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ABSTRACT
Deep neural network clustering is superior to the conventional

clustering methods due to deep feature extraction and nonlinear

dimensionality reduction. Nevertheless, deep neural network leads

to a rough representation regarding the inherent relationship of the

data points. Therefore, it is still difficult for deep neural network to

exploit the effective structure for direct clustering. To address this

issue, we propose a robust embedded deep K-means clustering (RED-

KC) method. The proposed RED-KC approach utilizes the 𝛿-norm

metric to constrain the feature mapping process of the auto-encoder

network, so that data are mapped to a latent feature space, which is

more conducive to the robust clustering. Compared to the existing

auto-encoder networks with the fixed prior, the proposed RED-KC

is adaptive during the process of featuremapping.More importantly,

the proposed RED-KC embeds the clustering process with the auto-

encoder network, such that deep feature extraction and clustering

can be performed simultaneously. Accordingly, a direct and efficient

clustering could be obtained within only one step to avoid the

inconvenience of multiple separate stages, namely, losing pivotal

information and correlation. Consequently, extensive experiments

are provided to validate the effectiveness of the proposed approach.
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1 INTRODUCTION
Clustering [43] serves as the main task regarding grouping a set

of objects such that the objects in the same group are more similar

to each other than to those in the other groups [8, 45, 47]. Most

conventional clustering algorithms perform the learning process

according to the linear models [10, 20, 30, 32, 41, 46, 48, 49], which

frequently fail to handle the data with irregular or nonlinear distri-

butions. During the past decades, spectral-based clustering methods

[28, 36, 38] and density-based clustering methods have achieved

state-of-the-art results. The spectral-based clustering approaches

perform the clustering in the following two steps. Firstly, it builds

up an affinity matrix, i.e., similarity graph to represent the local

structure of the data. Secondly, it clusters the data via grouping the

eigenvectors of the graph Laplacian. The main idea of the density-

based clustering [14] approach is to find the high-density regions

that are segmented by the low-density regions. The density peak

clustering algorithm (DPCA) is proposed by Alex Rodriguez [35].

The core idea of DPCA indicates that the center of the cluster is

surrounded by certain points of low local density, which are seg-

regated from the residual points of high local density. The DPCA

incorporates the clustering process of non-clustered center points

into a single process. Since the selection of the cluster center and

the clustering of the non-cluster points are usually independent,

the clustering precision is improved via DPCA.

To address the clustering problem concerning the nonlinear

distributed data, the sparse subspace clustering (SSC) [7] algorithm

is developed. The main contribution of SSC indicates that a sparse

representation should tend to select the data points from the same

subspace among the potential data representations. In fact, the SSC

algorithm is developed by solving the sparse optimization within

the framework of spectral clustering, where each cluster is projected

to a low-dimensional subspace. Motivated by the similar idea of SSC,

diverse sparse representation and low-rank approximation based

methods for subspace clustering [19, 31, 32, 42] have attracted a lot

of attentions in recent years. The key components of these methods

are associated with a sparse and low-rank representation of the

data by constructing a similarity graph upon the sparse coefficient

matrix.

The spectral-based and the density-based clustering algorithms

can effectively deal with the data of arbitrary distribution. However,

only the superficial features of the data can be exploited [41]. Hence,

it is tricky to further improve the clustering performance. On the

other hand, deep neural networks can nonlinearly project the raw
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data to a new feature space for deep feature extraction and nonlinear

dimensionality reduction. Therefore, in recent years, diverse deep

subspace clustering algorithms have been developed.

Regardless of the connected or convoluted network structure,

the core idea of deep neural network clustering [1, 6, 15, 17, 40] is to

project the data to a new feature space, via which the clustering can

be accomplished. Due to the nonlinear mapping, deep clustering

has more powerful capabilities of both intrinsic feature extraction

and data representation. More specifically, the auto-encoder clus-

tering algorithms [1, 4, 37] are the deep clustering models, where a

symmetric network structure is utilized to encode and decode the

data simultaneously. Auto-encoder network is composed of two

steps. Firstly, the code space of the data is achieved by reducing the

dimensionality of the data in the latent subspace. Secondly, encoded

data is reconstructed by a new generative decoded space. Based on

the extension of the auto-encoder network, the idea of generative

adversarial network [9, 12, 21, 39, 50] has been further introduced

to enhance the efficiency of the deep clustering algorithms.

However, due to lack of prior knowledge, most of the current

deep clustering algorithms [4, 19, 22, 26] obtain the rough represen-

tation of the data, such that it is often difficult to minemore effective

information. To address the issue regarding the deep clustering al-

gorithms, a robust embedded deep K-means clustering (RED-KC)

approach is proposed in this paper. The proposed RED-KC approach

embeds the robust K-means model with the auto-encoder network

to obtain the data representation, which is more conducive to robust

clustering. The proposed method has the following contributions:

(1) The robust loss, namely, 𝛿-norm metric is utilized so that the

auto-encoder network can map the data to the feature space

which is more conducive to robust clustering.

(2) The indicator matrix is adaptively obtained. When indicator

matrix degenerates to a prior label, we prove that the embed-

ded robust K-means is equivalent to the within-class scatter

under the specific condition.

(3) The weighted cluster centroids can be achieved, such that a

more clear grouping structure can be obtained for the data

clustering.

Notations: All of uppercase italic boldface letters represent ma-

trices, whereas lowercase italic boldface letters represent vectors.

The uppercase curlicue letters represent the functions and the italic

letters represent scalar values. 𝑴𝑇
denotes the transpose of 𝑴 . 𝒎𝑖

denotes the 𝑖-th row of matrix𝑴 and𝒎 𝑗 denotes the 𝑗-th column of

𝑴 , where𝑚𝑖 𝑗 denotes the entry in the 𝑖-th row and the 𝑗-th column

of 𝑴 . |𝑴 | denotes the absolute value of matrix 𝑴 , whereas ∥𝑴 ∥𝐹
denotes the Frobenius norm of 𝑴 . 1 = [1, 1, · · · , 1]𝑇 ∈ R𝑁×1

and 𝑰
is an identity matrix. For any matrix 𝑴 ∈ R𝐷×𝑁 , the ℓ2,1-norm is

defined as

∥𝑴 ∥
2,1 =

𝐷∑
𝑖=1

√√√√ 𝑁∑
𝑗=1

𝑚2

𝑖 𝑗
=

𝐷∑
𝑖=1



𝒎𝑖


2

where



𝒎𝑖


2
denotes the ℓ2-norm of vector 𝒎𝑖 .

