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ABSTRACT
Structure information extraction refers to the task of extracting
structured text fields from web pages, such as extracting a
product offer from a shopping page including product title,
description, brand and price. It is an important research topic
which has been widely studied in document understanding and
web search. Recent natural language models with sequence
modeling have demonstrated state-of-the-art performance on web
information extraction. However, effectively serializing tokens from
unstructured web pages is challenging in practice due to a variety
of web layout patterns. Limited work has focused on modeling
the web layout for extracting the text fields. In this paper, we
introduce WebFormer, a Web-page transFormer model for structure
information extraction from web documents. First, we design
HTML tokens for each DOM node in the HTML by embedding
representations from their neighboring tokens through graph
attention. Second, we construct rich attention patterns between
HTML tokens and text tokens, which leverages the web layout for
effective attention weight computation. We conduct an extensive
set of experiments on SWDE and Common Crawl benchmarks.
Experimental results demonstrate the superior performance of the
proposed approach over several state-of-the-art methods.
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Figure 1: An example of an event web page with its HTML
(bottom left) and the extracted structured event information
(bottom right), including event title, description, date and
time, and location. The corresponding extractions of all text
fields are highlighted with colored bounding boxes.

1 INTRODUCTION
Web pages or documents are the most common and powerful source
for humans to acquire knowledge. There are billions of websites that
contain rich information about various objects. For example, Figure
1 shows a web page describing an event, which contains structured
event information including event title, description, date, time and
location. The large-scale web data becomes increasingly essential
to facilitate new experiences in applications like web search and
retrieval, which enables smart assistants to do complex tasks such
as “locating kid-friendly events in San Francisco this weekend” and
“exploring Nike running shoes less than $50”. Therefore, it is an
important research problem to extract structured information from
web pages.

Structure information extraction from the web [6, 13, 18, 32, 57]
is a challenging task due to the unstructured nature of textual data
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and the diverse layout patterns of the web documents [31, 39].
There has been a lot of interest in this topic, and a plethora of
research [10, 40, 54, 58] in this area both in academia and industry.
Among the early works, template/wrapper induction [14, 28, 35]
has proven to be successful for extracting information from web
documents. However, these techniques do not scale to the whole
web as obtaining accurate ground truth for all domains is expensive.
Moreover, the wrappers go out-of-date quickly because page
structure changes frequently, and require periodic updating. One
also needs to generate new templates for the new domains.

Recently, learning-based models [17, 46] have been proposed for
automatic information extraction. These methods use schema.org
markup [41] as the supervision to build machine-learned extractors
for different fields. Most recently, with the advance of natural
language processing [5, 15, 42], language models with sequence
modeling [3, 45] have been applied to web document information
extraction. These approaches first sequentialize the web document
into a sequence of words, and then use RNN/LSTM [26, 59, 61] or
attention networks [21, 52] to extract the text spans corresponding
to the structured fields from the sequence. Although existing natural
language models achieve promising results on web information
extraction, there are several major limitations. First, the structural
HTML layout has not been fully exploited, which contains
important information and relation about different text fields. For
example, in an event page, the event date and location are naturally
correlated, which form sibling nodes in the HTML (see Figure 1). In
a shopping page, the product price is often mentioned right after the
product title on the page. Therefore, encoding the structural HTML
beyond sequential modeling is essential inweb document extraction.
Second, most existing models do not scale up to a large number of
fields across domains. They build one separate model for each text
field, which are not suitable for large scale extraction, nor can be
generalized to new domains. Third, large web documents with long
sequences are not modeled effectively. Attention networks, such as
Transformer-based models, usually limit their input to 512 tokens
due to the quadratic computational cost with the sequence length.

In this paper, we propose WebFormer, a novel Web-page
transFormer model that incorporates the HTML layout into the
representation of the web document for structure information
extraction. WebFormer encodes the field, the HTML and the text
sequence in a unified Transformer model. Specifically, we first
introduce HTML tokens for each DOM node in the HTML. We then
design rich attention patterns for embedding representation among
all the tokens. WebFormer leverages the web layout structure for
more effective attention weight computation, and therefore explic-
itly recovers both local syntactic and global layout information of
theweb document.We evaluateWebFormer on SWDE andCommon
Crawl benchmarks, which shows superior performance over several
state-of-the-art methods. The experimental results also demonstrate
the effectiveness of WebFormer in modeling long sequences for
large web documents. Moreover, we show that WebFormer is able
to extract information on new domains. We summarize the main
contributions as follows:

• We propose a novel WebFormer model for structure infor-
mation extraction from web documents, which effectively
integrates the web HTML layout via graph attention.

• We introduce a rich attention mechanism for embedding
representation among different types of tokens, which
enables the model to encode long sequences efficiently. It
also empowers the model for zero-shot extractions on new
domains.

• We conduct extensive experiments and demonstrate the
effectiveness of the proposed approach over several state-of-
the-art baselines.

2 RELATEDWORK
2.1 Information Extraction
Early studies of extracting information from the web pages mainly
focus on building templates for HTML DOM tree, named wrapper
induction [12, 22]. Template extraction techniques have been
applied to improve the performance of search engines, clustering,
and classification of web pages. They learn desired patterns from
the unstructured web documents and construct templates for
information extraction. Region extraction methods [7, 39] try to
classify portions of a web page according to their specific purposes,
e.g., classify whether a text node is the title field. Foley et al. [16]
use simple naive-Bayes to classify the web page and SVM methods
to get the score for each field. Wang et al. [46] extend this work
by designing deep neural network models and using well designed
visual features like font sizes, element sizes, and positions.

Recently, there has been an increasing number of works that
develop natural language models with sequence modeling [9, 20, 26,
30, 34, 61] for web information extraction. Zheng et al. [59] develop
an end-to-end tagging model utilizing BiLSTM, CRF, and attention
mechanism without any dictionary. Aggarwal et al. [2] propose
a sequence-to-sequence model using an RNN, which leverages
relative spatial arrangement of structures. Aghajanyan et al. [3]
train a hyper-text language model based on BART [24] on a large-
scale web crawl for various downstream tasks. More recently,
several attribute extraction approaches [47, 49, 53] have been
proposed, which treat each field as an attribute of interest and
extract its corresponding value from clean object context such as
web title. Chen et al. [9] formulate the web information extraction
problem as structural reading comprehension and build a BERT [15]
based model to extract structured fields from the web documents.
It is worth mentioning that there are also methods that work on
multimodal information extraction [44, 45, 48, 55], which focus
on extracting the field information from the visual layout or the
rendered HTML of the web documents.

