelerometer Model 
Overheads identifed by our characterization can be acceler-
ated in the hardware via CPU optimizations (e.g., specialized 
hardware instructions) [8, 88, 89] or custom accelerator de-
vices (e.g., ASICs). Investing in hardware acceleration often 
requires (1) designing new hardware, (2) testing it, and (3) 
carefully planning capacity to provision the hardware to 
match projected load. Given the uncertainties inherent in 
projecting customer demand, investing in diverse custom 
hardware is risky at scale, as the hardware might not live up 
to its expectations due to performance bounds precipitated 
by ofoad-induced overheads [20]. 
Simple analytical models enable better hardware invest-

ments by identifying performance bounds early in the de-
sign phase. However, existing models for hardware accelera-
tion [20, 38] fall short in the context of microservices as they 
are oblivious to ofoad overheads induced by microservice 
threading designs such as synchronous vs. asynchronous of-
foad to an accelerator. For example, existing models [20, 38] 
assume that the CPU waits while the ofoad operates i.e., 
ofoad is synchronous. However, for many functionalities, 
ofoad may be asynchronous; the CPU may continue doing 
useful work concurrent with the ofoad. Extending prior 
models [20], we develop Accelerometer to capture this con-
currency and realistically model microservice speedup for 
various hardware acceleration strategies (e.g., on-chip vs. 
of-chip). In this section, we (1) describe the acceleration 
strategies Accelerometer models, (2) discuss system abstrac-
tions it assumes, (3) defne Accelerometer’s model parameters, 
(4) detail how it models speedup for various threading de-
signs, and (5) highlight Accelerometer’s applications. 
Acceleration strategies. Accelerometer models three kinds 

of hardware acceleration strategies to accelerate an algo-
rithm or kernel—on-chip, of-chip, and remote. 
On-chip. On-chip acceleration optimizes components on 

the CPU die (e.g., wider SIMD units [121], Intel’s AES-NI 
hardware encryption instruction [8], and CPU modifca-
tions [67, 88]). Ofoad latencies are typically ns-scale. 

Of-chip. Of-chip accelerators are typically contacted via 
PCIe and coherent interconnects [117] (e.g., GPUs, smart 
NICs, and ASICs). Ofoad latencies are ∼ µs-scale [91]. 



Table 4. Summary of findings and suggestions for future optimizations.

Finding Acceleration opportunity
Significant orchestration overheads (§2.4) Software and hardware acceleration for orchestration rather than just app. logic

Several common orchestration overheads (§2.4) Accelerating common overheads (e.g., compression) can provide fleet-wide wins
Poor IPC scaling for several functions (§2.3.5, §2.4.1) Optimizations for specific leaf/service categories

Memory copies & allocations are significant (§2.3, §2.3.1) Dense copies via SIMD, copying in DRAM, Intel’s I/O AT, DMA via accelerators, PIM
Memory frees are computationally expensive (§2.3, §2.3.1) Faster software libraries, hardware support to remove pages

High kernel overhead and low IPC (§2.3, §2.3.5) Coalesce I/O, user-space drivers, in-line accelerators, kernel-bypass
Logging overheads can dominate (§2.4) Optimizations to reduce log size or number of updates
High compression overhead (§2.3, §2.4) Bit-Plane Compression, Buddy compression, dedicated compression hardware

Cache synchronizes frequently (§2.3, §2.3.3) Better thread pool tuning and scheduling, Intel’s TSX, coalesce I/O, vDSO
High event notification overhead (§2.3.2) RDMA-style notification, hardware support for notifications, spin vs. block hybrids
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Figure 11. Example timeline of host & accelerator.

Remote. Remote accelerators are off-platform devices con-
tacted via the network. Examples include remote ML infer-
ence units [51], network switches [78, 104], remote encryp-
tion units [31], and remote GPUs [43]. Offload latencies are
typically ms-scale when using commodity ethernet [102].

System abstraction. Accelerometer assumes an abstract
system with three components (1) host—a general-purpose
CPU, (2) accelerator—custom hardware to accelerate a kernel,
and (3) interface—the communication layer between the host
and the accelerator (e.g., a PCIe link). The interface helps
define overheads from dispatching work to an accelerator
(e.g., preparing the kernel for offload, offload latency, and
queuing delays). Hence, the interface abstraction can easily
help model speedup for diverse acceleration strategies. With
these system abstractions, we build the Accelerometer model
such that it abstracts the underlying hardware architecture
using parameters defined below (see Table 5).

