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Abstract— The ability to process environment maps across
multiple sessions is critical for robots operating over extended
periods of time. Specifically, it is desirable for autonomous
agents to detect changes amongst maps of different sessions
so as to gain a conflict-free understanding of the current
environment. In this paper, we look into the problem of
change detection based on a novel map representation, dubbed
Plane Signed Distance Fields (PlaneSDF), where dense maps
are represented as a collection of planes and their associated
geometric components in SDF volumes. Given point clouds of
the source and target scenes, we propose a three-step PlaneSDF-
based change detection approach: (1) PlaneSDF volumes are
instantiated within each scene and registered across scenes using
plane poses; 2D height maps and object maps are extracted per
volume via height projection and connected component analysis.
(2) Height maps are compared and intersected with the object
map to produce a 2D change location mask for changed object
candidates in the source scene. (3) 3D geometric validation is
performed using SDF-derived features per object candidate
for change mask refinement. We evaluate our approach on
both synthetic and real-world datasets and demonstrate its
effectiveness via the task of changed object detection.

Index Terms— Mapping, SLAM, Range Sensing

I. INTRODUCTION

The ability to perform robust long-term operations is
critical in many robotics and AR/VR applications, such
as household cleaning and AR/VR environment scanning.
Through multiple traverses of the same place, agents ac-
cumulate a more holistic understanding of their working
environments. However, in the long-term setting, the working
environment is prone to changes over time, e.g., the removal
of a coffee mug. Conflicts may then arise when agents try to
synthesize scans from different sessions. Therefore, agents
are expected to first capture these changes and then obtain
the up-to-date 3D reconstruction of the scene after all change
conflicts have been resolved.

An intuitive way to conduct change detection is through
scene differencing between the two reconstructions of in-
terest. Previous works on change detection leverage scene
representations such as point clouds [1]–[4] or Signed Dis-
tance Fields (SDF) [5]–[7] and perform point- or voxel-wise
comparison [1]–[3], [8] globally between the two scenes.
To ensure that comparison is carried out at corresponding
locations of the two observations, these methods demand
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Fig. 1. System Overview. Input: point clouds of the source and target
scene. Output: voxels of objects detected as changes between the two
scenes. (a): For the two input point clouds, PlaneSDF volumes are fused and
registered using poses of major planes (e.g., desk, cabinet, and the floor, as
indicated in different colors). A 2D height map and an associated object map
are obtained for each plane through projection and connected component
analysis. (b): Height values for corresponding planes are compared, which
yields a preliminary 2D change mask for the source plane w.r.t. the target
plane. (c): The intersection of the current change mask and the source
object map is found to determine changed object candidates. Each of these
objects has its SDF-based features extracted and compared against the
corresponding one in the target for change mask refinement.

consistent and precisely aligned reconstructions, which are
hence susceptible to sensor noises and localization errors.

We observe that most scene changes occur at the object
level, and that man-made environments can often be modeled
as a set of planes with objects attached to them, as opposed
to a cluster of unordered points or voxels with no geometric
structure. Therefore, we choose to represent the whole scene
as a set of planes, each having an associated SDF volume
that describes the geometric details of the objects attached to
it, which we term as the PlaneSDF representation. Similiar
to the idea of dividing the whole environment into submaps,
e.g., based on time intervals [7] or objects [6], [9], agents
could maintain multiple PlaneSDF volumes of scalable sizes
in lieu of a single chunk of global SDF while saving update
and memory reload time by updating volumes only in the
current viewing frustum. Furthermore, this representation
is also more robust to localization drift as local regional
correction can be performed patch by patch each time two
planes from different traverses are registered via plane pose.

Taking advantage of the PlaneSDF representation, in this
paper, we propose a change detection algorithm given a
source and a target scene that decomposes the original global
comparison in a local plane-wise fashion. Treating each plane
as a separator, the local change detection is performed plane-
wise as well as at the object level. The global localization
drift issue between two scenes is alleviated during plane-



pose registration. Through the projection of SDF voxel height
values onto the plane, the obtained height map and its value
connectivity offers a solid indication about the potential
object candidates along with their projected 2D contours,
making it possible to conduct 3D geometric validation only
on SDF voxels belonging to the potentially changed objects.
Our main contributions are as follows:

1) PlaneSDF is proposed as a novel representation for
indoor scene reconstruction.