2.2 Relation Learning
Relation extraction/learning research [19, 25, 27, 29, 50, 60] is
also related to our work. Relation extraction refers to the task
of extracting relational tuples and putting them in a knowledge
base. Web information extraction can be thought of as the problem
where the subject is known (the web document), and given
the field (the relation) extract the corresponding text. However,
relation extraction has traditionally focused on extracting relations
from sentences relying on entity linking systems to identify the
subject/object and building models to learn the predicates in a
sentence [8, 23]. Whereas in structure information extraction,
usually the predicates (the fields) rarely occur in the web documents,
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Figure 2: The WebFormer model architecture.

and entity linking is very hard because the domain of all entities is
unknown.

3 WEBFORMER
3.1 Problem Definition
We formally define the problem of structure information extraction
from web documents in this section. The web document is first
processed into a sequence of text nodes and the HTML DOM
tree. We denote the text sequence from the web document as
𝑇 = (𝑡1, 𝑡2, . . . , 𝑡𝑘 ), where 𝑡𝑖 represents the 𝑖-𝑡ℎ text node on the
web. 𝑘 is the total number of text nodes with 𝑡𝑖=(𝑤𝑖1 ,𝑤𝑖2 , . . . ,𝑤𝑖𝑛𝑖 )
as its 𝑛𝑖 words/tokens. Note that the ordering of the text nodes does
not matter in our model, and one can traverse the DOM tree in
any order to obtain all the text nodes. Denote the DOM tree of the
HTML as 𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of DOM nodes in the tree
with 𝐸 being the set of edges (see top left in Figure 2). Note that the
𝑘 text nodes are essentially connected in this DOM representation
of the HTML, representing the layout of the web document.

The goal of structure information extraction is that given a
set of target fields 𝐹=(𝑓1, . . . , 𝑓𝑚), extract their corresponding text
information from the web document. For example, for the text
field “date”, we aim to extract the text span “Dec 13” from the web
document. Formally, the problem is defined as finding the best text
span 𝑠 𝑗 for each field 𝑓𝑗 , given the web document 𝑇 and 𝐺 :

𝑠 𝑗 = arg max
𝑏 𝑗 ,𝑒 𝑗

𝑃𝑟 ( 𝑤𝑏 𝑗 , 𝑤𝑒 𝑗 | 𝑓𝑗 , 𝑇 , 𝐺)

where 𝑏 𝑗 and 𝑒 𝑗 are the begin and end offsets of the extracted text
span in the web document for text field 𝑓𝑗 .

3.2 Approach Overview
Existing sequence modeling methods either directly model the text
sequence from web document [26, 47] or serialize the HTML with

the text in a certain order [9, 61] to perform the span based text
extraction. In this work, we propose to simultaneously encode the
text sequence using the Transformer model and incorporate the
HTML layout structure with graph attention.

The overall model architecture is shown in Figure 2. Essentially,
ourWebFormer model consists of three main components, the input
layer, the WebFormer encoder and the output layer. The input layer
contains the construction of the input tokens of WebFormer as well
as their embeddings, including the field token, the HTML tokens
from DOM tree 𝐺 and the text tokens from the text sequence 𝑇 .
The WebFormer encoder is the main block that encodes the input
sequence with rich attention patterns, including HTML-to-HTML
(H2H), HTML-to-Text (H2T), Text-to-HTML (T2H) and Text-to-Text
(T2T) attentions. In the output layer, the text span corresponding
to the field is computed based on the encoded field-dependent text
embeddings. We present the detail of each component separately
in the following subsections.

3.3 Input Layer
Most previous sequence modeling approaches [2, 53] only encode
the text sequence of the web document without utilizing the HTML
layout structure. In this work, we jointly model the text sequence
with the HTML layout in a unified Transformer model. In particular,
we introduce three types of tokens in the input layer of WebFormer.
Field token A set of field tokens are used to represent the text field
to be extracted, such as “title”, “company” and “base salary” for a
job page. By jointly encoding the text field, we are able to construct
a unique model across all text fields.
HTML token Each node in the DOM tree𝐺 , including both internal
nodes (non-text node) and text nodes, corresponds to an HTML
token in WebFormer. The embedding of a HTML token can be
viewed as a summarization of the sub-tree rooted by this node.
For example, in Figure 2, the embedding of the “<ℎ𝑡𝑚𝑙>” token
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essentially represents the full web document, which can be used
for page level classification. On the other hand, the embedding of
the text node “<𝑝2>” summarizes the text sequence 𝑡4.
Text token This is the commonly used word representation in
natural language models. For example, 𝑡1 contains three words,
“Fun”, “Family” and “Fest”, which correspond to three text tokens.

In the input layer, every token is converted into a 𝑑-dimensional
embedding vector. Specifically, for field and text tokens, their final
embeddings are achieved by concatenating a word embedding
and a segment embedding. For HTML token embedding, they
are formulated by concatenating a tag embedding and a segment
embedding. The word embedding is widely adopted in the literature
[33]. The segment embedding is added to indicate which type the
token belongs to, i.e. field, HTML or text. The tag embedding is
introduced to represent different HTML-tag of the DOM nodes,
e.g. “𝑑𝑖𝑣”, “ℎ𝑒𝑎𝑑”, “ℎ1”, “𝑝”, etc. Note that all the embeddings in
our approach are trainable. The word embeddings are initialized
from the pretrained language model, while the segment and tag
embeddings are randomly initialized.

3.4 WebFormer Encoder
The WebFormer encoder is a stack of 𝐿 identical contextual layers,
which efficiently connects the field, HTML and text tokens with
rich attention patterns followed by a feed-forward network. The
encoder produces effective contextual representations of web
documents. To capture the complex HTML layout with the text
sequence, we design four different attention patterns, including
1) HTML-to-HTML (H2H) attention which models the relations
among HTML tokens via graph attentions. 2) HTML-to-Text (H2T)
attention, which bridges the HTML token with its corresponding
text tokens. 3) Text-to-HTML (T2H) attention that propagates
the information from the HTML tokens to the text tokens. 4)
Text-to-Text (T2T) attention with relative position representations.
Moreover, WebFormer incorporates the field into the encoding
layers to extract the text span for the field.