Parameter definition. Accelerometer makes a few as-
sumptions to retain model simplicity while still being able
to estimate microservice speedup. Similar to LogCA [20],
Accelerometer assumes that (1) the kernel’s execution time is
a function of granularity д—i.e., the data offload size and (2)
the host and accelerator use kernels of the same complexity.
It definesC as the total host cycles spent to execute both ker-
nel and non-kernel logic in a fixed time unit; C is inversely
proportional to the host’s busy frequency for a time unit of
one second. It uses Amdahl’s law to define a constant α ≤ 1,
such that the host spends (α ∗C) cycles executing the kernel
and ((1 − α) ∗C) cycles executing the non-kernel logic (as
shown in Fig. 11). Accelerometer assumes that data offload

is unpipelined (i.e., the accelerator requires the entire block
to start operating); it considers the average latency of such
an offload, L. The offload latency distribution can be found
by multiplying the offload latency of a single byte with д for
each offload. When data offload is pipelined, L is indepen-
dent of д; we do not study pipelined offloads as our existing
systems use unpipelined offloads. The peak achievable ac-
celerator speedup factor, A, helps define cycles spent in the
accelerator such that cycles spent on the host to execute the
kernel is cut down by the acceleration factor, or α∗C

A .
Modeling diverse threading designs. We develop Ac-

celerometer to model the microservice throughput speedup
(referred to as “speedup”) and the microservice per-request
latency speedup (referred to as “latency reduction”) for the
three acceleration strategies. Modeling both speedup and
latency reduction helps ensure that acceleration enables
a higher throughput (i.e., more QPS) without violating la-
tency Service Level Objectives (SLOs). To model speedup,
Accelerometer identifies how many fewer host cycles are
needed to execute the kernel when there is acceleration—
spending fewer host cycles on the kernel frees up host cycles
to do more work, improving throughput. It defines speedup
as the ratio of total cycles spent by the host when there is no
acceleration, C , to the total cycles spent by the host when
the kernel is accelerated, CS , or C

CS
. To model per-request

latency reduction, it identifies the total cycles taken to ex-
ecute a request when there is acceleration; spending fewer
cycles for a request due to acceleration reduces per-request
latency. It defines latency reduction as the ratio of C to the
total cycles spent on the host and the accelerator, CL , or C

CL
.

Unlike LogCA [20], we find that when data is offloaded
to an accelerator, the speedup C

CS
and latency reduction C

CL
depend on the acceleration strategy as well as the threading
design used to offload (e.g., synchronous vs. asynchronous
offload). For example, in a synchronous offload the host waits
for the accelerator’s response before resuming execution (see
Fig. 11), putting the accelerator’s operation cycles (α∗CA ) in
the critical path of the host’s execution (i.e., CS ), impacting
speedup. Conversely, in an asynchronous offload, the host
continues doing useful work concurrent with the accelera-
tor’s operation on the offload, removing α∗C

A from the critical



Table 5. Description of the Accelerometer analytical model parameters.

Symbol Parameter description Units
C Total cycles spent by the host to execute all logic in a fixed time unit Cycles
g Size of an offload Bytes
n Number of times the host offloads a kernel of lucrative size in a fixed time unit N/A
o0 Cycles the host spends in setting up the kernel prior to a single offload Cycles
Q Avg. cycles spent in queuing between host and accelerator for a single offload Cycles
L Avg. cycles to move an offload from host to accelerator across the interface, including cycles the data spends in caches/memory Cycles
o1 Cycles spent in switching threads (due to context switches and cache pollution) for a single offload Cycles
A Peak speedup of an accelerator N/A
α A constant ≤ 1 N/A
Cb Cycles spent by the host per byte of offload data Cycles
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Figure 12. Modeling Sync CS and CL for one offload.