2) A change detection algorithm, consisting of 2D height
map comparison and 3D geometric validation, is de-
veloped leveraging the PlaneSDF data structure.

3) The effectiveness of the proposed algorithm is demon-
strated on both synthetic and real-world datasets of
indoor scenes.

II. RELATED WORK

Change detection, as widely discussed in research con-
cerning long-term robotic operations, can be roughly divided
into two categories: geometric and probabilistic approaches.

Geometric Approaches. Geometric approaches are usu-
ally based on comparing geometric features extracted
from various environment representations. Walcott-Bryant
et al. [11] developed Dynamic Pose Graph SLAM, where
change detection is performed on the 2D occupancy grid
to edit and update the pose graph. Classical 2D feature
descriptors, e.g. SURF, ORB, and BRISK [12], [13], were
extracted from the grey scale input images and the visual
database, respectively. Next, the Euclidean distance between
the two features is computed to determine if changes have
taken place. There are also many works in the literature
which use 3D representations. Finman et al. [1] performed
scene differencing on depth data among multiple maps and
learned segmentation models with surface normals and color
edges to discover new objects in the scene. Ambrus et al. [2]
computed a meta-room reference map of the environment
from the collected point cloud, and employed spatial clus-
tering based on global descriptors to discover new objects in
the scene. Fehr et al. [8] adapted volumetric differencing onto
a multi-layer SDF grid and showed its effectiveness in object
discovery and class recognition. Kunze et al. [14] built and
updated a hierarchical map of the environment by comparing
object positions between observations and corresponding
map contents. Schmid et al. [9] proposed a panoptic map rep-
resentation using multiple Truncated Signed Distance Fields
for each panoptic entity to detect long-term object-level scene
changes on-the-fly. Langer et al. [10] combined semantic as
well as supporting plane information, and conducted local
verification (LV) to discover objects newly introduced into
the scene. The proposed method outperforms several global
point- and voxel-based approaches and is selected as the
baseline here for comparison.

Probability-based Approaches. Previous works in this
category tend to develop statistical models to describe sensor
measurement or environment dynamics. Krajnik et al. [15]
modeled the environment’s spatio-temporal dynamics by its

frequency spectrum, while [3], [16] exploited probabilis-
tic measurement models to indicate how likely it is for
each surface element in the scene to have moved between
two scenes. Bore et al. [17] proposed a model for object
movement describing both local moves and long-distance
global motion. Katsura et al. [18] converted point clouds and
measured data into ND (Normal Distribution) voxels using
the Normal Distribution Transform (NDT) and compared
voxel-wise distribution similarity.

There are also learning-based change detection ap-
proaches [19], [20] that learn geometric features through
neural networks trained on pre-registered images or SDF
pairs. Considering the potential challenges of training data
availability and generalization to unseen changes, this paper
focuses only on non-learning based methods.

Despite all the results reported, the global point- or voxel-
wise geometric comparisons are susceptible to sensor noises
and localization errors and the results of probabilistic ap-
proaches may not be readily applicable to scene mapping
tasks. Hence, in this work, we consider 2D as well as 3D
information on the voxel and object level with the proposed
PlaneSDF structure, and achieves robust change detection on
both synthetic and real-world datasets.

III. METHOD OVERVIEW

Our method (see Fig. 1) leverages the plane-to-object
supporting structure through the PlaneSDF representation,
thereby enabling us to first perform local pairwise plane
pose alignment against global reconstruction errors. We then
obtain change detection results via efficient and effective
local scene comparison on 2D height map and 3D object
surface geometry informed by the SDF volume.

A. PlaneSDF Instantiation

We first generate the PlaneSDF representation for each
scene, i.e., representing the input 3D point cloud for the
scene as a set of planes and their associated SDF volumes.

For plane detection, when given sequential point cloud
streams, we extract planes from each frame with RANSAC
and merge them when a new frame arrives, as how SLAM
systems commonly proceed when using planes as pose
estimation constraints [21]–[23]. When a point cloud for
the complete scene is available, we run a spatial clustering
algorithm [24] to detect a set of planes out of the cloud.