2 ROBUST LOSS: 𝛿-NORM
As for the metrics, the ℓ2-norm is sensitive to the large data outliers

with robustness to the small loss, while the ℓ1-norm is sensitive

to the small loss with the robustness to the large one. Therefore,
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Figure 1. Illustration of robust loss function with different
𝛿 . (a) 𝛿 = 0.1. (b) 𝛿 = 1. (c) 𝛿 = 10. (d) 𝛿 = 100.

we attempt to develop a robust loss, which is robust to outliers

regardless of small or large losses. The proposed robust loss, i.e.,

𝛿-norm is formulated by

∥𝑴 ∥𝛿=
∑
𝑖

(1 + 𝛿)


𝒎𝑖

2

2

𝒎𝑖


2
+ 𝛿

(1)

where 𝛿 needs to be tuned. For better comprehension, the illus-

tration of the robust loss function with different values of 𝛿 is

demonstrated in Figure 1. Furthermore, the robust loss function

has the following properties:

(1) ∥𝑴 ∥𝛿 is nonnegative and convex, which is suitable for loss

function.

(2) ∥𝑴 ∥𝛿 is twice differentiable and easy for optimization.

(3) When



𝒎𝑖


2
≪ 𝛿 , ∥𝑴 ∥𝛿 → 1+𝛿

𝛿
∥𝑴 ∥2

𝐹

(4) When



𝒎𝑖


2
≫ 𝛿 , ∥𝑴 ∥𝛿 → (1 + 𝛿) ∥𝑴 ∥2,1

(5) When 𝛿 → 0, ∥𝑴 ∥𝛿 → ∥𝑴 ∥2,1
(6) When 𝛿 →∞, ∥𝑴 ∥𝛿 → ∥𝑴 ∥2𝐹

In sum, robust loss function interpolates between the ℓ1-norm and

ℓ2-norm via tuning the parameter 𝛿 . To solve problem (1), we at

first introduce a general robust loss function as

min

x
𝑓 (x) +

∑
𝑖

(1 + 𝛿) ∥ℎ𝑖 (x)∥22
∥ℎ𝑖 (x)∥2 + 𝛿

(2)

where ℎ𝑖 (x) is the vector output and the second term of problem

(2) is the extension of the proposed loss function in problem (1). In

particular, 𝑓 (x) is a smooth function. Accordingly, we attempt to

solve problem (2) by an iterative re-weighted method. By taking

the derivative of problem (2) with respect to x and setting it to zero,



we have

𝜕𝑓 (x) +∑
𝑖

(1+𝛿) ∥ℎ𝑖 (x) ∥22
∥ℎ𝑖 (x) ∥2+𝛿

𝜕𝑥
= 0⇒ 0 = 𝑓 ′ (x) +

(1 + 𝛿)
∑
𝑖

(∥ℎ𝑖 (x)∥2 + 𝛿)
𝜕 ∥ℎ𝑖 (x) ∥22

𝜕𝑥 − ∥ℎ𝑖 (x)∥22
𝜕 ∥ℎ𝑖 (x) ∥2

𝜕𝑥

(∥ℎ𝑖 (x)∥2 + 𝛿)2

⇒0 = 𝑓 ′ (x) +

(1 + 𝛿)
∑
𝑖

(
2 ∥ℎ𝑖 (x)∥2 + 2𝛿 − 2∥ℎ𝑖 (x) ∥22

2

√
∥ℎ𝑖 (x) ∥22

)
(∥ℎ𝑖 (x)∥2 + 𝛿)2

ℎ𝑖 (x)ℎ′𝑖 (x)

which further leads to

𝑓 ′ (x) + 2 (1 + 𝛿)
∑
𝑖

∥ℎ𝑖 (x)∥2 + 2𝛿

2(∥ℎ𝑖 (x)∥2 + 𝛿)2
ℎ𝑖 (x) ℎ′𝑖 (x) = 0 (3)

Moreover, we denote D𝑖𝑖 = (1 + 𝛿) ∥ℎ𝑖 (x) ∥2+2𝛿
2( ∥ℎ𝑖 (x) ∥2+𝛿)2

. Hence, Eq. (3)

can be rewritten as

𝑓 ′ (x) +2
∑
𝑖

D𝑖𝑖ℎ𝑖 (x) ℎ′𝑖 (x) = 0 (4)

By treating D𝑖𝑖 as a transitional weight, then problem (2) is equiv-

alent to the following re-weighted problem

min

x
𝑓 (x) +

∑
𝑖

D𝑖𝑖 ∥ℎ𝑖 (x)∥22 (5)

which shares the same KKT condition as represented in (4). We fur-

ther provide the theoretical analysis between the original problem

(2) and its re-weighted dual in (5) as follows.

Lemma 2.1. For any vectors 𝑥 , 𝑦 with the same size, the following
inequality holds:

∥𝑥 ∥2
2

∥𝑥 ∥
2
+ 𝛿 −

∥𝑦∥
2
+ 2𝛿

2(∥𝑦∥
2
+ 𝛿)2

∥𝑥 ∥2
2

≤
∥𝑦∥2

2

∥𝑦∥
2
+ 𝛿 −

∥𝑦∥
2
+ 2𝛿

2(∥𝑦∥
2
+ 𝛿)2

∥y∥2
2

Proof.

(∥𝑥 ∥
2
− ∥𝑦∥

2
)2 (∥𝑥 ∥

2
∥𝑦∥

2
+ 2𝛿 ∥𝑥 ∥

2
+ 𝛿 ∥𝑦∥

2
) ≥ 0

⇒ 2 ∥𝑥 ∥2
2
∥𝑦∥2

2
+ 3𝛿 ∥𝑥 ∥2

2
∥𝑦∥

2
≤ ∥𝑥 ∥

2
∥𝑦∥

2
∥𝑦∥2

2
+

∥𝑥 ∥
2
∥𝑦∥

2
∥𝑥 ∥2

2
+ 2𝛿 ∥𝑥 ∥

2
∥𝑥 ∥2

2
+ 𝛿 ∥𝑦∥

2
∥𝑦∥2

2

⇒ 2 ∥𝑥 ∥2
2
(∥𝑦∥

2
+ 𝛿)2

≤ (∥𝑦∥
2
∥𝑦∥2

2
+ ∥𝑦∥

2
∥𝑥 ∥2

2
+ 2𝛿 ∥𝑥 ∥2

2
) (∥𝑥 ∥

2
+ 𝛿)

⇒
∥𝑥 ∥2

2

∥𝑥 ∥
2
+ 𝛿 ≤

∥𝑦∥
2
∥𝑦∥2

2
+ ∥𝑦∥

2
∥𝑥 ∥2

2
+ 2𝛿 ∥𝑥 ∥2

2

2(∥𝑦∥
2
+ 𝛿)2

⇒
∥𝑥 ∥2

2

∥𝑥 ∥
2
+ 𝛿 −

∥𝑦∥
2
+ 2𝛿

2(∥𝑦∥
2
+ 𝛿)2

∥𝑥 ∥2
2
≤
∥𝑦∥

2
∥𝑦∥2

2

2(∥𝑦∥
2
+ 𝛿)2

⇒
∥𝑥 ∥2

2

∥𝑥 ∥
2
+ 𝛿 −

∥𝑦∥
2
+ 2𝛿

2(∥𝑦∥
2
+ 𝛿)2

∥𝑥 ∥2
2

≤
∥𝑦∥2

2

∥𝑦∥
2
+ 𝛿 −

∥𝑦∥
2
+ 2𝛿

2(∥𝑦∥
2
+ 𝛿)2

∥𝑦∥2
2

which completes the proof. □

Theorem 2.2. The re-weighted problem (5) will monotonically
decrease the objective of problem (2) by updating the transitional
weight D𝑖𝑖 in each iteration.