3.4.1 HTML-to-HTML Attention. The HTML tokens are naturally
connected via the DOM tree graph. The H2H attention essentially
computes the attention weights among the HTML tokens and
transfers the knowledge from one node to another with the graph
attention [43]. We use the original graph 𝐺 that represents the
DOM tree structure of the HTML in the H2H attention calculation.
In addition, we add edges to connect the sibling nodes in the graph,
which is equivalent to include certain neighbors with edge distance
2 in the graph. For example, the HTML token “<𝑑𝑖𝑣1>” is connected
with itself, the parent token “<𝑏𝑜𝑑𝑦>”, the child tokens “<𝑑𝑖𝑣2>”
and “<ℎ3>”, and sibling token “<𝑖𝑚𝑔>”. Formally, given the HTML
token embedding 𝑥𝐻

𝑖
, the H2H graph attention is defined as:

𝛼𝐻2𝐻
𝑖 𝑗 =

exp(𝑒𝐻2𝐻
𝑖 𝑗

)∑
ℓ∈N(𝑥𝐻

𝑖
) exp(𝑒𝐻2𝐻

𝑖ℓ
)
, 𝑓 𝑜𝑟 𝑗 ∈ N (𝑥𝐻𝑖 )

𝑒𝐻2𝐻
𝑖 𝑗 =

𝑥𝐻
𝑖
𝑊𝐻2𝐻
𝑄

(𝑥𝐻
𝑗
𝑊𝐻2𝐻
𝐾

+ 𝑎𝐻2𝐻
𝑖 𝑗

)𝑇
√
𝑑

whereN(𝑥𝐻
𝑖
) indicates the neighbors of the HTML token 𝑥𝐻

𝑖
in the

graph.𝑊𝐻2𝐻
𝑄

and𝑊𝐻2𝐻
𝐾

are learnable weight matrices, and 𝑎𝐻2𝐻
𝑖 𝑗

are learnable vectors representing the edge type between the two
nodes, i.e. parent, child or sibling. 𝑑 is the embedding dimension.

3.4.2 HTML-to-Text Attention. The H2T attention is only com-
puted for the text nodes in the HTML to update their contextual
embeddings. We adopt a full attention pattern where the HTML
token 𝑥𝐻

𝑖
is able to attend to each of its text tokens 𝑥𝑇

𝑗
in 𝑡𝑖 . For

example, in Figure 2, the HTML token “<𝑝2>” attends to all the
three text tokens in 𝑡4, i.e. “Spark”, “Social” and “SF”. The H2T full
attention is defined as:

𝛼𝐻2𝑇
𝑖 𝑗 =

exp(𝑒𝐻2𝑇
𝑖 𝑗

)∑
ℓ∈𝑡𝑖 exp(𝑒𝐻2𝑇

𝑖ℓ
)
, 𝑓 𝑜𝑟 𝑗 ∈ 𝑡𝑖

𝑒𝐻2𝑇
𝑖 𝑗 =

𝑥𝐻
𝑖
𝑊𝐻2𝑇
𝑄

(𝑥𝑇
𝑗
𝑊𝐻2𝑇
𝐾

)𝑇
√
𝑑

where𝑊𝐻2𝑇
𝑄

and𝑊𝐻2𝑇
𝐾

are weight matrices in H2T attention.

3.4.3 Text-to-HTML Attention. In T2H attention, each text token
communicates with every HTML token. Intuitively, this T2H atten-
tion allows the text token to absorb the high-level representation
from these summarization tokens of the web document. The
formulation of the T2H attention is analogous to the above H2T
attention except that each text token attends to all HTML tokens.

3.4.4 Text-to-Text Attention. The T2T attention is the regular
attention mechanism used in various previous models [15, 42],
which learns contextual token embeddings for the text sequence.
However, the computational cost of the traditional full attention
grows quadratically with the sequence length, and thus limits the
size of the text tokens. Inspired by the work of [37, 38], our T2T
attention adopts relative attention pattern with relative position
encodings, where each text token only attends to the text tokens
within the same text sequence and within a local radius 𝑟 . In Figure
2, the local radius 𝑟 is set to 1, which means each token will only
attend to its left and right tokens, and itself. For instance, the text
token “is” in 𝑡2 attends to the tokens “This”, “is” and “a” within 𝑡2.
The formal T2T relative attention is defined as:

𝛼𝑇 2𝑇
𝑖 𝑗 =

exp(𝑒𝑇 2𝑇
𝑖 𝑗

)∑
𝑖−𝑟 ≤ℓ≤𝑖+𝑟 exp(𝑒𝑇 2𝑇

𝑖ℓ
)
, 𝑓 𝑜𝑟 𝑖 − 𝑟 ≤ 𝑗 ≤ 𝑖 + 𝑟

𝑒𝑇 2𝑇
𝑖 𝑗 =

𝑥𝑇
𝑖
𝑊𝑇 2𝑇
𝑄

(𝑥𝑇
𝑗
𝑊𝑇 2𝑇
𝐾

+ 𝑏𝑇 2𝑇
𝑖−𝑗 )

𝑇

√
𝑑

where 𝑊𝑇 2𝑇
𝑄

and 𝑊𝑇 2𝑇
𝐾

are weight matrices in T2T attention.
𝑏𝑇 2𝑇
𝑖−𝑗 are learnable relative position encodings representing the
relative position between the two text tokens. Note that there
are total 2𝑟 + 1 possible relative position encodings, i.e. (𝑖 − 𝑗) ∈
{−𝑟, . . . ,−1, 0, 1, . . . , 𝑟 }.

3.4.5 Field Token Attention. OurWebFormermodel jointly encodes
the field information such that the structured fields share the
unique encoder. Following the work in [47, 49], we introduce
the field tokens into WebFormer and enable full cross-attentions
between field and HTML tokens. Note that one can easily add cross-
attention between field and text tokens. We found empirically in
our experiments that this does not improve the extraction quality.
Although there is no direct interaction between field and text tokens,
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they are bridged together through the text-to-HTML and the HTML-
field attentions.