For each plane detected, we fuse an SDF volume using
all the points within a predefined distance to the plane, in
the hope that the obtained SDF will record the free space
and object geometry solely from objects directly supported
by the plane, e.g., the drawings hanging on the vertical wall
or the soda can placed on the table. Note that when two
detected planes are less than the defined fusing distance
away from each other or there are bigger objects supported
by multiple planes, a point could be fused into multiple
PlaneSDF instances, e.g., the color overlap of the sofa and
the floor instances in Fig. 2). We also limit our detection of
planes to only horizontal and vertical ones, as they constitute



Fig. 2. Change detection results for a complete indoor scene from the object change detection dataset [10]. The whole scene is spatially subdivided into
multiple PlaneSDF instances (marked by distinct colors). Note that there could be some overlap among certain SDF volumes (e.g., the seating area of the
sofa in the upper right of the scene is also fused into the floor volume). For each plane of interest, i.e., planes with objects newly introduced onto them,
the associated height map and the final change mask are shown. The detected object changes are colored in red while the ground truth (GT) changes are
rendered in the upper right corner of the figure.

most of the “plane-supporting-objects” cases we encounter
in daily lives.

Furthermore, the local 2D height grid map evaluated
w.r.t. the plane is computed, where each grid stores the
maximum voxel-to-plane distance in the height direction at
the current plane location. The height map is non-zero for
plane locations occupied by objects, zero for flat unoccupied
locations, and −1 for unobserved regions. Building on top
of this, as non-zero regions are disconnected from each
other by the plane zero-level set, we could easily obtain an
“object (or object cluster for multiple small objects close to
each other) map” (Fig. 1(d)) preserving relatively accurate
object contours through connected component labeling on
the height map.

Given two PlaneSDF volumes, a source and a target,
instantiated from the two scenes respectively, we define the
2D change mask of the pair as a ternary mask of the same
size as the source height map, indicating all changed plane
locations in the source w.r.t. the target (Fig. 2).

B. PlaneSDF Registration

Before scene differencing is conducted, PlaneSDF vol-
umes of the two scenes are first registered so that the com-
parison is guaranteed to be carried out on two observations of
the same plane. With the assumption that input point clouds
from different sessions share the same world coordinate
frame, registration of PlaneSDF volumes is accomplished
through plane poses to alleviate the effect of localization
drift among reconstructions of the same plane. For each
pair of PlaneSDFs, we determine if they belong to the same
plane according to the orientation cosine similarity and offset
difference of the two plane poses:

nTn′ ≥ δn
||d− d′|| ≤ δd,

(1)

where (n, d) and (n′, d′) are the plane surface normals
and offsets from origin of the source and target PlaneSDF

volumes, respectively. δn and δd are the minimum cosine
similarity and maximum offset distance for two planes to
be regarded as the same plane. In this way, via associating
plane detections of similar orientations and offsets in the
pair of reconstructions, small localization drift of the same
plane can be mitigated by applying the relative transform
between plane poses, from which we are then ready for
change detection on each registered PlaneSDF pair.

C. Height Map Comparison
As floating objects are rare in daily scenes, height value

discrepancy at the same plane location in different observa-
tions can offer informative speculation about the changes on
this plane, e.g., when objects are newly removed or added,
drastic changes between zero and non-zero height values will
occur. In this spirit, we project each location, (x, y), of the
source height map H onto the target height map H ′ using
the relative plane pose. If the height value variation is above
a threshold δh, we mark this plane location as changed (see
Fig. 3). Oftentimes, the projected location, (x′, y′), will not
not land exactly onto a grid center in the target map, so
comparisons are drawn between the source height and those
of the four nearest neighbors of (x′, y′):∑
i=0,1;j=0,1

1(|H ′(bx′c+ i, by′c+ j)−H(x, y)| ≤ δh)

=

{
0, changed
≥ 1, unchanged.

(2)

In most cases, as a consequence of measurement noises,
the change mask obtained after direct comparison is usually
corrupted by small false positive clusters scattered around the
map. Therefore, a round of connected component filtering
followed by dilation is applied to remove the noise.