path of CS . We extend LogCA to model speedup and latency
reduction for both synchronous and asynchronous offload.
(1) Synchronous. When a host thread offloads work to

an accelerator synchronously, it waits in the blocked state
for the accelerator’s response. If the microservice runs one
thread per core, the host’s core waits for the accelerator’s
response—we refer to this scenario as Sync. Hence, CS and
CL will include cycles spent on the accelerator α∗C

A , as shown
in Fig. 12. Moreover, the host can consume additional cy-
cles to (1) prepare the kernel for offload, o0, (2) transfer the
kernel to the accelerator, L, and (3) wait in a queue for the
accelerator to become available, Q . Hence, CS and CL can
also include these additional overheads per offload. Con-
sidering n offloads occur in a given time unit, Accelerome-
ter defines Sync speedup C

CS
and latency reduction C

CL
as:

C
(1−α )C + αC

A + n(o0 + L + Q )
, where CS and CL comprise host

cycles spent in (1) non-kernel logic, (2) waiting for the accel-
erator’s response, and (3) offload-induced overheads across
the n offloads. Making this equation appear similar to Am-
dahl’s law with offload overheads (i.e., dividing by C),

Sync
C

CS
or

C

CL
=

1
(1 − α) + α

A +
n
C (o0 + L + Q)

(1)

In eqn.(1), (n ∗ Q) is the mean queuing delay for n of-
floads; Q enables projecting speedup based on accelerator
load. Replacing (n ∗ Q) with

∑n
i=1(Qi ) models the queuing

distribution. Net speedup is >1 when the host spends more
cycles when unaccelerated—i.e., (α ∗C) > αC

A +n(o0 +L+Q).
In eqn. (1), we consider n kernel offloads that each improve
speedup (or reduce latency). To determine whether a kernel
offload improves speedup, we consider the offload granu-
larity, д, such that the host spends Cb cycles per byte of д.
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Figure 13. Modeling Sync-OS CS and CL for one offload.

A single offload improves speedup when the cycles a host
would spend in executing all bytes of a д-size kernel offload
is greater than the cycles spent in accelerating the kernel
(i.e., the sum of cycles spent on the accelerator executing the
д-size offload and the offload overheads—o0 + L +Q), or:

Cb ∗ д >
Cb ∗ д

A
+ o0 + L + Q (2)

Eqn. (2) can be extended to model the kernel’s complexity
(e.g., sub-linear, linear, or super-linear) using дβ [20]. For
example, β = 1 for a linear complexity kernel.

In reality, several microservices (e.g., Web and Cache) over-
subscribe threads to improve throughput by having more
threads than available cores. Oversubscription allows a host
to schedule an available thread to process new work, while
the thread that offloaded work blocks awaiting the accelera-
tor’s response. The host continues to perform useful work in-
stead of wasting cycles in awaiting the accelerator’s response;
we refer to this synchronous thread Over-Subscription as
Sync-OS. Hence, the accelerator’s cycles αC

A do not affectCS ,
as shown in Fig. 13. Instead,CS is affected by the OS-induced
overhead to switch to an available thread,o1. The (L+Q) over-
head persists when the host’s device driver synchronously
awaits an offload acknowledgement from an off-chip acceler-
ator before switching threads. However, (L+Q) = 0when (1)
the device driver does not wait for the off-chip accelerator’s
acknowledgement or (2) the accelerator is remote. Hence,
the speedup is:

Sync-OS
C

CS
=

1
(1 − α) + n

C (o0 + L + Q + 2o1)
(3)

Speedup is >1 when: (α ∗C) > n(o0+L+Q +2o1). A single
offload improves throughput speedup when the cycles a host
would spend in executing that offload is greater than the
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Figure 14.Modeling Async CS and CL for one offload.

offload-induced overhead—o0 + L +Q + 2o1, or:
Cb ∗ д > o0 + L + Q + 2o1 (4)

The latency reduction remains the same as eqn. (1) (since the
accelerated per-request latency,CL , will include cycles spent
on the accelerator), but must now account foro1. The µs-scale
o1 overhead [76, 122] can dominate in µs-scale microservices
such as Cache [111], making it feasible to incur a throughput
gain at the cost of a per-request latency slowdown. Service
operators can use the following latency reduction equation
to ensure that the latency SLO is not violated.