3.4.6 Overall Attention. We compute the final token representation
based on the above rich attention patterns among field, text and
HTML tokens. The output embeddings for field, text and HTML
tokens 𝑧𝐹

𝑖
, 𝑧𝑇
𝑖
, 𝑧𝐻
𝑖
, are calculated as follows:

𝑧𝐹𝑖 =
∑︁
𝑗

𝛼𝐹2𝐻
𝑖 𝑗 𝑥𝐻𝑗 𝑊

𝐹
𝑉

𝑧𝑇𝑖 =
∑︁

𝑖−𝑟 ≤ 𝑗≤𝑖+𝑟
𝛼𝑇 2𝑇
𝑖 𝑗 𝑥𝑇𝑗𝑊

𝑇
𝑉 +

∑︁
𝑘

𝛼𝑇 2𝐻
𝑖 𝑗 𝑥𝐻

𝑘
𝑊𝐻
𝑉

𝑧𝐻𝑖 =
∑︁

𝑗 ∈N(𝑥𝐻
𝑖
)
𝛼𝐻2𝐻
𝑖 𝑗 𝑥𝐻𝑗 𝑊

𝐻
𝑉 +

∑︁
𝑘∈𝑡𝑖

𝛼𝐻2𝑇
𝑖 𝑗 𝑥𝑇

𝑘
𝑊𝑇
𝑉

where all the attention weights 𝛼𝑖 𝑗 are described above.𝑊 𝐹
𝑉
,𝑊𝑇

𝑉

and𝑊𝐻
𝑉

are the learnable matrices to compute the values for field,
text and HTML tokens respectively.

3.5 Output Layer
The output layer of WebFormer extracts the final text span for the
field from the text tokens. We apply a softmax function on the
output embeddings of the encoder to generate the probabilities for
the begin and end indices:

𝑃𝑏 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑏𝑍𝑇 ), 𝑃𝑒 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑒𝑍
𝑇 )

where 𝑍𝑇 is the contextual embedding vectors of the input text
sequence.𝑊𝑏 and𝑊𝑒 are two parameter matrices that project the
embeddings to the output logits, for the begin and end respectively.
Inspired by the work [56], we further predict the end index based
on the start index by concatenating the begin token embedding
with every token embedding after it.

3.6 Discussion
This section provides discussion that connects WebFormer with
previous methods as well as the limitations of our model. If we
treat HTML tags as additional text tokens, and combine with
the text into a single sequence without the H2H, H2T and T2H
attentions, our model architecture degenerates to the sequence
modeling approaches [9, 51] that serialize the HTML layout. If we
further trim the HTML from the sequence, our model is regressed
to the sequence model [47] that only uses the text information.
Moreover, if we also remove the text field from the input, our model
degenerates to the sequence tagging method [26, 59], which is not
able to scale to a large set of target fields.

There are two scenarios where our model is not directly
applicable. First, our model focuses on structure information
extraction on single object pages, where each target field only
has one text value. For a multi-object page, e.g. a multi-event page,
there are different titles and dates corresponding to different events
on the page, which could be extracted with methods like repeated
patterns [1, 46]. Second, there are applications that require to extract
information from the rendered pages, where OCR and CNN [51]
techniques are used.

Data Splits SWDE Common Crawl
Events Products Movies

Train 99,248 72,367 105,642 57,238
Dev/Test 12,425 9,046 13,205 7,154

Training Time (10 epoch) 4h 15m 3h 46m 4h 22m 3h 21m
Table 1: Statistics of the datasets with the training time.

4 EXPERIMENTS
4.1 Datasets
SWDE [18, 61]: The Structured Web Data Extraction (SWDE)
dataset is designed for structural reading comprehension and
information extraction on the web. It consists of more than 124,000
web pages from 80 websites of 8 verticals including “auto”, “book”,
“camera”, “job”, “movie”, “nbaplayer”, “restaurant” and ’university’.
Each vertical consists of 10 websites and contains 3 to 5 target fields
of interest. We further split the data into train, dev and test sets
with 99,248, 12,425 and 12,425 pages respectively.
Common Crawl1: The Common Crawl corpus is widely used
in various web search, information extraction and other related
tasks. Common Crawl contains more than 250 TiB of content from
more than 3 billion web pages. In our experiments, we select web
pages that have schema.org annotations2 within the three domains
- Events, Products and Movies. The schema.org annotations
contain the website provided markup information about the object,
which are used as our ground-truth labels. The fields are {“Name”,
“Description”, “Date”, “Location”}, {“Name”, “Description”, “Brand”,
“Price”, “Color”} and {“Name”, “Description”, “Genre”, “Duration”,
“Director”, “Actor”, “Published Date”} for event, product and movie
pages respectively. We further filter these pages by restricting to
English and single object pages. We downsample the web pages
by allowing at most 2,000 pages per website to balance the data,
as some websites might dominate, e.g., amazon.com. All datasets
are then randomly split into train, dev and test sets with raito 8:1:1.
The details are given in Table 1.

4.2 Implementation Detail
For data pre-processing, we use open-source LXML library3 to
process each page for obtaining the DOM tree structures. We then
use in order traverse of the DOM tree to obtain the text nodes
sequence. We implemented our models using Tensorflow and Keras.
Each model is trained on a 32 core TPU v3 configuration. The
word embedding is initialized with the pretrained BERT-base. The
parameters used in WebFormer are 12 layers, 768 hidden size, 3072
hidden units (for FFN) and 64 local radius. The maximum text
sequence length is set to 2048. The maximum number of HTML
tokens are set to 256. During training, we use the gradient descent
algorithm with Adam optimizer. The initial learning rate is set to
3𝑒−5. The batch size for each update is set as 64 and the model
is trained for up to 10 epochs. The dropout probability for the
attention layer is set to 0.1.

1http://commoncrawl.org/connect/blog/
2https://schema.org/
3https://lxml.de/

http://commoncrawl.org/connect/blog/
https://schema.org/
https://lxml.de/
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Models SWDE Common Crawl
Events Products Movies

EM F1 EM F1 EM F1 EM F1
OpenTag 81.33 ± 0.22 86.54 ± 0.27 77.14 ± 0.26 83.71 ± 0.12 72.57 ± 0.20 77.75 ± 0.19 80.36 ± 0.15 85.06 ± 0.18
DNN 80.53 ± 0.15 85.64 ± 0.26 78.43 ± 0.18 85.06 ± 0.21 74.64 ± 0.27 78.56 ± 0.15 82.44 ± 0.23 86.65 ± 0.16

AVEQA 83.27 ± 0.32 88.75 ± 0.16 80.82 ± 0.21 86.47 ± 0.14 74.85 ± 0.32 79.49 ± 0.28 83.87 ± 0.30 88.51 ± 0.19
SimpDOM 84.67 ± 0.23 90.35 ± 0.21 81.96 ± 0.24 86.33 ± 0.17 75.12 ± 0.27 78.22 ± 0.21 82.59 ± 0.25 87.72 ± 0.18
H-PLM 83.42 ± 0.20 89.04 ± 0.18 82.65 ± 0.15 87.52 ± 0.17 76.24 ± 0.17 81.13 ± 0.26 83.72 ± 0.26 89.34 ± 0.17

WebFormer 86.58 ± 0.16 92.46 ± 0.24 84.79 ± 0.24 89.33 ± 0.18 80.67 ± 0.20 83.37 ± 0.23 85.30 ± 0.19 90.41 ± 0.24
Table 2: Performance comparison on all datasets. Results are statistically significant with p-value < 0.001.