D. 3D Voxel Validation
Comparing height values for changes works well when (1)

objects are removed or added, inducing significant variation



Fig. 3. Height map comparison. For the registered source and target
PlaneSDF pairs, each grid in the source height map is projected onto the
target height map, with its height value compared against those of its closest
2×2 neighborhood. If all four neighbors have a height difference above a
threshold, this grid (plane location) is preliminarily marked as changed.

in height values, or (2) camera trajectories have a high
observation overlap of the unchanged objects between two
runs. However, height implications can fail easily when old
objects are replaced with new ones in the same place, or
different parts of the same unchanged object are observed
due to disparate viewing angles.

Therefore, 3D validation on the SDF of potential changed
source plane locations is introduced with the goal of cor-
recting false positives indicated by the change mask. For
the overlapping space of two observations, if the same
object persists, then the local surface geometry and free
space description should be similar, or the target SDF will
otherwise be remarkably different from that of the source.

Here, for the sake of selecting key voxels and obtaining
corresponding descriptive geometry characterization around
the selected locations, the curvature-derived description of
the SDF is adopted for its capability to characterize the
geometry of both object surfaces and the unoccupied space
in between. In addition to indicating the planarity, convexity,
or concavity of the object surface, the trend of SDF variation
amid object surfaces can reflect inter-surface spatial relations,
e.g., the sudden drop of an increasing SDF value along a
ray direction can imply the switch of the nearest reference
surface for SDF value calculation as the ray marches through
surfaces. In contrast, the raw SDF value description and its
gradient-derived counterpart are less suitable for the unified
goal of key voxel selection and local geometry description.
The former, due to the unavailability of ground truth sur-
faces during point fusion, is prone to slight inconsistency
when constructed from different camera trajectories, while
the latter returns an indistinguishable magnitude of one by
construction in most places.

Additionally, to make the comparison more robust to mea-
surement noises and reconstruction errors, the SDF voxels of
interest are extracted and compared in the minimal unit of an
object (cluster). This is achieved by selecting voxel blobs in
each source PlaneSDF as those whose 2D projected clusters
from the change mask have high overlap with the connected
clusters in the object map, i.e., the intersection of the change
mask and the object map. Through per-blob 3D geometry
validation, the final change mask not only preserves a more
detailed object contour in cases of adding/removing an object
to/from a free space, but also self-corrects false per-voxel
height variation induced by sensor noises in a clean way.

Fig. 4. Key voxel distribution and corresponding similarity score dis-
tribution of planes with and without changes. (a) Key voxel (red square
dots) distribution within a voxel blob (round dots with colors indicating
the SDF value). (b) Key voxels within the same PlaneSDF volume are
classified as either “part of an object” or “others” as everything left in
the background. Left (PlaneSDF of the yellow plane): Both the side table
(object) and the wall (others) are unchanged, hence both similarity scores
bias towards higher-valued bins. Right (PlaneSDF of the green plane): The
book stack and the coffee mug swap their positions on the table. Their shape
distinction leads to scattered distribution of voxel similarity scores at the
same 3D position, while the “other” unchanged voxels around the tabletop
plane still share high similarity.

Key Voxel Selection. Key voxels are selected per object
blob so as to offer a more compact and robust characteriza-
tion of the overall blob shape. Inspired by [25], voxels around
regions of high curvature are selected as key voxels, implying
neighborhoods of significant shape variations (see Fig. 4(a).
We adopt the measure of local extrema of the determinant
of Hessian (DoH), det(Hess(v)), and calculate the Hessian
matrix within a complete 3× 3× 3 neighborhood N :

Hess(v) =

sxx sxy sxz
syx syy syz
szx szy szz


sij = (Gj ∗Gi)(Φ(v)) i, j = x, y, z,

(3)

where each element sij in the Hessian matrix of v is obtained
via convolution of Φ(v), the 3×3×3 SDF neighborhood at
v, with the 3D Sobel filter G in turn in the i and j direction.

Per-voxel Shape Description. For each key voxel v0 in
the object blob O, the three eigenpairs of the Hessian matrix,
pi = (λi, ei), i = x, y, z, are computed and represent the
three principal curvatures (λis) and their directions (eis) at
v, respectively. This operation is then repeated for each voxel
in N and its corresponding neighborhood N ′ in the target
map (determined by its projected location v′ in the target
map). The three eigenvalues are normalized for numerical
stability and each principal direction vector ei is converted
into spherical coordinate (θi, φi).