Proof. Suppose that 𝑥 is updated by 𝑥 in the algorithm, then

we have

𝑓 (𝑥) +
∑
𝑖

D𝑖𝑖 ∥ℎ𝑖 (𝑥)∥22 ≤ 𝑓 (𝑥) +
∑
𝑖

D𝑖𝑖 ∥ℎ𝑖 (𝑥)∥22

Note that D𝑖𝑖 = (1 + 𝛿) ∥ℎ𝑖 (𝑥) ∥2+2𝛿
2( ∥ℎ𝑖 (𝑥) ∥2+𝛿)2

, we have

𝑓 (𝑥) + (1 + 𝛿)
∑
𝑖

∥ℎ𝑖 (𝑥)∥2 + 2𝛿

2(∥ℎ𝑖 (𝑥)∥2 + 𝛿)2
∥ℎ𝑖 (𝑥)∥22

≤ 𝑓 (𝑥) + (1 + 𝛿)
∑
𝑖

∥ℎ𝑖 (𝑥)∥2 + 2𝛿

2(∥ℎ𝑖 (𝑥)∥2 + 𝛿)2
∥ℎ𝑖 (𝑥)∥22

Based on Lemma 2.1, then we substitute 𝑥 = ℎ𝑖 (𝑥) and 𝑦 = ℎ𝑖 (𝑥)
and obtain

∥ℎ𝑖 (𝑥)∥22
∥ℎ𝑖 (𝑥)∥2 + 𝛿

− ∥ℎ𝑖 (𝑥)∥2 + 2𝛿

2(∥ℎ𝑖 (𝑥)∥2 + 𝛿)2
∥ℎ𝑖 (𝑥)∥22

≤
∥ℎ𝑖 (𝑥)∥22
∥ℎ𝑖 (𝑥)∥2 + 𝛿

− ∥ℎ𝑖 (𝑥)∥2 + 2𝛿

2(∥ℎ𝑖 (𝑥)∥2 + 𝛿)2
∥ℎ𝑖 (𝑥)∥22

⇒
∑
𝑖

(1 + 𝛿)∥ℎ𝑖 (𝑥)∥22
∥ℎ𝑖 (𝑥)∥2 + 𝛿

− (1 + 𝛿)
∑
𝑖

∥ℎ𝑖 (𝑥)∥2 + 2𝛿

2(∥ℎ𝑖 (𝑥)∥2 + 𝛿)2
∥ℎ𝑖 (𝑥)∥22

≤
∑
𝑖

(1 + 𝛿)∥ℎ𝑖 (𝑥)∥22
∥ℎ𝑖 (𝑥)∥2 + 𝛿

− (1 + 𝛿)
∑
𝑖

∥ℎ𝑖 (𝑥)∥2 + 2𝛿

2(∥ℎ𝑖 (𝑥)∥2 + 𝛿)2
∥ℎ𝑖 (𝑥)∥22

By combining the inequalities above, we have

𝑓 (𝑥) +
∑
𝑖

(1 + 𝛿) ∥ℎ𝑖 (𝑥)∥22
∥ℎ𝑖 (𝑥)∥2 + 𝛿

≤ 𝑓 (𝑥) +
∑
𝑖

(1 + 𝛿) ∥ℎ𝑖 (𝑥)∥22
∥ℎ𝑖 (𝑥)∥2 + 𝛿

which completes the proof. □

Since the re-weighted dual (5) satisfies the same KKT condition of

the original problem (2), the re-weighted problem (5) monotonically

converges to a local optimal solution to the original problem (2)

according to Theorem 2.2.

3 METHODOLOGY
In this section, we elaborate the details of the proposed robust em-

bedded deep K-means clustering approach (RED-KC). The frame-

work of RED-KC is an auto-encoder network with embedding the

robust K-means clustering. With the support of 𝛿-norm distance,

RED-KC extracts deep features of the data by mapping them from

source space to a latent feature space, such that the weighted cluster

centroids can be obtained, namely, a more clear grouping structure

can be obtained for the data clustering.

3.1 Robust Embedded Deep K-means
Clustering

The neural network of RED-KC consists of 𝑀 + 1 layers with 𝑀

nonlinear transformations, where𝑀 is an even number. The first
𝑀
2

hidden layers are the encoders, which learn a set of compact repre-

sentations, i.e., dimensionality reduction. The last
𝑀
2
layers are the
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Figure 2. Framework of RED-KC.

decoders, which reconstruct the input. The framework of RED-KC

is shown in Figure 2. Suppose 𝑯 (0) = 𝑿𝑖𝑛 = [𝒙1, 𝒙2, . . . , 𝒙𝑁 ] ∈
R𝐷×𝑁 as the input matrix of the first layer with 𝑁 samples, then

each data point 𝒉(0) is the column of the matrix 𝑯 (0) with dimen-

sion𝐷 . As for the encoder, the output of the 𝑖-th layer is represented

as

𝒉(𝑖) = F𝑒
(
𝑾 (𝑖)𝒉(𝑖−1) + 𝒃 (𝑖)

)
∈ R𝑑𝑖 (6)

where 𝑖 = 1, 2, · · · , 𝑀
2
indexes the layers of the encoder, 𝑾 (𝑖) ∈

R𝑑𝑖×𝑑𝑖−1
denotes the weight matrix, and 𝒃 (𝑖) ∈ R𝑑𝑖 denotes the

bias of the 𝑖-th layer. R𝑑𝑖 indicates that the 𝒉(𝑖) belongs to a 𝑑𝑖
dimension feature space. The F𝑒 (·) is a nonlinear activation func-

tion. In particular, the
𝑀
2
-th layer 𝒉

(
𝑀
2

)
∈ R

𝑑𝑀
2 is shared by the

encoder and the decoder. For the purpose of dimensionality reduc-

tion, the dimensions of the layers in the encoder are designed as

𝐷 ≥ 𝑑𝑖−1 ≥ 𝑑𝑖 ≥ 𝑑𝑀
2

. As for the decoder, the output of the 𝑗-th

layer can be represented as

𝒉( 𝑗) = F𝑑
(
𝑾 ( 𝑗)𝒉( 𝑗−1) + 𝒃 ( 𝑗)