Sync-OS
C

CL
=

1
(1 − α) + α

A +
n
C (o0 + L + Q + o1)

(5)

Latency is reduced when: (α∗C) > αC
A +n(o0+L+Q+o1). A

single offload reduces latency when the cycles a host would
spend in executing the offload dominates accelerator cycles
and offload overheads, or: (Cb ∗д) >

Cb∗д
A + (o0 +L+Q +o1).

(2) Asynchronous. After a host thread offloads work asyn-
chronously, it continues to process new work without await-
ing the accelerator’s response. When the response arrives, it
can be picked up by (1) the same thread that sent the request
or (2) a distinct thread dedicated to pick up responses [114].
When a distinct thread picks up the response, the speedup
equation is the same as (3) with only one thread switching
overhead o1. The latency reduction equation remains the
same as (5). If the response is picked up by the same thread
that sent the request, o1 = 0 since the OS does not switch
threads (see Fig. 14); we refer to this scenario as Async. Hence
the speedup is:

Async
C

CS
=

1
(1 − α) + n

C (o0 + L + Q)
(6)

Speedup is >1 when: (α ∗ C) > n(o0 + L + Q). A single
offload improves speedup when:

Cb ∗ д > o0 + L + Q (7)

Similarly, Accelerometer does not consider o1 when mod-
eling Async latency reduction:

Async
C

CL
=

1
(1 − α) + α

A +
n
C (o0 + L + Q)

(8)

Latency reduces when: (α∗C) > αC
A +n(o0+L+Q). A single

offload reduces latency when: (Cb ∗д) >
Cb∗д
A + (o0 + L +Q).

In some asynchronous designs, the host does not require
the accelerator’s response for further processing, eliminating

o1 (e.g., when a host sends requests to an encryption accel-
erator, which then sends encrypted requests to the next mi-
croservice). Hence, the speedup equation remains the same
as eqn. (6). Latency reduction depends on whether accelera-
tion is off-chip or remote since remote accelerator latencies
αC
A will not affect a microservice’s request latency andwill in-
stead show up in the overall application’s end-to-end latency.
We define the Async off-chip per-request latency reduction
as eqn. (8) and the remote latency reduction as eqn. (6).

Applying the Accelerometer model. The Accelerome-
ter model shows that speedup and latency reduction depend
on the acceleration strategy and microservice threading de-
sign. We expect Accelerometer to have the following use
cases: (1) Data center operators can project fleet-wide gains
from optimizing key service overheads. (2) Architects can
make better accelerator design decisions and estimate real-
istic gains by being aware of the offload overheads due to
microservice design. Accelerometer can help determine trade-
offs between various acceleration strategies (e.g., on-chip vs.
off-chip) for microservice overheads. Indeed, we validate our
models in production and then apply them to project gains
for on-chip vs. off-chip recommendations (see Table 4) de-
rived from key overheads identified by our characterization.

4 Validating the Accelerometer Model
We validate Accelerometer’s utility in production using three
retrospective case studies. With these studies, we validate all
three microservice threading scenarios—Sync, Sync-OS, and
Async. Each study covers a distinct acceleration strategy—
i.e., on-chip, off-chip, or remote. For each study, we first
describe (1) the experimental setup, (2) how we derive model
parameters, and (3) how we measure speedup on produc-
tion systems. We then validate Accelerometer by comparing
model-estimated speedup with real microservice speedup.
We do not compare the latency reduction since our existing
production infrastructure lacks necessary support to pre-
cisely measure a microservice’s per-request latency.

Validation methodology. We follow a five step process
to validate the Accelerometer model: (1) we identify offload
sizesд that improve speedup, (2) we determine the number of
such offloads in one second, n, and the fraction of cycles they
constitute, α , (3) we use the Accelerometer model to estimate
speedup from these n offloads, (4) we compare Accelerometer-
estimated speedup with real production speedup, and (5) we
present a functionality breakdown for both the accelerated
and unaccelerated microservices to show how throughput
improves. We assume that we can use software to selectively
accelerate only those kernel offloads that improve speedup
(the kernel execution time can be dominated by overheads
for very small offloads [20]).