Fields Events Products Movies
EM F1 EM F1 EM F1

Name 88.27 93.46 85.11 90.53 89.32 93.57
Description 81.62 85.50 77.94 81.46 82.71 88.19

Date 86.86 91.48 - - - -
Location 82.41 86.88 - - - -
Brand - - 84.23 85.63 - -
Price - - 75.65 76.86 - -
Color - - 80.42 82.35 - -
Genre - - - - 89.49 92.67

Duration - - - - 83.74 88.35
Director - - - - 86.28 91.38
Actor - - - - 80.16 87.44

Publish Date - - - - 85.40 91.27
Table 3: Field level metrics of WebFormer.

4.3 Evaluation Metric
We evaluate the performance of the WebFormer model with two
standard evaluation metrics: Exact Match (EM) and F1 from the
package released in [36]. Exact Match is used to evaluate whether
a predicted span is completely the same as the ground truth. It will
be challenging for those answers that are only part of the text. F1
measures the overlap of the extracted answer and the ground truth
by splitting the answer span into tokens and compute F1 score on
them. We repeat each experiment 10 times and report the metrics
on the test sets based on the average over these runs.

4.4 Baselines
OpenTag [59] uses a BiLSTM-Attention-CRF architecture with
sequence tagging strategies. OpenTag does not encode the field and
thus builds one model per field.
DNN [46] applies deep neural networks for information extraction.
Text nodes in the HTML are treated as candidates, and are extracted
with DNN classifiers.
AVEQA [47] formulates the problem as an attribute value extraction
task, where each field is treated as an attribute. This model jointly
encodes both the attribute and the document with a BERT [15]
encoder.
SimpDOM [61] treats the problem as DOM tree node tagging task
by extracting the features for each text node including XPath, and
uses a LSTM to jointly encode with the text features.
H-PLM [9] sequentializes the HTML together with the text and
builds a sequence model using the pre-training ELECTRA [11] as
backbone.

Figure 3: Results of WebFormer with different attention
patterns. Top: EM scores. Bottom: F1 scores.

The codes for OpenTag4 and H-PLM5 are publicly available. For
our previous works DNN and AVEQA, we use the original codes
for the papers. For SimpDOM, we re-implement their model using
the parameters from the paper.

4.5 Results and Discussion
4.5.1 Performance Comparison. The evaluation results of Web-
Former and all baselines are reported in Table 2. From these
comparison results, we can see that WebFormer achieves the best
performance among all compared methods on all datasets. For
example, the EM metric of WebFormer increases over 7.8% and 5.8%
compared with AVEQA and H-PLM on Products. There are three
main reasons: First, our model integrates the HTML layout into a
unified HTML-text encoder with rich attention, which enables the
model to effectively understand the web layout structure. Second,
WebFormer adopts the relative position encoding in T2T attention,
which allows our model to represent large documents efficiently.
Third, the field information is jointly encoded and attended with
both HTML and text tokens. Different fields share one encoder and
thus are able to benefit from each other. We further report the field
level results ofWebFormer on the Common Crawl dataset in Table 3.
It can be seen that some fields, such as “Name” and “Genre”, obtain

4https://github.com/hackerxiaobai/OpenTag_2019
5https://github.com/X-LANCE/WebSRC-Baseline

https://github.com/hackerxiaobai/OpenTag_2019
https://github.com/X-LANCE/WebSRC-Baseline
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Figure 4: EM scores of different methods within each bucket
of sequence length.

relatively higher scores compared with “Price” and “Location”. We
also observe that the difference between EM and F1 scores is very
small for fields like “Brand” and “Color”. The reason is that their
text spans are usually very short, containing just one or two tokens.

4.5.2 Impact of Rich Attentions. To understand the impact of
the rich attention patterns, we conduct a set of experiments by
removing each attention from our model. Specifically, we train
four separate models without T2T, H2T, T2H and H2H attention
respectively. The results of these four models and WebFormer
(refer to All) on all datasets are shown in Figure 3. It is not
surprising to see that the performance drops significantly without
the T2T local attention. The reason is that T2T is used to model
the contextual token embeddings for the text sequence, which
is the fundamental component in the Transformer model. We
can also observe that the model without H2H graph attention
achieves much worse performance compared to the models without
T2H or H2T attention. This observation validates that the HTML
layout information encoded within the H2H attention is crucial for
extracting structure fields fromweb documents. Moreover, it is clear
that WebFormer with T2H and H2T attentions further improve the
model performance on all datasets.

4.5.3 Impact on Large Document. To evaluate the impact of
different models on large documents with long text sequence,
we group the test examples into four buckets w.r.t. the sequence

Figure 5: Mistake analysis: distribution of different type of
mistakes.

parameters SWDE Common Crawl
AVEQA 110M 83.27 78.45
H-PLM 110M 83.42 80.78

WebFormer-2L 45M 82.05 76.73
WebFormer-6L 82M 83.86 79.35

WebFormer-12L-share 109M 85.29 81.49
WebFormer-12L 151M 86.58 83.22
WebFormer-24L 285M 87.84 86.51

Table 4: EM results over different model configurations.

length of the example (i.e. 0-512, 512-1024, 1024-2048 and 2048-
inf), and compute the metrics in each bucket for all methods. The
length distribution of the test documents with EM scores on both
datasets (for Common Crawl, we merge all the test sets from Events,
Products and Movies) are shown in Figure 4. It can be seen that
WebFormer achieves consistent results w.r.t. the sequence length.
In contrast, the performances of OpenTag, AVEQA, SimpDOM and
H-PLM go down with the increasing of the sequence length. Our
hypothesis is that WebFormer utilizes L2L relative attention and the
H2L attention, which enables the model to encode web documents
with long sequences effectively and efficiently. Note that the DNN
model does not depend on the sequence length and thus does not
suffer from the long sequence.