)
∈ R𝑑 𝑗 (7)

where 𝑗 = 𝑀
2
+ 1, 𝑀

2
+ 2, · · · , 𝑀 indexes the layers of the decoder

and the nonlinear activation function F𝑑 (·) can be the same as

F𝑒 (·) or a different nonlinear function. For the purpose of the

data reconstruction, the dimensions of the layers in the decoder

are designed as 𝑑𝑀
2

≤ 𝑑𝑖−1 ≤ 𝑑𝑖 ≤ 𝑑𝑀 = 𝐷 . Therefore, given

a sample 𝒉(0) , (i.e., 𝒙𝑖𝑛) as the input of the first layer of RED-KC,
𝒉(𝑀) , (i.e., 𝒙𝑜𝑢𝑡 ) is the reconstruction of 𝒉(0) and the corresponding

𝒉

(
𝑀
2

)
is the deep representation of 𝒙𝑖𝑛 . Suppose the data matrix

𝑯 (0) =
[
𝒉(0)

1
,𝒉(0)

2
, · · · ,𝒉(0)

𝑁

]
∈ R𝐷×𝑁 which denotes a collection

of 𝑁 given samples, then the output matrix of the decoder 𝑯 (𝑀) =

[
𝒉(𝑀)

1
,𝒉(𝑀)

2
, · · · ,𝒉(𝑀)

𝑁

]
∈ R𝐷×𝑁 is the corresponding reconstruc-

tion of 𝑯 (0) and 𝑯

(
𝑀
2

)
=

[
𝒉

(
𝑀
2

)
1

,𝒉

(
𝑀
2

)
2

, · · · ,𝒉

(
𝑀
2

)
𝑁

]
∈ R

𝑑𝑀
2

×𝑁
is

the low-dimensional deep representation of 𝑯 (0) .
The objective of RED-KC is to minimize the data reconstruc-

tion error and embed the robust K-means clustering with the cor-

responding deep representation 𝑯

(
𝑀
2

)
simultaneously. With the

terms previously defined, the objective of RED-KC can be formu-

lated as

min

𝑾 (𝑚) ,𝒃 (𝑚) ,𝑭 ,𝑮∈𝑖𝑛𝑑 {0,1}𝑁×𝐾
1

2




𝑯 (0) − 𝑯 (𝑀)


2

𝐹︸                   ︷︷                   ︸
J1

+ 𝜆1

2





𝑯 (
𝑀
2

)
− 𝑭𝑮𝑇






𝛿︸                    ︷︷                    ︸

J2

+ 𝜆2

2

𝑀∑
𝑚=1

(


𝑾 (𝑚)


2

𝐹
+




𝒃 (𝑚)


2

2

)
︸                                  ︷︷                                  ︸

J3

(8)

where 𝜆1 and 𝜆2 are the tradeoff parameters. The terms J1, J2,

and J3 are specifically designed for different purposes. As for Eq.

(8), the first term J1 is to preserve the information of the data via

the minimization of the reconstruction error. In other words, the

input serves as a supervisor of learning a compact representation

𝑯

(
𝑀
2

)
. Due to the fact that objects in the same cluster tend to have

similar features, the termJ2 in (8) is designed to learn the clustering

structure from the deep representation 𝑯

(
𝑀
2

)
by minimizing the 𝛿-

norm error regarding robust K-means, where 𝑭 ∈ R
𝑑𝑀

2

×𝐾
denotes

the matrix of clustering centroids and 𝑮 ∈ {0, 1}𝑁×𝐾 denotes

the binary indicator matrix. In other words, each column of 𝑭
represents a cluster centroid, while each row 𝒈𝒊,∀𝑖 of 𝑮 denotes a

binary label. As for each row of 𝑮 , the elements of 𝒈𝒊,∀𝑖 contain
only one 100% with the others being 0%. The value 𝐾 denotes the

number of clusters. Finally, J3 serves as a regularization term to

avoid over-fitting. Our neural network model utilizes the input as

the self-supervisor to learn deep representation and constrain the

nonlinear transformation, such that the intrinsic features can be

extracted from the source data. Additionally, the 𝛿-norm metric is

utilized for the robust K-means clustering. Therefore, the weighted

cluster centroids can be achieved in the next subsection, such that

a more clear grouping structure can be obtained. Therefore, robust

K-means clustering J2 is embedded with the deep auto-encoder

networks such that RED-KC model is proposed in Eq. (8).

3.2 Optimization Procedure
In this subsection, the optimization with respect to (w.r.t.)𝑾 and

𝒃 of the proposed RED-KC model (8) is derived via the gradient

descent method, while the solutions w.r.t. 𝑮 and 𝑭 to the embedded

robust K-means J2 in (8) are achieved via direct optimization. Since

𝑮 and 𝑭 of robust K-means are only involved with the layer 𝑯

(
𝑀
2

)
,



we present the gradient descent and the solutions of 𝑮 and 𝑭 sepa-

rately. According to Eq. (5), the objective function of RED-KC in (8)

can be reformulated into the following re-weighted form as

J =
1

2

𝑁∑
𝑖=1

©­«



𝒉(0)𝑖 − 𝒉(𝑀)𝑖




2

2

+ 𝜆1D𝑖𝑖






𝒉
(
𝑀
2

)
𝑖
− 𝑭𝒈𝑇𝑖






2

2

ª®¬
+ 𝜆2

2

𝑀∑
𝑚=1

(


𝑾 (𝑚)


2

𝐹
+




𝒃 (𝑚)


2

2

) (9)

where the transitional weight D𝑖𝑖 ← (1 + 𝛿)





𝒉(𝑀2 )𝑖
−𝑭𝒈𝑇

𝑖






2

+2𝛿

2

(



𝒉(𝑀2 )𝑖
−𝑭𝒈𝑇

𝑖






2

+𝛿
)

2
.