Experimental setup. We perform our case studies on
Intel Skylake processor platforms (Table 1). For each case
study, we first measure the real production speedup using
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an internal tool called Operational Data Store (ODS) [19,
33, 96]. We measure speedup via A/B testing. A/B testing is
the process of comparing two identical systems that differ
only in a single variable. We conduct A/B tests by comparing
the throughput (in QPS) of two identical servers (i.e., same
hardware platform, same fleet, and facing the same load) that
differ only in terms of whether they accelerate the kernel.

To determine the Accelerometer-estimated speedup, we as-
sume a linear complexity kernel, since we cannot easily per-
form scaling studies on production systems to determine ker-
nel complexity.Wemeasure model parameters using (1) tools
such as Strobelight [14], bpftrace [6], and bcc-tools [10],
(2) roofline estimates from device specification sheets, and
(3) micro-benchmarks that measure execution time on the
host and the accelerator. Some host parameters, once cal-
culated, can be re-used for different kernels on the same
system. For each case study, we measure the unaccelerated
host’s busy frequency to calculate C for one second. To de-
termine whether a specific offload improves speedup (using
equations (2), (4), (7)), we use bpftrace [6] to measure д’s
size range and the number of invocations of each granularity.
We compute n by aggregating invocations of those offload
sizes that improve speedup. To determine α , we first use
the service functionality breakdown (see Fig. 9) to estimate
host cycles spent in the kernel under study. We then use n
and these total host cycles to estimate the fraction of ker-
nel cycles that must be offloaded, (α ∗ C). We assume an
unpipelined interface when estimating L.

Case study 1: AES-NI for Cache1.We study encryption
in Cache1with Intel’s AES-NI [8] instruction—an on-chip op-
timization. In this case, Cache1 uses a Sync threading design.
We use AES [2] from the OpenSSL [12] cryptography library
to build micro-benchmarks to measure L, o0, and A. We as-
sumeQ = 0, since the same host thread executes the AES-NI
instruction. We show the Cumulative Distribution Function
(CDF) of Cache1’s encryption granularities in Fig. 15. We use
model parameters defined in Table 6 in eqn. (2) to determine
that a specific offload improves net speedup when д ≥ 1 Byte
(B). Prior work [20] also sees wins with AES-NI for small
offload granularities. From Fig. 15, we observe that Cache1’s
encryption size is ∼≥ 4 B; hence, all offloads will improve
speedup. We confirm that Cache1 offloads all encryptions in
a production system as well.
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Figure 16.Breakdown of cycles spent in Cache1’s functional-
ities for both the no-AES-NI (unaccelerated) & with-AES-NI
(accelerated) cases: 12.8% of cycles are freed up with AES-NI.
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Figure 17. Breakdown of cycles spent in Cache3’s function-
alities when encryption is accelerated vs. not: secure IO calls
are optimized with acceleration.

We then use Table 6’s parameters in eqn. (1) to estimate
a speedup of 15.7%. The real production speedup is 14%
(as determined via A/B testing). Hence, the Accelerometer-
estimated speedup differs from the real speedup by only 1.7%.
We compare Cache1’s functionality breakdown with AES-NI
in Fig. 16. We observe that AES-NI accelerates the “secure
IO” functionality by 73%, saving 12.8% of Cache1’s cycles.
Case study 2: Encryption for Cache3. We accelerate

encryption in a different microservice, Cache3, that is simi-
lar to Cache1 and Cache2; we show Cache3’s functionality
breakdown in Fig. 17. The encryption accelerator is off-chip—
the host communicates with the accelerator via a PCIe link.
The host offloads the encryption kernel to the accelerator
asynchronously, and does not require the accelerator to re-
spond (Async). However, after offloading a kernel, the host
waits for the accelerator to acknowledge receipt. We use the
accelerator’s specification sheets to (1) estimate L with fair
queuing Q and (2) assume o0 = 0.
In this study, we assume that all encryption offloads will

improve speedup, since Cache3’s software infrastructure
does not support selectively offloading only those granu-
larities that yield speedup. We use parameters defined in
Table 6 in equation (6) to estimate speedup. We observe that
the PCIe transfer latency is the dominant overhead. After
A/B testing, we find that the model overestimates the real
speedup by 1.1%.



Table 6. Model parameters used to compare Accelerometer-estimated speedup with measured speedup on production systems.