We then construct eigenpair histograms, H and H′, for
the corresponding neighborhood N and N ′. For neighbor-
hood N , we compute three sub-histograms, his, for all the
eigenpairs pji in the i direction, where i = x, y, z:

pji = [θi, φi, λi],pj ∈ N
⇒ hi ∈ RNθ×Nφ×Nλ

θhi = [0, 180◦], φhi = [−90◦, 90◦]

λhi = [min
j∈N

(λji),max
j∈N

(λji)],

(4)

where Nθ,Nφ, and Nλ are the number of bins, and θhi ,φhi ,
and λhi are the bin threshold in the θ, φ, and λ directions for



hi, respectively. With each hi of dimension Nθ×Nφ×Nλ, we
then concatenate the three to form the final histogram, H =
[h1||h2||h3], describing the local shape distribution around
this key voxel in the source. The corresponding H′ for the
target neighborhood is computed in the same fashion, while
sharing all the histogram thresholds with those of H.

To further enhance its ability of characterizing local
shapes, we append the final histogram with a weighted
signed distance value s of the neighborhood. The weights are
assigned with a Gaussian filter centered at v0 with deviation
of σ = 2, and the weighted SDF s is computed as follows:

wi =
1√
2πσ

e
(vi−v0)2

2σ2 ,vi ∈ N (v0)

s =

∑
wiΦ(vi)∑
wi

.

(5)

Thus the ultimate feature vector for the key voxel in the
source is f(v0) = [H, s], which is of dimension 3 × Nθ ×
Nφ × Nλ + 1. We define a similarity score, sim ∈ (0, 1),
at this key voxel between the two features, f and f ′, of the
source and target map, respectively, as:

sim(f, f ′) = 1/(1 + α‖f − f ′‖2), (6)

where f ′(v0) = [H′, s′] and α is a coefficient for adjusting
the contribution of the Euclidean distance between f and f ′,
‖f − f ′‖2, to the similarity score.

Per-object Shape Comparison. The distribution of the
similarity scores for all key voxels in the current object blob
then makes it possible to determine if the space is occupied
by the same object across two sessions. We argue that for
an unchanged space occupied with the same object blob,
the similarity scores, as an indication of the local shape,
should be concentrating around higher values, whereas for
a space with objects later removed, added, or replaced
by another object, they should either be low (removed or
added) or distributed more evenly around a wider range of
bins (replaced) (see Fig. 4(b)). Therefore, we construct the
similarity score histogram for the object blob and compute
the histogram mean to determine if the object has changed:

Havg =
∑

mini/N

isChanged(O) = 1(Havg < δblob),
(7)

where mi and ni are the midpoint value and frequency of
each bin i, and N is the total number of key voxels in this
object blob. The object is then validated as changed if Havg

is below a similarity threshold, δblob, or false positives from
2D comparison can be corrected based on the relatively high
Havg value.

Following the plane locations marked as changed in the
change mask, all the corresponding voxels along the height
direction are extracted, which are the changed part of the
source scene w.r.t. the target.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate our approach on both synthetic
and real-world indoor datasets, and demonstrate its strength
via tasks revolving around object-level change detection.

Fig. 5. Sample change detection results on the synthetic tabletop dataset.
Each mask showcases the change detection result of treating the sequence
in the same row as the source. Here we include snapshots of the actual
scene in the first column, the associated height map in the second column,
and the evolution of the change mask out of each stage of our approach
in the last three columns: (1) height map comparison (HC) (2) connected
component filtering and dilation (CC) (3) 3D geometric validation (3D).

A. Datasets

Synthetic Tabletop Dataset. For evaluations under con-
trolled environments, we generated synthetic indoor se-
quences with known object models on a tabletop. We first
scanned a static, furnished room with a Lidar scanner to
obtain a ground-truth 3D point cloud of the room. A few
synthetic daily objects, e.g. mug and book stack, are then
arbitrarily placed on a synthetic table in the scene, which
are added, removed, or moved across multiple sequences,
thus creating the desired changes to be detected. The scenes
are rendered by simulating cameras on the Oculus Quest 2
headset moving in a preset trajectory around the table, from
which per-frame 3D point cloud observations were generated
and used as the input to our algorithm.