According to the definitions of the encoder 𝒉(𝑖) in (6) and the

decoder 𝒉( 𝑗) in (7), the gradients of Eq. (9) w.r.t. 𝑾 (𝑚) and 𝒃 (𝑚)

can be obtained via the chain rule as
𝜕J

𝜕𝑾 (𝑚) =

(
𝚫
(𝑚) + 𝜆1D𝑖𝑖𝚲(𝑚)

) (
𝒉(𝑚−1)
𝑖

)𝑇
+ 𝜆2𝑾 (𝑚)

𝜕J
𝜕𝒃 (𝑚)

= 𝚫
(𝑚) + 𝜆1D𝑖𝑖𝚲(𝑚) + 𝜆2𝒃 (𝑚)

(10)

where 𝚫
(𝑚)

and 𝚲
(𝑚)

are denoted by

𝚫
(𝑚) =


−

(
𝒉(0)
𝑖
− 𝒉(𝑀)

𝑖

) ⊙
G′

(
𝒛 (𝑀)
𝑖

)
𝑚 = 𝑀(

𝑾 (𝑚+1)
)𝑇

𝚫
(𝑚+1)⊙G′

(
𝒛 (𝑚)
𝑖

)
otherwise

𝚲
(𝑚) =



(
𝑾 (𝑚+1)

)𝑇
𝚲
(𝑚+1)⊙G′

(
𝒛 (𝑚)
𝑖

)
𝑚 = 1, · · · , 𝑀

2
− 1(

𝒉

(
𝑀
2

)
𝑖
− 𝑭𝒈𝑇

𝑖

) ⊙
G′

(
𝒛

(
𝑀
2

)
𝑖

)
𝑚 = 𝑀

2

0 𝑚 = 𝑀
2
+ 1, · · · , 𝑀

(11)

In Eq. (11), mark

⊙
denotes the element-wise multiplication op-

erator, 𝒛 (𝑚)
𝑖

=𝑾 (𝑚)𝒉(𝑚−1)
𝑖

+ 𝒃 (𝑚) , and G′ (·) is the derivative of
the activation function G (·) as

G (·) =
{
F𝑒 (·) 𝑚 = 1, · · · , 𝑀

2

F𝑑 (·) 𝑚 = 𝑀
2
+ 1, · · · , 𝑀

(12)

Via the gradient descent method, {𝑾 (𝑚) , 𝒃 (𝑚) }𝑀
𝑚=1

are further

updated by {
𝑾 (𝑚) ←𝑾 (𝑚) − 𝜇 𝜕J

𝜕𝑾 (𝑚)

𝒃 (𝑚) ← 𝒃 (𝑚) − 𝜇 𝜕J
𝜕𝒃 (𝑚)

(13)

where 𝜇 > 0 is the step weight, which can be set as different

small values for certain scenario. As the output label of RED-KC

model, the indicator matrix 𝑮 is associated with the robust K-means

clustering of𝑯

(
𝑀
2

)
. In other words, the binary label 𝑮 is updated by

solving the second clustering term in (9), namely, robust K-means

problem. To further obtain the cluster centroid matrix 𝑭 , we rewrite
the robust K-means problem in (9) as the following matrix form

min

𝑭 ,𝑮∈{0,1}𝑁×𝐾





(𝑯 (
𝑀
2

)
− 𝑭𝑮𝑇

)
D

1

2





2

𝐹

(14)

where the weight matrix D is diagonal with its (𝑖, 𝑖)-th entry D𝑖𝑖
defined in (9). According to Eq. (14), the cluster centroid matrix 𝑭

Figure 3. Toy examples

could be obtained as

𝜕





(𝑯 (
𝑀
2

)
− 𝑭𝑮𝑇

)
D

1

2





2

𝐹

𝜕𝑭
= 0

⇒
𝜕𝑇𝑟

(
𝑭𝑮𝑇D𝑮𝑭𝑇 − 2𝑯

(
𝑀
2

)
D𝑮𝑭𝑇

)
𝜕𝑭

= 0

⇒ 𝑭 = 𝑯

(
𝑀
2

)
D𝑮 (𝑮𝑇D𝑮)−1

(15)

which implies the weighted cluster centroids. In particular, 𝑮 will

be obtained simultaneously via the optimization of the RED-KC

model. In sum, the proposed RED-KC method can be summarized

in Algorithm 1.

Denote X𝑖 as the dataset of the 𝑖-th class and 𝑛𝑖 as the number

of data points in the 𝑖-th class, then the within-class scatter matrix

𝑺𝑤 , the between-class scatter matrix 𝑺𝑏 , and the total-class scatter

matrix 𝑺𝑡 [44] are defined as


𝑺𝑤 =

∑𝐾
𝑖=1

∑
𝒙∈X𝑖 (𝒙 − 𝒙𝑖 ) (𝒙 − 𝒙𝑖 )

𝑇

𝑺𝑏 =
∑𝐾
𝑖=1

𝑛𝑖 (𝒙𝑖 − 𝒙) (𝒙𝑖 − 𝒙)𝑇

𝑺𝑡 =
∑𝑁
𝑖=1
(𝒙𝑖 − 𝒙) (𝒙𝑖 − 𝒙)𝑇

(16)

where 𝒙𝑖 =
1

𝑛𝑖

∑
𝒙 𝑗 ∈X𝑖 𝒙 𝑗 is the class-specific mean of the 𝑖-th class

and 𝒙 = 1

𝑁

∑𝑁
𝑖=1

𝒙𝑖 is the global mean. According to the definitions

in (16), we have the following theorem to illustrate the relationship

between robust K-means and within-class scatter.

Theorem 3.1. If the deep representation of the 𝑀
2

layer is the

centralized data, i.e., 𝑯

(
𝑀
2

)
= 𝑿𝑖𝑛𝑷 and the binary label 𝑮 is known

as a prior, i.e., the supervised learning, then the embedded robust
K-means in (14) is equivalent to 𝑇𝑟 (𝑺𝑤) when 𝛿 →∞.



Proof. According to the definition of the diagonal matrix D in

(14), its arbitrary (𝑖, 𝑖)-th entry can be deduced as

lim

𝛿→∞
D𝑖𝑖 = lim

𝛿→∞
(1 + 𝛿)






𝒉
(
𝑀
2

)
𝑖
− 𝑭𝒈𝑇

𝑖







2

+ 2𝛿

2

(




𝒉
(
𝑀
2

)
𝑖
− 𝑭𝒈𝑇

𝑖







2

+ 𝛿
)

2

= lim

𝛿→∞

(
1

𝛿
+ 1

) 



𝒉(𝑀2 )𝑖
−𝑭𝒈𝑇

𝑖






2

𝛿
+ 2

2

©­­«




𝒉(𝑀2 )𝑖

−𝑭𝒈𝑇
𝑖






2

𝛿
+ 1

ª®®¬
2

= (0 + 1) 0 + 2

2(0 + 1)2
= 1

which leads to the conclusion that D = 𝑰 when 𝛿 → ∞. Besides,

since 𝑮 is fixed as the prior binary label and𝑯

(
𝑀
2

)
is the the central-

ized data 𝑿𝑖𝑛𝑷 , the embedded robust K-means in (14) degenerates

to

min

𝑭





(𝑯 (
𝑀
2

)
− 𝑭𝑮𝑇

)
D

1

2





2

𝐹

=





𝑿𝑖𝑛𝑷 − 𝑿𝑖𝑛𝑷𝑮 (
𝑮𝑇 𝑮

)−1

𝑮𝑇




2

𝐹
(17)

where 𝑷 is the centering matrix. We further define the least squares

loss function as

𝜀 = ∥𝑻1 − 𝑻2∥2𝐹 (18)

and define 𝑨(𝑡 ) = 1

𝑁
11𝑇 and 𝑨(𝑤)