Case Study C (109 cycles) α n o0 (cycles) Q (cycles) L (cycles) o1 (cycles) A Est. Speedup Real Speedup
AES-NI 2.0 0.165844 298,951 10 0 3 NA 6 15.7% 14%

Encryption 2.3 0.19154 101,863 0 0 2530 NA NA 8.6% 7.5%
Inference 2.5 0.52 10 25,000,000 0 NA 12,500 NA 72.39% 68.69%
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Figure 18. Breakdown of cycles spent in Ads1’s functionali-
ties for both the inference unaccelerated & accelerated cases:
all inference cycles are freed up.

In Fig. 17, we compare the functionality breakdown of
an unaccelerated Cache3 instance with a Cache3 instance
that accelerates encryption. We observe that acceleration
improves the encryption (secure IO) overhead by 35.7%, im-
proving Cache3’s throughput by 7.5%.
Case study 3: Inference for Ads1. We deploy a remote

Skylake CPU to perform Ads1’s ML inference. We note that
the end-to-end service throughput decreases when inference
is offloaded to a remote CPU (i.e.,A = 1). However, we expect
the host CPU running Ads1 to incur a speedup, as it no longer
does inference locally and uses asynchronous network APIs
to offload inference to the remote “accelerator”. We validate
Accelerometer for remote acceleration using this case study.

The host picks up the accelerator’s response with a distinct
thread (same speedup as Sync-OSwith a single thread switch-
ing overhead o1). To estimate o0, we use a micro-benchmark
to measure (1) inference invocation counts and (2) feature
vector sizes to estimate I/O overheads from offloading to
a remote server. We use a micro-benchmark to measure o1
using the BPF run queue (scheduler) latency tool [10]. We
assume L +Q = 0 as the accelerator is remote.

In this study, we carefully batch inference operations and
offload them to the remote CPU only when the batch size is
large enough to overcome network overheads (as we cannot
violate SLO on a production system). Hence, we assume that
all of Ads1’s inference offloads improve speedup. We use
parameters defined in Table 6 in equation (3) (with a single
o1) to estimate speedup. Since Ads1 must invoke many more
IO calls to offload inference, it incurs additional IO overheads
(o0). Due to these overheads, we estimate speedup as 72.39%.
In reality, remote inference improves Ads1 throughput by
68.69%; our model over-estimates speedup by 3.7%.
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Figure 19. CDF of bytes compressed in Feed1 and Cache1:
Feed1 often compresses large granularities.

In Fig. 18, we illustrate Ads1’s functionality breakdown
for both the remote inference and local inference cases. Al-
though remote inference consumes additional IO cycles, it
completely offloads the inference functionality, freeing up
host CPU cycles to perform more work. Note that Ads1
achieves this throughput improvement at the expense of
a per-request latency degradation since each request faces
an additional ∼10 ms network traversal delay; we ensure that
the per-request latency meets SLO constraints. This result
shows that Ads1’s latency can be improved if the remote
inference CPU (with A = 1) is replaced with an inference
accelerator withA > 1 to overcome network traversal delays.

5 Applying the Accelerometer Model
We apply the Accelerometer model to project speedup for
the acceleration recommendations derived from three key
common overheads identified by our characterization: com-
pression, memory copy, and memory allocation (see Table 4).
We first apply on-chip (Chen et al. [36]) and off-chip (Simek
et al. [106]) compression acceleration with Sync, Sync-OS,
and Async. We then apply on-chip memory copy (AVX [4])
and allocation acceleration (Kanev et al. [65]); off-chip faces
several challenges (e.g., coherence). We apply on-chip offload
only with Sync as we only assume CPU core optimizations.
We do not see gains from remote acceleration.

We show the model parameters for each acceleration rec-
ommendation in Table 7. We assume that all on-chip offloads
yield gains as we only consider core optimizations with neg-
ligible (o0 + L) overhead. We assume Q = 0 in all cases.
Compression. In Fig. 19, we show the compression gran-

ularities’ CDF for serviceswith high compression overheads—
Feed1 and Cache1. Feed1 compresses larger granularities
than Cache1; we focus on Feed1 in this study. Since Feed1



Table 7. Parameters used to model speedup and latency reduction for a few acceleration recommendations from Table 4.