Object Change Detection Dataset. The object change
detection dataset [10] is recorded with an Asus Xtion PRO
Live RGB-D camera mounted on an HSR robot, consisting
of multiple complete or partial point clouds of five scenes:
big room, small room, kitchen, office, and living room. Each
scene consists of a reference reconstruction and 5 to 6 other
reconstructions obtained using Voxblox [26], accompanied
by various levels of permanent structure misalignment and
noisy boundaries due to localization and reconstruction er-
rors. Ground truth annotation of 3 to 18 newly introduced
YCB [27] objects to the scene is provided.

B. Evaluation Metrics

We adopt the commonly used precision and recall rates as
the metrics for change detection evaluation.

For the object change detection dataset, following the mea-
sures in [10], we compute precision, recall rate, and F1 score
at the point level, based on the ground truth changed point
annotation and our detection results. Precision is computed
as the proportion of total number of detected points that
correspond to the ground truth, and recall rate is defined as



Fig. 6. Illustration of key voxel distribution and detected false positive
points from the per point FPFH feature matching baseline for two unchanged
sub-scenes. (a) Scene rendering. Above: an isolated green object in the
center of a tabletop in the “small room” scene. Below: two bottles standing
together against a wall in the “kitchen” scene. (b) The scene point clouds are
rendered in bigger colored squares, and the key voxels are in smaller squares
with blue ones as those near object surfaces and orange ones farther away
in the unoccupied space amid object surfaces. (c) Falsely detected changed
points from the FPFH feature matching baseline are rendered in red.

the proportion of ground truth points that are incorporated
in the detection points. The F1 score provides the harmonic
mean of the two metrics. Two other metrics, the number of
missing objects (changed objects with no points detected as
changed) and wrongly detected clusters (clusters generated
by the method that do not overlap with any changed objects)
are also reported so as to better manifest the approach’s
performance on the object/cluster level.

C. Implementation Details

We follow the procedures described in III-A for generat-
ing PlaneSDF instances, with the RANSAC-based approach
for data streams of the synthetic tabletop dataset and the
clustering-based approach for scene point clouds of the
object change detection dataset. We set the fusing threshold
to include points within 0.3m from the plane, hoping to cover
most of the easy-to-move daily objects supported by a plane.
The SDF voxel grid resolution is set as 7mm so as to best
preserve the scene geometry, especially for smaller objects.

For PlaneSDF registration, the minimum cosine similarity
and maximum offset distance are set as δn = 0.95 and
δd = 0.2m. For change detection, the height map difference
threshold is set to be δh = 0.02m so as to not miss smaller
objects. To construct the 3D feature histogram for each area
of interest, the number of bins along each dimension is set
to be Nφ = 5, Nθ = 5, Nλ = 6. The α and the threshold
δblob are set as (α, δblob) = (2, 0.9) for the synthetic dataset,
and further moderately tuned for the object change detection
dataset to accommodate certain dataset-defined cases where
some slightly moved planes are not marked as changed.

D. Results on the Synthetic Tabletop Dataset

The tabletop dataset captures a relatively complete sur-
rounding view of the various objects on a tabletop, which
provides a simple yet effective scene for initial evaluation
of the proposed algorithm. The experiments are run on 20
arbitrarily selected source-target sequence pairs, with objects
on the tabletop ranging from coffee mug (5- cm in height),
toy car (10 cm in height), to 3-layer book stack (30+ cm
in height), etc. The output is the 2D change mask of the

Fig. 7. Qualitative examples of the change detection results (red) for the
four scenes in the object change detection dataset, from top to bottom: living
room (partial), small room, office (partial), kitchen (partial). (a): Detected
objects from our algorithm. (b) Ground truth.

same size as the height map of the source PlaneSDF volume,
indicating all the changed locations on the source plane w.r.t.
the target. To prove the robustness of our algorithm, we
also run all the experiments in a bi-directional fashion, i.e.,
detecting changes source-to-target as well as target-to-source.

With relatively complete observation of all the tabletop
objects, for the 20 pairs we have tested, the algorithm is
able to achieve 100% recall and 80% precision rate for
detecting changed objects without 3D geometric validation.
The precision rate further rises to 100% after incorporating
3D validation, where false positive height differences are
corrected by verifying the shape similarity in the SDF field
(as for the case of the book stack shown in Fig. 5(b)).