𝑖 𝑗
=

{
1

𝑛𝑖
𝑖 = 𝑗

0 otherwise

. By substi-

tuting 𝑻1 = 𝑿𝑖𝑛 and 𝑻2 = 𝑿𝑖𝑛𝑨(𝑤) in (18), we have


𝑿𝑖𝑛 − 𝑿𝑖𝑛𝑨(𝑤)


2

𝐹
= 𝑇𝑟

(
𝑿𝑖𝑛

(
𝑰 −𝑨(𝑤)

)
2

𝑿𝑇𝑖𝑛

)
= 𝑇𝑟 (𝑺𝑤) (19)

Similarly, by setting 𝑻1 =𝑾𝑇𝑿 and 𝑻2 =𝑾𝑇𝑿𝑨(𝑡 ) in (18), we get


𝑿𝑖𝑛 − 𝑿𝑖𝑛𝑨(𝑡 )


2

𝐹
= 𝑇𝑟

(
𝑿𝑖𝑛

(
𝑰 −𝑨(𝑡 )

)
2

𝑿𝑇𝑖𝑛

)
= 𝑇𝑟 (𝑺𝑡 ) (20)

According to Eqs. (19) and (20), the between-class scatter matrix

could be reformulated into

𝑇𝑟 (𝑺𝑏 ) = 𝑇𝑟 (𝑺𝑡 − 𝑺𝑤)

= 𝑇𝑟

(
𝑿𝑖𝑛

(
𝑨(𝑤) −𝑨(𝑡 )

)
𝑿𝑇𝑖𝑛

)
= 𝑇𝑟

(
𝑿𝑖𝑛

(
𝑨(𝑤) −𝑨(𝑡 ) −𝑨(𝑤)𝑨(𝑡 ) +

(
𝑨(𝑡 )

)
2

)
𝑿𝑇𝑖𝑛

)
= 𝑇𝑟

(
𝑿𝑖𝑛

(
𝑨(𝑤) −𝑨(𝑡 )

) (
𝑰 −𝑨(𝑡 )

)
𝑿𝑇𝑖𝑛

)
= 𝑇𝑟

(
𝑿𝑖𝑛

(
𝑨(𝑤) −𝑨(𝑡 )𝑨(𝑤)

) (
𝑰 −𝑨(𝑡 )

)
𝑿𝑇𝑖𝑛

)
= 𝑇𝑟

(
𝑿𝑖𝑛

(
𝑰 −𝑨(𝑡 )

)
𝑨(𝑤)

(
𝑰 −𝑨(𝑡 )

)
𝑿𝑇𝑖𝑛

)
= 𝑇𝑟

(
𝑿𝑖𝑛𝑷𝑮

(
𝑮𝑇 𝑮

)−1

𝑮𝑇 𝑷𝑿𝑇𝑖𝑛

)
(21)

Algorithm 1: Robust Embedded Deep K-means Clustering

(RED-KC) method

Input: data matrix 𝑿𝑖𝑛 , (i.e., 𝑯 (0) ), parameter 𝛿 , and

number of clusters 𝐾 .

Output: indicator matrix 𝑮 .
1 Initialize D = 𝑰 and random pseudo label matrix 𝑮;

2 for𝑚 = 1 : 𝑀 do
3 Initialize𝑾 (𝑚) and 𝒃 (𝑚) ;
4 end
5 while not convergence do
6 for 𝑖 = 1 :

𝑀
2
do

7 𝒉(𝑖) ← F𝑒
(
𝑾 (𝑖)𝒉(𝑖−1) + 𝒃 (𝑖)

)
;

8 end

9 for 𝑗 =
(
𝑀
2
+ 1

)
: 𝑀 do

10 𝒉( 𝑗) ← F𝑑
(
𝑾 ( 𝑗)𝒉( 𝑗−1) + 𝒃 ( 𝑗)

)
;

11 end
12 Update 𝑭 by (15);

13 for 𝑖 = 1 : 𝑁 do

14 Update D𝑖𝑖 ← (1 + 𝛿)





𝒉(𝑀2 )𝑖
−𝑭𝒈𝑇

𝑖






2

+2𝛿

2

(



𝒉(𝑀2 )𝑖
−𝑭𝒈𝑇

𝑖






2

+𝛿
)

2
;

15 end

16 Perform robust K-means of 𝑯

(
𝑀
2

)
and update 𝑮;

17 for𝑚 = 1 : 𝑀 do
18 Update𝑾 (𝑚) and 𝒃 (𝑚) by (13);

19 end
20 end
21 return 𝑮

where the centering matrix 𝑷 = 𝑰 − 𝑨(𝑡 ) . According to (21), we

have

𝑇𝑟 (𝑺𝑤) = 𝑇𝑟 (𝑺𝑡 − 𝑺𝑏 ) =




𝑿𝑖𝑛𝑷 (

𝑰 − 𝑮
(
𝑮𝑇 𝑮

)−1

𝑮𝑇
)



2

𝐹

(22)

which equals to Eq. (17). Proof is completed here. □

4 EXPERIMENTS
In this section, we compare the proposed RED-KC approach with

the state-of-the-art clustering methods on 4 image datasets in terms

of 2 evaluation metrics. In addition, the effectiveness of RED-KC is

investigated under different coefficients and activation functions.

4.1 Experimental Settings
4.1.1 Datasets. Four datasets are utilized including COIL20-DSIFT,
COIL20-HOG, YaleB-DSIFT, and YaleB-HOG. The COIL20-DSIFT

and COIL20-HOG datasets are derived from the DSIFT and HOG

feature extraction of the raw COIL20 dataset, respectively. Similarly,

the YaleB-DSIFT and YaleB-HOG datasets are generated from the

YaleB dataset. COIL-20 is a database of gray-scale images of 20

objects [27]. The objects were placed on a motorized turntable



Table 1. Performance comparison on COIL20 dataset

Features DSIFT HOG

Methods Accuracy(%) NMI(%) Accuracy(%) NMI(%)

RED-KC 89.2±2.6 93.8±1.9 90.6±1.6 93.4±2.1
PARTY 85.7±2.3 91.1±1.8 85.5±1.9 91.9±1,6
AESSC 87.1±2.1 89.9±1.0 84.1±1.9 89.0±1.1
SAEg 65.3±1.2 77.0±1.1 74.9±1.0 89.2±1.6
SAEs 56.5±1.5 65.0±0.4 71.9±1.4 87.0±1.8
SSC 84.3±2.2 91.0±0.7 81.0±1.5 90.1±1.2