Overhead Acceleration C (109 cycles) α n L (cycles) o1 (cycles) A
Compression On-chip: Sync 2.3 0.15 15,008 0 NA 5
Compression Off-chip: Sync 2.3 0.15 9,629 2,300 NA 27
Compression Off-chip: Sync-OS 2.3 0.15 3,986 2,300 5,750 27
Compression Off-chip: Async 2.3 0.15 9,769 2,300 NA 27
Memory Copy On-chip: Sync 2.3 0.1512 1,473,681 0 NA 4

Memory Allocation On-chip: Sync 2.0 0.055 51,695 0 NA 1.5
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Figure 20. Accelerometer-estimated speedup for key over-
heads we identified: performance bounds from accelerator
offload limit achievable speedup.

0	  

0.2	  

0.4	  

0.6	  

0.8	  

1	  

0	   1-‐64	   64-‐128	   128-‐256	   256-‐512	   512-‐1K	   1K-‐2K	   2K-‐4K	   >4K	  

CD
F	  

Range	  of	  bytes	  copied	  

Web	   Feed1	   Feed2	   Ads1	   Ads2	   Cache1	   Cache2	  

Ads1:	  On-‐chip	  'g'	  
to	  break	  even	  

Figure 21. CDF of memory copies across microservices:
most microservices frequently copy small granularities.

spends 15% of cycles in compression, it can achieve an ideal
speedup of 17.6%, as shown in Fig. 20.

On-chip. We apply Table 7’s model parameters in eqn. (2)
to find that an offload improves speedup when д ≥ 1 B; all
of Feed1’s compressions will improve speedup. We then use
n = 15, 008 in eqn. (1) to estimate a speedup of 13.6% as
shown in Fig. 20, implying a latency reduction of 13.6%.
Off-chip. From Table 7 and eqn. (2), we find that a Sync

offload improves speedup when д ≥ 425 B. We note that
64.2% of compressions are ≥ 425 B (Fig. 19). Offloading these
compressions improves speedup (and reduces latency) by
9% (Fig. 20). Similarly, Sync-OS and Async offloads yield
speedups of 1.6% and 9.6% respectively, reducing latency by
1.4% and 9.2%. Even though on-chip yields a higher speedup,
there might be value in off-chip acceleration as it is easier to
design than modifying CPUs. For example, off-chip encryp-
tion accelerators can be extended to perform compression to
leverage improving two kernels for the price of one offload.

MemoryCopy. Fig. 21 showsmemory copy granularities’
CDF across services. We observe that several services often
copy < 512 B (smaller than a 4K page). We apply on-chip
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Figure 22. CDF of memory allocations across microservices:
most microservices frequently allocate small granularities.

acceleration [4] for Ads1 as it incurs the highest copy over-
head. We apply Table 7’s parameters in eqn. (1) to project a
speedup and latency reduction of 12.7% (Fig. 20). Hence, an
on-chip copy optimization [4] can yield significant gains.

Memory Allocation.We show the CDF of memory allo-
cations in Fig. 22. Most microservices perform small alloca-
tions (typically < 512 B). We analyze the microservice with
the highest memory allocation overhead—Cache1. We find
that offloading all of Cache1’s 51, 695 memory allocations
to an on-chip accelerator [65], will result in a 1.86% speedup
and latency reduction (Fig. 20).

6 Related Work
We discuss two categories of related work.

Data center overheads. Very few prior works study how
cycles are spent in modern data centers. Kanev et al. [63]
investigate the “data center tax” or the performance impact
of seven types of leaf functions across Google’s server fleet.
Mars et al. [83–85] use key factors that impact available
heterogeneity in CPUs to improve warehouse-scale perfor-
mance. In contrast, we provide a deep-dive into Facebook’s
important microservices via leaf function, as well as service
functionality breakdowns.

Analyticalmodels.Altaf et al. developed the LogCA [20]
model to estimate gains from hardware acceleration. We ex-
tend LogCA [20] to support various microservice threading
designs to estimate throughput and latency improvements.
Several works develop analytical models for heteroge-

neous architectures. Chung et al. [37] model custom logic,
FPGAs, and GPGPUs. Hempstead et al. [53] propose Nav-
igo to determine accelerator area requirements to maintain



performance trends. Nilakantan et al. [93] estimate com-
munication costs in heterogeneous architectures. Kumar et 
al. identify performance-efcient data ofoad granularities. 
These models use several parameters to accurately determine 
performance improvements. Accelerometer uses a small pa-
rameter set to build simple models for microservice speedup 
and latency reduction. 