Fig. 5 shows examples of the evolution of change masks
out of each stage in the proposed method for three common
object changing scenarios: (a) Two objects swap places.
(b) One object changes and one remains. (c) Objects are
added/removed to/from a free space. We can see that the
masks out of height map comparison (3rd column) still
contains noisy false positive (FP) clusters, as a consequence
of reconstruction errors. The smaller FP clusters are then
partially removed by connected-component filtering and di-
lation, as shown in the 4th column, but bigger FP patches
still persist, such as the book stack on the left side of the
tabletop in scenario (b). The 3D validation here then plays a
significant role in comparing the 3D geometric similarity of
all the possible patches and effectively reverting the FP book
stack back to unchanged (5th column in (b)). The results also
demonstrate bi-directional robustness as the change masks
are of similar pattern within each source-target pair.

E. Results on the Object Change Detection Dataset

In addition to the synthetic tabletop dataset, we further
evaluate our algorithm on the more challenging real-world
object change detection dataset, which offers scene settings
with object changes of more diverse sizes and layouts.

Quantitatively, Table I compares the results of our ap-
proach in terms of the five metrics against those of the



TABLE I
RESULT COMPARISON OF THE PROPOSED APPROACH WITH THREE BASELINES PROVIDED BY THE OBJECT CHANGE DETECTION DATASET. BEST

VALUES ARE MARKED IN BOLD. (PR = PRECISION, RE = RECALL, F1 = F1 SCORE, M = MISSED OBJECTS, W = WRONGLY DETECTED CLUSTERS)

Small Room Big Room
Pr Re F1 M W Pr Re F1 M W

Octomap [28] 0.11±0.05 0.61±0.18 0.19±0.08 15 176 0.07±0.04 0.42±0.15 0.12±0.07 42 434
Meta-room [2] 0.04±0.03 0.44±0.08 0.07±0.04 24 276 0.24±0.30 0.55±0.05 0.25±0.27 31 464

Best of [10] 0.55±0.36 0.66±0.17 0.57±0.22 6 28 0.78±0.13 0.78±0.04 0.69±0.10 2 50
FPFH 0.13±0.14 0.12±0.05 0.11±0.08 32 - 0.13±0.12 0.39±0.12 0.18±0.14 19 -
Ours 0.50±0.24 0.83±0.14 0.59±0.21 10 18 0.78±0.03 0.85±0.15 0.81±0.09 8 15

Living Room (partial) Office (partial)
Pr Re F1 M W Pr Re F1 M W

Octomap [28] 0.11±0.08 0.50±0.08 0.17±0.10 19 74 0.18±0.07 0.77±0.13 0.28±0.10 8 73
Meta-room [2] 0.13±0.18 0.42±0.10 0.14±0.14 15 122 0.17±0.25 0.39±0.20 0.17±0.18 12 146

Best of [10] 0.83±0.29 0.69±0.11 0.72±0.17 4 13 0.49±0.27 0.83±0.06 0.54±0.20 0 16
FPFH 0.11±0.11 0.31±0.14 0.15±0.14 12 - 0.21±0.13 0.50±0.19 0.27±0.13 5 -
Ours 0.80±0.05 0.87±0.10 0.83±0.05 4 13 0.72±0.10 0.94±0.08 0.79±0.06 0 4

Kitchen (partial) Average
Pr Re F1 M W Pr Re F1 M W

Octomap [28] 0.43±0.08 0.41±0.08 0.41±0.07 9 40 0.18±0.14 0.54±0.18 0.23±0.13 18.6 159.4
Meta-room [2] 0.56±0.17 0.35±0.12 0.44±0.14 9 58 0.23±0.26 0.43±0.13 0.21±0.20 18.2 215.4

Best of [10] 0.62±0.21 0.92±0.07 0.55±0.11 0 55 0.64±0.27 0.74±0.14 0.61±0.16 2.8 34.2
FPFH 0.57±0.16 0.62±0.11 0.59±0.14 4 - 0.22±0.21 0.38±0.21 0.26±0.21 14.6 -
Ours 0.77±0.015 0.85±0.05 0.81±0.03 2 3 0.72±0.16 0.86±0.12 0.76±0.13 4.8 10.6

volumetric/point-based approaches Octomap [28] and Meta-
room [2], and the best results of the approach proposed by
[10]. The results are computed by projecting the ground truth
point clouds into SDF voxels and determining the change
state of each point according to that of its corresponding
voxel indicated by the 2D change mask from our approach.
Note that following dataset definition, we manually exclude
all detected changed points resulting from moved furniture
and decoration from evaluation.