KSSC1 82.4±1.2 90.3±1.1 70.9±0.5 84.0±0.4
KSSC2 76.4±2.6 90.1±0.2 75.1±0.8 86.5±0.4
LS3C 30.9±3.3 49.2±1.8 30.3±2.1 40.5±0.7
LRR 79.0±1.4 89.7±1.2 58.4±3.2 76.9±1.6

KLRR1 70.2±1.8 81.4±0.6 73.7±4.0 81.2±1.3
KLRR2 78.5±1.3 83.8±0.9 74.1±0.9 83.8±0.6
LRSC 71.1±1.7 78.3±0.7 44.0±1.2 57.2±1.4
LSR1 61.5±1.3 71.2±0.8 64.7±1.4 73.0±1.0
LSR2 64.7±2.0 72.7±0.2 61.7±1.5 71.1±0.9
SMR 80.4±1.9 89.4±0.5 74.8±2.6 84.4±1.2

against a black background. The turntable was rotated through 360

degrees to vary object pose with respect to a fixed camera. The

COIL20 dataset contains 1,440 samples where each image is with the

size of 32× 32. The YaleB dataset [19] consists of 5760 samples from

38 human subjects under 9 poses and 64 illumination conditions,

where each image is with size of 192×168. More detail information

of datasets can be found in Table 3. For the computational efficiency,

we use PCA to reduce the feature dimension to 300.

4.1.2 Evaluation Criteria. Two metrics are adopted to evaluate

the clustering quality: Accuracy and normalized mutual informa-

tion(NMI).

Clustering Accuracy reflects the relationship between clusters

and classes by measuring the degree that each cluster contains

the number of data samples from the related class. The clustering

accuracy is calculated by 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =

∑𝑁
𝑖=1
𝜉 (𝒎𝒂𝒑 (𝒓𝑖 ),𝒍𝑖 )

𝑁
, where 𝒓𝑖

represents the pseudo-cluster label of 𝒙𝑖 , 𝒍𝑖 represents the true class
label, 𝜉 (𝑥,𝑦) is the delta function, and 𝒎𝒂𝒑(·) is the optimal map

function. Note 𝜉 (𝑥,𝑦) = 1, if 𝑥 = 𝑦; 𝜉 (𝑥,𝑦) = 0, otherwise. The

map function 𝒎𝒂𝒑(·) projects each cluster label to the true label.

A larger 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 implies a better clustering performance.

The Normalized Mutual Information serves as an index to

determine the consistent quality of cluster, which is defined as

𝑵𝑴𝑰 =

∑𝐾
𝑖=1

∑𝐾
𝑗=1
𝑛𝑖 𝑗 log

𝑛𝑖 𝑗

𝑛𝑖 𝑛̂ 𝑗√
(∑𝐾𝑖=1

𝑛𝑖 log
𝑛𝑖
𝑁
) (∑𝐾𝑗=1

𝑛̂ 𝑗 log

𝑛̂ 𝑗

𝑁
)
, where 𝑛𝑖 denotes the num-

ber of data in the cluster 𝑪𝑖 (1 ≤ 𝑖 ≤ 𝐾 ), 𝑛̂ 𝑗 denotes the number of

data belonging to the class 𝐿𝑗 (1 ≤ 𝑗 ≤ 𝐾 ), and 𝑛𝑖 𝑗 is the number of

data which are in the intersection between cluster 𝑪𝑖 and class 𝑳 𝑗 .
Similarly, a larger 𝑵𝑴𝑰 represents a more consistent clustering

performance.

4.1.3 Toy results. In Figure 3, 6 types of toy data are compared

under 7 different clustering approaches. From Figure 3, we could ob-

serve that our method has much better performance on multi-class

Table 2. Performance comparison on YaleB dataset

Features DSIFT HOG

Methods Accuracy(%) NMI(%) Accuracy(%) NMI(%)

RED-KC 89.7±2.3 92.7±2.6 94.2±1.0 98.4±2.9
PARTY 88.5±2.5 90.8±0.8 92.0±1.1 96.9±1.5
AESSC 74.8±2.6 78.3±0.9 88.8±0.6 94.4±0.5
SAEg 82.3±0.8 87.5±0.9 84.7±0.4 93.4±0.8
SAEs 80.7±1.1 85.9±0.5 81.4±0.6 92.4±0.4
SSC 83.7±1.7 90.0±0.4 85.1±1.1 92.8±1.1

KSSC1 91.4±1.2 89.0±0.4 80.5±1.2 88.6±0.3
KSSC2 77.6±1.0 84.4±0.6 75.3±0.8 80.3±0.4
LS3C 49.9±1.4 59.8±0.5 49.1±0.4 53.5±0.2
LRR 81.6±0.3 89.1±0.4 81.0±0.1 93.0±0.5

KLRR1 69.9±0.6 74.7±0.2 78.9±1.3 86.1±0.5
KLRR2 66.1±1.1 72.3±0.4 60.1±0.6 68.9±0.5
LRSC 68.2±1.3 73.4±0.2 68.6±0.5 73.2±0.5
LSR1 72.8±0.6 77.6±0.7 76.5±1.0 81.0±0.6
LSR2 73.3±1.2 77.4±0.5 76.0±1.2 80.4±0.5
SMR 81.4±1.3 85.2±0.8 87.9±0.9 92.7±0.8

Table 3. Information of the datasets.

Dataset size dimensionality class

COIL20 1440 1024 20

YALEB 5760 32256 38

toy dataset instead of binary-class toy dataset. When dealing with

multi-class toy dataset, our method outperforms other comparative

methods.

4.1.4 Baseline Algorithms. The proposed RED-KC is compared

with the clustering algorithms on four datasets as COIL20-DSIFT,

COIL20-HOG, YaleB-DSIFT, and YaleB-HOG. The comparativemeth-

ods include auto-encoder based subspace clustering algorithms

(AESSC), deep subspace clustering with sparsity Prior (PARTY),

sparse subspace clustering (SSC), low rank based subspace cluster-

ing (LRSC), least square regression (LSR), smooth representation

clustering (SMR), kernel SSC (KSSC), kernel LRR (KLRR), latent

subspace sparse subspace clustering (LS3C), and stacked sparse

auto-encoder (SAE), where AESSC and PARTY are the deep clus-

tering methods.

Particularly, the proposed RED-KC is designed as a five layer

neural network structure, which consists of 300−200−100−200−300

neurons. To ensure a fair comparison, we report the best results

of all the comparative methods with setting 𝐾 as the class number

of each dataset. As for the tradeoff parameters 𝜆1 and 𝜆2 in the

proposed RED-KC method, we tune them via grid search in the set

of {10
−3, 10

−2, 10
−1, 1, 10

1, 10
2, 10

3}. As for the 𝛿 in the robust loss,

we tune it in the grid of {10
−2, 10

−1, 1, 10
1, 10

2}.