4.5.4 Error Analysis. We conduct error analysis of WebFormer
over 160 and 60 randomly selected Exact Match mistakes on SWDE
and Common Crawl dataset respectively (5 per field). We identify
several major mistake patterns and summarize them here: 1) Partial
text extraction: The largest group of mistakes is that our model
extracts a substring of the ground-truth text. For example, our
model extracts “Fun Festival” as the event name instead of “Fun
Festival at Square Park”. 2) Multiple occurrences issue: There are
cases where the target field is mentioned multiple times on the web
page. For example, our model extracts “SEP 11” as the date, but the
ground-truth text is “Sat, September 11, 2011”. 3) Multi-value issue:
The other type of error is that the field has multiple values and we
only extract one of them. For example, a product has both “blue”
and “white” as its color where we only extract “blue”. 4) Range issue:
There are a certain amount of mistakes that fall into the range issue
group. For instance, our model extracts the “price” as “19.90” from
the ground-truth “19.90 - 26.35” which is a range of prices. 5) Model
mistakes: There are few other extraction errors made by the model,
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batch size 64 128 512
learning rate 3x10−5 5x10−5 1x10−4 3x10−5 5x10−5 1x10−4 3x10−5 5x10−5 1x10−4

SWDE 86.58 86.36 86.20 86.37 86.42 86.35 86.18 86.11 86.28
Events 84.79 84.62 NaN 84.54 84.46 84.65 84.11 84.27 84.13
Products 80.67 80.71 NaN 80.32 80.38 80.40 79.96 80.23 80.37
Movies 85.30 85.21 85.14 84.58 84.75 84.83 84.39 84.56 84.77

Table 5: EM results of WebFormer with different batch sizes and learning rates on all datasets.

which are hard cases even for human raters. The summarization of
the mistake analysis is reported in Figure 5. By looking closely at
these mistake patterns, we observe that our model actually extracts
the correct or partially correct answers for most cases in the group
of 1), 2), 3) and 4). These mistakes can be easily fixed by marking
all answer occurrences and values as positives in the training, and
adopting a BIO-based span extraction as mentioned. However, there
are still difficult cases which require further investigations into the
training data and the model.

4.5.5 Ablation Study. We further conduct a series of ablation
studies of WebFormer. The WebFormer base model contains 12
layers. We first evaluate our model with a different number of
encoder layers, i.e. 2L, 6L and 24L.We also evaluate another ablation
of WebFormer by sharing the model parameters. Specifically, the
query matrices of the text and HTML tokens are shared, i.e.
𝑊𝑇 2𝑇
𝑄

=𝑊𝑇 2𝐻
𝑄

=𝑊𝑇
𝑄
, 𝑊𝐻2𝐻

𝑄
=𝑊𝐻2𝑇

𝑄
=𝑊𝐻

𝑄
, 𝑊𝑇 2𝑇

𝐾
=𝑊𝐻2𝑇

𝐾
=𝑊𝑇

𝐾
and

𝑊𝐻2𝐻
𝐾

=𝑊𝑇 2𝐻
𝐾

=𝑊𝐻
𝐾
. This model is referred to as WebFormer-12L-

share. The EM results with the number of model parameters are
shown in Table 4. It can be observed that WebFormer-24L achieves
the best performance, which is consistent with our expectations.
Similar behavior is also observed in [4, 15]. However, a larger model
usually requires longer training time, as well as inference. The
training time of the base models are reported in Table 1.

4.5.6 Impact of Training Batch Size and Learning Rate. To evaluate
the model performance with different training batch size and
learning rate, we conduct experiments to train a set of WebFormer
models with a hyper-parameter sweep consisting of learning rates
in {3x10−5, 5x10−5, 1x10−4} and batch-size in {64, 128, 512} on the
training set. The EM results with different learning rates and batch
sizes on all datasets are reported in Table 5. It can be seen from
the tables that WebFormer achieves the best result with batch size
64 and learning rate 3x10−5 on all datasets except Products. The
observation is consistent with the findings in work [47], where
smaller batch size usually leads to better performance. This is also
the reason that we set batch size to 64 and learning rate to 3x10−5

in all our previous experiments.

4.5.7 Zero-shot/Few-shot Extraction. We conduct zero-shot and
few-shot extraction experiments to evaluate the generalization
ability of WebFormer on unseen domains/fields. In this experiment,
we first pre-train a WebFormer model on Products and Movies data
only. We then perform fine-tuning on Events data for 10K steps
by varying the number of training examples from {0, 1, 2, 5, 10,
50, 100}. The EM scores of WebFormer on all four event fields are
shown in Figure 6. There are several interesting observations from

Figure 6: EM results on zero-shot and few-shot learning.

this table. First, when the number of training examples is 0 (zero-
shot extraction), the EM scores on “Name” and “Description” are
reasonable around 75%. However, the score on “Location” is close
to 0. The reason is that both “Name” and “Description” are general
fields that appear across domains, e.g. they both present in Products
and Movies data. Therefore, the learned knowledge in WebFormer
can be directly transferred to a new domain - Events. On the other
hand, the pretrained model lacks knowledge about “Location” and
thus performs poorly on this field. Second, it is not surprising to
see that the EM scores increase with more training examples, and
reach reasonably high values with 100 training examples. We also
observe that the EM score for “Location” boosts dramatically even
with one or two training examples.

5 CONCLUSION
In this paper, we introduce a novel Web-page transFormer model,
namely WebFormer, for structure information extraction from
web documents. The structured HTML layout information is
jointly encoded through the rich attention patterns with the text
information. WebFormer effectively recovers both local syntactic
and global layout information from web document serialization.
An extensive set of experimental results on SWDE and Common
Crawl benchmarks has demonstrated the superior performance of
the proposed approach over several state-of-the-art methods. In
future, we plan to extend this work to multimodal learning that
incorporates visual features.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation
of China (No. 62176270).



WebFormer: The Web-page Transformer for Structure Information Extraction WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

REFERENCES
[1] Marco D. Adelfio and Hanan Samet. 2013. Schema Extraction for Tabular Data

on the Web. PVLDB 6, 6 (2013), 421–432.
[2] Milan Aggarwal, Hiresh Gupta, Mausoom Sarkar, and Balaji Krishnamurthy. 2020.

Form2Seq : A Framework for Higher-Order Form Structure Extraction. In EMNLP.
3830–3840.

[3] Armen Aghajanyan, Dmytro Okhonko, Mike Lewis, Mandar Joshi, Hu Xu, Gargi
Ghosh, and Luke Zettlemoyer. 2021. HTLM: Hyper-Text Pre-Training and
Prompting of Language Models. CoRR abs/2107.06955 (2021).