Moreover, to demonstrate the effectiveness of our blob-
level curvature-based SDF description for robust change de-
tection, we provide another baseline (FPFH in Table I) with
a point-wise variant of the proposed method by replacing
the 3D voxel validation step III-D with the point-based
FPFH [29] feature matching using the Open3D [30] imple-
mentation. As our selected key voxels are not located on
object surfaces, where off-the-shelf point feature extractors
cannot be directly applied, FPFH features are extracted for
every point in the original point cloud that contributes to the
fusion of the SDF. A point is marked as changed if its source
FPFH feature cannot be matched in its target neighborhood.

Here, Fig. 6 illustrates the key voxel distribution and
the false positive points detected by FPFH matching for
two unchanged sub-scenes: a single green object and two
bottle standing closely against a wall. In (b), near-surface
key voxels (within 1.5 SDF voxel size to an object point,
shown in blue) are distributed around the object surface,
giving good characterization of the object geometry, while
key voxels farther away from the surface are more frequently
witnessed in spaces amid surfaces, e.g., the area around
the top of the shorter bottle and the left gap between the
bottles and the wall, acting to unravel the spatial relations of
these adjacent surfaces. The effectiveness of considering both

object surfaces and inter-surface regions is then demonstrated
by (c). While our method correctly recognizes the two scenes
as unchanged, FPFH shows a small ratio of false positive
points for the less noisy, single-object scenario but induces
considerable amounts of false positives for the two-bottle
case given a partial and warped reconstruction of the shorter
bottle and the wall.

From Table. I, we see that our approach achieves the
highest values in terms of the five aforementioned metrics in
most scenes. The point-wise FPFH matching baseline, while
not eligible for wrongly detected clusters measurements as
no cluster-level operations are involved, results in worse per-
formance in the rest of the four metrics. This can be ascribed
to its sensitivity to reconstruction noises, e.g., residual points
or warpings that are prevalent around boundaries.

In comparison to the baseline approaches, our better
performance could be attributed to the more distinct object
contours and more robust neighborhood geometry verifica-
tion enabled by the PlaneSDF representation. First, finding
intersections between the preliminary change mask and the
object map ensures that most of voxels extracted for 3D
validation belong to part of an object and all voxels of the
potentially changed objects are selected for 3D validation,
hence unaffected by the common artifacts, e.g., noisy and in-
complete object boundaries, in 3D clustering and segmenta-
tion in [10]. Second, local geometry verification, as opposed
to point-wise nearest neighbor searching, offers additional
robustness for detecting smaller objects and rejecting false
positives, especially in the face of undesired point cloud
residuals, such as when reconstruction quality is poor and
objects are close to fixed structures such as walls.

Qualitatively, Fig. 2 and Fig. 7 display examples of
qualitative change detection results of each of the five scenes.



From Fig. 7, we can see that the proposed algorithm is
able to extract point clouds belonging to most of the newly
introduced objects, with some points missing from the planar
parts that are attached to the plane, such as the bottom of
the skillet in the kitchen scene (the last row of Fig. 7).

While the proposed algorithm has been shown to be
effective in object change detection both quantitatively and
qualitatively, we point out the failure case as when the height
discrepancy between the object and the plane is ambiguous.
Two typical examples within the dataset are: (1) The new
object is partially occluded by a fixed structure in the height
direction, e.g., the baseball placed under the table is missing
from detection as its height is not correctly reflected in the
height map. (2) The object is close to some noisy plane
boundaries such as those caused by non-rigid deformation,
e.g., missing object detection on the sofa (first row in Fig. 7)
and our lower precision scores on the “small room” and
“living room” scenes with new objects on the sofa.

V. CONCLUSIONS

In this paper, we have presented a new approach for
change detection based on the newly proposed PlaneSDF
representation. By making the most of the plane-supporting-
object structure, our approach decomposes the common
noise-sensitive global scene differencing scheme in a local
plane-wise and object-wise manner, demonstrating enhanced
robustness to measurement noises and reconstruction errors
on both synthetic and real-world datasets.
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