4.2 Comparison with the Evaluated Methods
In this subsection, we evaluate the performance of RED-KC by

comparing with the baseline algorithms. In both Table 1 and Table
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Figure 4. Accuracy and NMI of RED-KC under different values of 𝜆1.
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Figure 5. Variations of Accuracy and NMI by increasing the
iteration numbers for RED-KC.

2, the bolded names denote the state-of-the-art deep clustering

methods, while the bolded scores denote the best results. From

Table 1, the proposed RED-KC has the better performance. The

Accuracy of RED-KC is at least 4.46% and 5.06% higher than other

methods on COIL20-DISFT and COIL20-HOG, respectively. From

Table 2, RED-KC achieves the best results, where the Accuracy is

1.24% and 1.94% higher than the runner-up method on YaleB-DSIFT

and YaleB-HOG, respectively.

Besides that, the results demonstrate that deep clustering meth-

ods perform much better due to the deep feature extraction. Figure

5 shows the Accuracy and NMI of RED-KC under different itera-

tion numbers. We could observe that the performance is enhanced

rapidly within the first ten iterations, which indicates the efficiency

of our method. After several iterations, both Accuracy and NMI

remain stable.

4.3 Influence of Tradeoff Coefficient
As for the tradeoff coefficient 𝜆1, we investigate the variations of

Accuracy and NMI under different values of 𝜆1 as shown in Figure

4. Since the coefficient 𝜆2 is to prevent over-fitting of RED-KC, i.e.,

insensitive to the clustering accuracy and NMI indexes, 𝜆2 is fixed as

1 in this case. From Figure 4, we notice that the evaluation indexes

fluctuate according to 𝜆1. Moreover, the optimal performance is

achieved near the value 𝜆1 = 0.3 with much larger probability.

4.4 Influence of Activation Functions
In this subsection, we report the performance of RED-KC under four

different activation functions including Tanh, Sigmoid, Nssigmoid,
and Softplus. From Figure 6, we can see that the Tanh function

outperforms the other three activation functions and the Nssigmoid
function achieves the runner-up results, which are very close to

Tanh.

5 RELATEDWORKS
In this section, we briefly introduce the related works regarding

unsupervised deep learning and subspace clustering respectively.

5.1 Auto-encoder Network
With impressive learning capabilities, deep learning techniques

have achieved great success in diverse areas, especially in the field

of supervised learning [29], such as image classification [11, 16],

metric learning [13, 25], super-resolution reconstruction [5, 18],

and image segmentation [2, 3, 24]. Meanwhile, the unsupervised

deep learning is still under the development. Auto-encoder and

generative adversarial network are the state-of-the-art methods for

unsupervised deep learning. In this subsection, wemainly introduce

the auto-encoder network.

In general, auto-encoder [37] serves as a network which consists

of both encoder and decoder, where the structure of auto-encoder

is symmetric. If the auto-encoder contains multiple hidden layers,

then the number of hidden layers of the encoder equals to the

number of hidden layers of the decoder. In other words, the purpose

of the basic auto-encoder is to reconstruct the input data at the

output layer. In particular, the encoding and decoding process can

be described as

Encoding 𝒉(𝑖+1) = F𝑒
(
𝑾 (𝑖)𝒉(𝑖) + 𝒃 (𝑖)

)
Decoding 𝒉( 𝑗+1) = F𝑑

(
𝑾 ( 𝑗)𝒉( 𝑗) + 𝒃 ( 𝑗)

) (23)

where Sigmoid, Tanh, and Relu are the common activation functions

for F𝑒 . As for F𝑑 , it could be the same as the encoding function.

Therefore, the loss function of the basic auto-encoder is to minimize

the error between 𝑿𝑖𝑛 and 𝑿𝑜𝑢𝑡 . Specifically speaking, the encoder
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Figure 6. The performance of RED-KC under four different activation functions.

converts the input signal into codes via the nonlinear mapping,

while the decoder is to reconstruct the codes to the input signal.

It is easy to observe that both the encoding and decoding process

would not depend on the label information. Therefore, the auto-

encoder serves as an unsupervised learning method [33]. Moreover,

the hidden layers of the automatic coding network can be cate-

gorized into three classes including the compressed structure, the

sparse structure, and the equivalent-dimensional structure. When

the number of input layer neurons is greater than the number of

hidden layer neurons, it is known as the compressed structure. Con-

versely, when the number of input layer neurons is smaller than the

number of hidden layer neurons, it is named the sparse structure.

If the input layer and the hidden layer have the same number of

neurons, it is called the equivalent-dimensional structure.

5.2 Deep Subspace Clustering
Diverse subspace clustering algorithms [7, 23, 32, 34, 41] are the

linear models, which are unable to cope with the nonlinearity of

the data in the practical scenarios. Benefited from the powerful

capability of nonlinear modeling and feature extraction of the deep

neural network, multiple deep clustering approaches have been

developed in recent years. For instance, Song et al. [37] integrated

an auto-encoder network with K-means to learn the latent features.

Since the feature mapping and clustering are independent, the K-

means algorithm is frequently separated from the feature mapping

process. Therefore, the features extracted from the deep network

may not be suitable for clustering. To address this issue, some

deep clustering algorithms [40, 50] incorporated the discriminant

and adversarial ideas. Due to lack of prior knowledge constraints,

the feature mapping of these algorithms is weakened. In addition,

a deep subspace clustering with sparsity prior (PARTY) [33] is

developed by Peng et al. Based on an auto-encoder network, PARTY

learns the deep representation of the input data via reconstruction

error minimization and utilizes a prior information to preserve the

sparse reconstruction. However, PARTY method has the following

drawbacks: 1) The sparsity prior matrix needs to be pre-trained,

which might not be optimal for clustering. 2) The graph matrix is

pre-given as a prior such that data structure is fixed in the network.

Different from the existing works, our method embeds the robust

K-means with an auto-encoder network, where the deep feature

extraction and clustering can be performed simultaneously. The

proposed RED-KC approach utilizes 𝛿-norm distance to constrain

the feature mapping so that the deep features extracted from the

source space are more conducive to robust clustering.

6 CONCLUSION
In this paper, we proposed a robust embedded deep K-means clus-

tering approach, which utilizes robust 𝛿-norm metric to constrain

the feature mapping process of the auto-encoder network, so that

data are mapped to a latent feature space for the robust cluster-

ing. More importantly, the proposed method embeds the clustering

process with the auto-encoder network, such that we can perform

deep feature extraction and clustering simultaneously. Therefore,

the proposed method accomplished the clustering within only one

step to avoid losing pivotal information and correlation. In other

words, a more clear grouping structure can be achieved for the data

clustering with obtaining the weighted cluster centroids. Eventu-

ally, extensive experiments are provided to show that our method

outperforms the state-of-the-art clustering methods.
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