Several models are architecture-specifc [40, 56, 57, 86, 109, 
130]. Song et al. [109] predict performance and power trade-
of in GPUs. Hong et al. model GPU execution time [56] and 
power requirements [57]. Daga et al. [40] discuss commu-
nication overheads in APUs and GPUs. Meswani et al. [86] 
develop models for high performance applications. The Ac-
celerometer model abstracts the underlying architecture and 
can be used across various accelerator types. 

Apart from LogCA [20], Accelerometer’s simplicity is sim-
ilar to the Roofine model [79]. Extensions to the Roofine 
model [80, 94] target specifc architectures such as mobile 
SoCs [55], GPUs [61], vector processing units [103], and FP-
GAs [39]. While the Roofine model aims to aid programma-
bility, our models seek to expose performance bounds from 
an accelerator’s interface for hyperscale microservices. 

7 Conclusion 
Modern data centers face performance challenges from sup-
porting diverse microservices in the post Dennard scaling 
era. We presented a detailed leaf function and service func-
tionality characterization of important microservices used by 
a leading social media provider—Facebook. We highlighted 
common overheads and recommended suitable acceleration. 
To estimate a hardware accelerator’s performance early in 
the design phase, we developed an analytical model, Ac-
celerometer , that considers microservice threading designs. 
We validated Accelerometer’s utility via retrospective case 
studies to show that its estimates match the real production 
speedup with ≤ 3.7% error. We then used Accelerometer to 
project speedup for the acceleration recommendations de-
rived from key overheads identifed by our characterization. 
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A Artifact Appendix A.3.3 Software dependencies 

A.1 Abstract 
Our artifact enables running Accelerometer to estimate speedup 
from hardware acceleration. Here, we include links to our 
source code, and ofer tutorials for installing and using Ac-
celerometer . 

A.2 Artifact check-list (meta-information) 
• Algorithm: New analytical model, Accelerometer , for pro-
jecting speedup from hardware acceleration for microservice 
functionalities. 

• Program: The Accelerometer analytical model built using 
C++. 

• Compilation: GCC (Makefle provided). 
• Data set: Model parameters are to be provided as inputs to 
the program. 

• Hardware: One CPU core. 
• Metrics: The Accelerometer program estimates speedup. 
• Output: Expected output is the Accelerometer-estimated 
speedup from hardware acceleration. 

• Publicly available?: Yes 

A.3 Description 

A.3.1 How delivered 

All of the source code for Accelerometer is open source, and 
can be obtained via GitHub2 or Zenodo3 

A.3.2 Hardware dependencies 
Accelerometer requires a single CPU core to run. 

Linux OS with a recent GCC version installed. 

A.3.4 Data sets 
Model parameters are to be provided as inputs to the Ac-
celerometer model. 

A.4 Installation 

The source code of these components can be found in our 
GitHub or DOI repository. We also provide a step-by-step 
tutorial (in our GitHub1 or Zenodo2 repositories) to help 
install and run Accelerometer . 

A.5 Experiment workfow 

There are three steps to run the Accelerometer model: (a) 
identify model parameters for the accelerator under test, (b) 
input these model parameters into a confguration fle, and 
(c) run the Accelerometer model for these model parameters 
to estimate speedup from acceleration. 
2htps://github.com/akshithasriraman/Accelerometer 
3htps://doi.org/10.5281/zenodo.3612797
We provide the source code of our Accelerometer model 

as well as input confguration fles (which were used during 
Accelerometer validation and application) in our repository. 

A.6 Methodology 

Submission, reviewing and badging methodology: 
• htp://cTuning.org/ae/submission-20190109.html 
• htp://cTuning.org/ae/reviewing-20190109.html 
• htps://www.acm.org/publications/policies/artifact-review-
badging 

https://github.com/akshithasriraman/Accelerometer
https://doi.org/10.5281/zenodo.3612797
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
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