[4] Joshua Ainslie, Santiago Ontañón, Chris Alberti, Vaclav Cvicek, Zachary Fisher,
Philip Pham, Anirudh Ravula, Sumit Sanghai, Qifan Wang, and Li Yang. 2020.
ETC: Encoding Long and Structured Inputs in Transformers. In EMNLP. 268–284.

[5] Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The Long-
Document Transformer. CoRR abs/2004.05150 (2020).

[6] Andrew Carlson and Charles Schafer. 2008. Bootstrapping Information Extraction
from Semi-structured Web Pages. In ECML/PKDD. 195–210.

[7] Chia-Hui Chang, Mohammed Kayed, Moheb R. Girgis, and Khaled F. Shaalan.
2006. A Survey of Web Information Extraction Systems. IEEE Trans. Knowl. Data
Eng. 18, 10 (2006), 1411–1428.

[8] Ke Chen, Lei Feng, Qingkuang Chen, Gang Chen, and Lidan Shou. 2019. EXACT:
Attributed Entity Extraction By Annotating Texts. In SIGIR. 1349–1352.

[9] Xingyu Chen, Zihan Zhao, Lu Chen, Jiabao Ji, Danyang Zhang, Ao Luo, Yuxuan
Xiong, and Kai Yu. 2021. WebSRC: A Dataset for Web-Based Structural Reading
Comprehension. In EMNLP. 4173–4185.

[10] Mengli Cheng, Minghui Qiu, Xing Shi, Jun Huang, and Wei Lin. 2020. One-
shot Text Field labeling using Attention and Belief Propagation for Structure
Information Extraction. In ACM MM. 340–348.

[11] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. 2020.
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators.
In ICLR.

[12] William W. Cohen, Matthew Hurst, and Lee S. Jensen. 2002. A flexible learning
system for wrapping tables and lists in HTML documents. In WWW. 232–241.

[13] Valter Crescenzi and Giansalvatore Mecca. 2004. Automatic information
extraction from large websites. J. ACM 51, 5 (2004), 731–779.

[14] Nilesh N. Dalvi, Ravi Kumar, and Mohamed A. Soliman. 2011. Automatic
Wrappers for Large ScaleWeb Extraction. Proc. VLDB Endow. 4, 4 (2011), 219–230.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL-HLT. 4171–4186.

[16] John Foley, Michael Bendersky, and Vanja Josifovski. 2015. Learning to Extract
Local Events from the Web. In SIGIR. 423–432.

[17] Tomas Gogar, Ondrej Hubácek, and Jan Sedivý. 2016. Deep Neural Networks for
Web Page Information Extraction. In AIAI, Vol. 475. 154–163.

[18] Qiang Hao, Rui Cai, Yanwei Pang, and Lei Zhang. 2011. From one tree to a forest:
a unified solution for structured web data extraction. In SIGIR. 775–784.

[19] Zhengqiu He, Wenliang Chen, Zhenghua Li, Meishan Zhang, Wei Zhang, and
Min Zhang. 2018. SEE: Syntax-Aware Entity Embedding for Neural Relation
Extraction. In AAAI. 5795–5802.

[20] Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional LSTM-CRF Models for
Sequence Tagging. CoRR abs/1508.01991 (2015).

[21] Wonseok Hwang, Jinyeong Yim, Seunghyun Park, Sohee Yang, and Minjoon Seo.
2021. Spatial Dependency Parsing for Semi-Structured Document Information
Extraction. In ACL/IJCNLP. 330–343.

[22] Chulyun Kim and Kyuseok Shim. 2011. TEXT: Automatic Template Extraction
from Heterogeneous Web Pages. IEEE Trans. Knowl. Data Eng. 23, 4 (2011),
612–626.

[23] Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. 2017. Zero-Shot
Relation Extraction via Reading Comprehension. In CoNLL. 333–342.

[24] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In ACL. 7871–7880.

[25] Yang Li, Guodong Long, Tao Shen, Tianyi Zhou, Lina Yao, Huan Huo, and
Jing Jiang. 2020. Self-Attention Enhanced Selective Gate with Entity-Aware
Embedding for Distantly Supervised Relation Extraction. In AAAI. 8269–8276.

[26] Bill Yuchen Lin, Ying Sheng, Nguyen Vo, and Sandeep Tata. 2020. FreeDOM: A
Transferable Neural Architecture for Structured Information Extraction on Web
Documents. In SIGKDD. 1092–1102.

[27] Jie Liu, Shaowei Chen, Bingquan Wang, Jiaxin Zhang, Na Li, and Tong Xu. 2020.
Attention as Relation: Learning SupervisedMulti-head Self-Attention for Relation
Extraction. In IJCAI. 3787–3793.

[28] Colin Lockard, Xin Luna Dong, Prashant Shiralkar, and Arash Einolghozati. 2018.
CERES: Distantly Supervised Relation Extraction from the Semi-Structured Web.
Proc. VLDB Endow. 11, 10 (2018), 1084–1096.

[29] Colin Lockard, Prashant Shiralkar, Xin LunaDong, andHannanehHajishirzi. 2020.
ZeroShotCeres: Zero-Shot Relation Extraction from Semi-Structured Webpages.
In ACL. 8105–8117.

[30] Xuezhe Ma and Eduard H. Hovy. 2016. End-to-end Sequence Labeling via Bi-
directional LSTM-CNNs-CRF. In ACL. 1064–1074.

[31] Bodhisattwa Prasad Majumder, Navneet Potti, Sandeep Tata, James Bradley
Wendt, Qi Zhao, and Marc Najork. 2020. Representation Learning for Information
Extraction from Form-like Documents. In ACL. 6495–6504.

[32] Tomohiro Manabe and Keishi Tajima. 2015. Extracting Logical Hierarchical
Structure of HTML Documents Based on Headings. Proc. VLDB Endow. 8, 12
(2015), 1606–1617.

[33] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey
Dean. 2013. Distributed Representations of Words and Phrases and their
Compositionality. In NIPS. 3111–3119.

[34] Rafal Powalski, Lukasz Borchmann, Dawid Jurkiewicz, Tomasz Dwojak, Michal
Pietruszka, and Gabriela Palka. 2021. Going Full-TILT Boogie on Document
Understanding with Text-Image-Layout Transformer. CoRR abs/2102.09550
(2021).

[35] Julia Proskurnia, Marc-Allen Cartright, Lluis Garcia Pueyo, Ivo Krka, James B.
Wendt, Tobias Kaufmann, and Balint Miklos. 2017. Template Induction over
Unstructured Email Corpora. In WWW. 1521–1530.

[36] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
SQuAD: 100, 000+ Questions for Machine Comprehension of Text. In EMNLP.
2383–2392.

[37] Peter Shaw, Philip Massey, Angelica Chen, Francesco Piccinno, and Yasemin
Altun. 2019. Generating Logical Forms from Graph Representations of Text and
Entities. In ACL. 95–106.

[38] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018. Self-Attention with
Relative Position Representations. In NAACL-HLT. 464–468.

[39] Hassan A. Sleiman and Rafael Corchuelo. 2013. A Survey on Region Extractors
from Web Documents. IEEE Trans. Knowl. Data Eng. 25, 9 (2013), 1960–1981.

[40] Guozhi Tang, Lele Xie, Lianwen Jin, Jiapeng Wang, Jingdong Chen, Zhen Xu,
Qianying Wang, Yaqiang Wu, and Hui Li. 2021. MatchVIE: Exploiting Match
Relevancy between Entities for Visual Information Extraction. In IJCAI. 1039–
1045.

[41] Nicolas Tempelmeier, Elena Demidova, and Stefan Dietze. 2018. Inferring Missing
Categorical Information in Noisy and Sparse Web Markup. InWWW. 1297–1306.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NIPS. 5998–6008.

[43] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

[44] Daheng Wang, Prashant Shiralkar, Colin Lockard, Binxuan Huang, Xin Luna
Dong, and Meng Jiang. 2021. TCN: Table Convolutional Network for Web Table
Interpretation. In WWW. 4020–4032.

[45] Jiapeng Wang, Tianwei Wang, Guozhi Tang, Lianwen Jin, Weihong Ma, Kai Ding,
and Yichao Huang. 2021. Tag, Copy or Predict: A Unified Weakly-Supervised
Learning Framework for Visual Information Extraction using Sequences. In IJCAI.
1082–1090.

[46] Qifan Wang, Bhargav Kanagal, Vijay Garg, and D. Sivakumar. 2019. Constructing
a Comprehensive Events Database from the Web. In CIKM. 229–238.

[47] Qifan Wang, Li Yang, Bhargav Kanagal, Sumit Sanghai, D. Sivakumar, Bin Shu,
Zac Yu, and Jon Elsas. 2020. Learning to Extract Attribute Value from Product
via Question Answering: A Multi-task Approach. In SIGKDD. 47–55.

[48] Benfeng Xu, Quan Wang, Yajuan Lyu, Yong Zhu, and Zhendong Mao. 2021.
Entity Structure Within and Throughout: Modeling Mention Dependencies for
Document-Level Relation Extraction. In AAAI. 14149–14157.

[49] Huimin Xu, WentingWang, Xin Mao, Xinyu Jiang, and Man Lan. 2019. Scaling up
Open Tagging from Tens to Thousands: Comprehension Empowered Attribute
Value Extraction from Product Title. In ACL. 5214–5223.

[50] Wang Xu, Kehai Chen, and Tiejun Zhao. 2021. Document-Level Relation
Extraction with Reconstruction. In AAAI. 14167–14175.

[51] Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, and Ming Zhou. 2020.
LayoutLM: Pre-training of Text and Layout for Document Image Understanding.
In SIGKDD. 1192–1200.

[52] Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan
Lu, Dinei A. F. Florêncio, Cha Zhang, Wanxiang Che, Min Zhang, and Lidong
Zhou. 2021. LayoutLMv2: Multi-modal Pre-training for Visually-rich Document
Understanding. In ACL/IJCNLP. 2579–2591.

[53] Jun Yan, Nasser Zalmout, Yan Liang, Christan Grant, Xiang Ren, and Xin Luna
Dong. 2021. AdaTag: Multi-Attribute Value Extraction from Product Profiles
with Adaptive Decoding. In ACL/IJCNLP. 4694–4705.

[54] Liu Yang, Mingyang Zhang, Cheng Li, Michael Bendersky, and Marc Najork.
2020. Beyond 512 Tokens: Siamese Multi-depth Transformer-based Hierarchical
Encoder for Long-Form Document Matching. In CIKM. 1725–1734.

[55] Xiao Yang, Ersin Yumer, Paul Asente, Mike Kraley, Daniel Kifer, and C. Lee Giles.
2017. Learning to Extract Semantic Structure from Documents Using Multimodal
Fully Convolutional Neural Networks. In CVPR. 4342–4351.

[56] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov,
and Quoc V. Le. 2019. XLNet: Generalized Autoregressive Pretraining for
Language Understanding. In NeurIPS. 5754–5764.



WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Qifan Wang, Yi Fang, Anirudh Ravula, Fuli Feng, XiaojunQuan, and Dongfang Liu

[57] Junlang Zhan and Hai Zhao. 2020. Span Model for Open Information Extraction
on Accurate Corpus. In AAAI. 9523–9530.

[58] Kai Zhang, Yuan Yao, Ruobing Xie, Xu Han, Zhiyuan Liu, Fen Lin, Leyu Lin,
and Maosong Sun. 2021. Open Hierarchical Relation Extraction. In NAACL-HLT.
5682–5693.

[59] Guineng Zheng, Subhabrata Mukherjee, Xin Luna Dong, and Feifei Li. 2018.
OpenTag: Open Attribute Value Extraction from Product Profiles. In SIGKDD.

1049–1058.
[60] Hao Zheng, Zhoujun Li, Senzhang Wang, Zhao Yan, and Jianshe Zhou. 2016.

Aggregating Inter-Sentence Information to Enhance Relation Extraction. In AAAI.
3108–3115.

[61] Yichao Zhou, Ying Sheng, Nguyen Vo, Nick Edmonds, and Sandeep Tata. 2021.
Simplified DOM Trees for Transferable Attribute Extraction from the Web. CoRR
abs/2101.02415 (2021).


	Abstract
	1 Introduction
	2 Related Work
	2.1 Information Extraction
	2.2 Relation Learning

	3 WebFormer
	3.1 Problem Definition
	3.2 Approach Overview
	3.3 Input Layer
	3.4 WebFormer Encoder
	3.5 Output Layer
	3.6 Discussion

	4 Experiments
	4.1 Datasets
	4.2 Implementation Detail
	4.3 Evaluation Metric
	4.4 Baselines
	4.5 Results and Discussion

	5 Conclusion
	Acknowledgments
	References

