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S1. Data Acquisition

In this section, we describe how we capture and process
the Eyeglasses dataset.

S1.1. Eyeglasses Dataset

Data Capture We capture the Eyeglasses dataset consist-
ing of 43 eyeglasses. The lenses from the eyeglasses were
removed before capturing. We place the eyeglasses in a well
lit indoor room. In addition, we place a AR-checker board
with green background under the eyeglasses, as shown in
Fig. S1. For each eyeglasses, we capture around 70 images
from different view points with a hand-held DSLR camera.
The camera intrinsics are calibrated in advance and fixed
during the entire capture. We use the OpenCV detector [4]
and COLMAP [10] for camera extrinsic and intrinsic cali-
bration.

Mesh Extraction We employ NeuS [I1] to reconstruct
the 3D mesh of each eyeglasses from the aforementioned
multi-view capture. Specifically, we use the official NeuS
implementation and its default hyper-parameters to train the
network. NeuS was trained for 300k iterations with an
NVIDIA V100 GPU, which takes around 8 hours. Once
trained, a 3D mesh of the glasses can be extracted using
marching cubes [7] with a grid resolution of 512. We de-
note the meshes of the eyeglasses as
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where V; are the vertices and M are the faces of the i-th
glasses.

Mesh Canonicalization We deform these eyeglasses into
a canonical space such that they are spatially aligned across
different eyeglasses. We label a set of key points for each
eyeglasses on 2D images, and then triangulate these 2D
points to get the 3D key points p; € R3>*2Y on the eye-
glasses mesh {M;,V;}. We connect these key points to

*Work done while Junxuan Li was an intern at Reality Labs Research.

Figure S1. Our setup for capturing the Eyeglasses dataset.
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Figure S2. Meshes of 43 eyeglasses. The left side shows 43 eye-
glasses extracted from NeuS, without spatial alignment. The right
side shows the meshes in the canonical space.

form a skeleton and apply Bounded Biharmonic Weights
(BBW) [5] to deform the mesh into a canonical space using
linear blend skinning (LBS). Denote the linear blend skin-
ning weights computed by BBW as M; € R?°%V: for eye-
glasses i; we optimize the transformation of the skeletons
T, € R3%20 guch that the L2 distance between the trans-
formed key points and the average key points is minimized
as follows:

T, — arngmef —pl3, (S2)
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where the p{ are the key points after applying the transfor-
mation; the transformed vertices of eyeglasses is given by
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Figure S3. Eyeglasses Registration on Face. The top row shows
the projection of canonical eyeglasses mesh on face with only rigid
pose alignment. The bottom row shows eyeglasses mesh after non-
rigid registration. The red color denote the detected segmentation
of eyeglasses on face. The blue color in the figure denotes the pro-
jection of mesh. The mesh after person-dependent deformations
align accurately with the observed images.

VI = T, M,. Fig. S2 shows the effect of alignment. On the
left are the extracted meshes of all 43 glasses, and the right
is the deformed and transformed canonical meshes, where
they are aligned based on the average key points.

Glasses Registration on Face 'We now register the recon-
structed meshes in the canonical space to fit the image data
captured in the Faces with Eyeglasses dataset. In this step
we aim to model the person-dependent deformations of dif-
ferent eyeglasses on different people. For j-th subject wear-
ing ¢-th eyeglasses, we compute the LBS weights of eye-
glasses as M;. We choose one frame with neutral facial
expression and regular eyeglasses position and fit the defor-
mation of eyeglasses to this frame. We optimize a trans-
formation and deformation matrix A;; such that the trans-
formed/deformed mesh Vigj = A;; M; has minimum key
points loss and segmentation error:

Ay; = argmin (Il = psl13 + 1118, — Iegll) . (S3)
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where p; are the detected glasses key points on face wear-
ing eyeglasses images; and I, is the glasses segmenta-
tion on face wearing eyeglasses images; I, is the ren-
dered segmentation mask of the deformed eyeglasses mesh
(M, Ve ).

We use stochastic gradient descent with an Adam op-
timizer [6] to update the skeleton transformations with a
learning rate of 10~2 for 1000 iterations. The registration

process takes around 20 minutes for each eyeglasses. As
shown in Fig. S3, the deformed mesh after registration is
aligned accurately with the observed images.

S2. Training and Losses

In this section, we explain the loss function and training
procedures in detail.

We denote all the ground truth camera images and asso-
ciated processed assets for a frame ¢ as I i which includes:
the canonical mesh of the i-th eyeglasses { M, VY }; the de-
formed i-th mesh on j-th subject as {M;, ij}; the mask of
the canonical mesh Isgeg; the mask of the deformed mesh
Ifjseg; the observed image I; glasses segmentation of ob-
served image I;. We provide the exact formulation of each
loss described in the main paper below as follows:

Ly =||I' -1, (S4)
Lyge = VGG(I', I), (S5)
Lo = GAN(I', 1), (S6)

where I’ is the reconstructed image from volume render-
ing; and we follow the implementation of VGG(+), GAN(-)
in [2]. In the notation below, we use prime I’ to denote the
rendered results and notations without prime I to denote the
corresponding ground-truth.

L= chamfer(Vigl, VI + chamfer(V-g/ Vi), (ST
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L = ||Isgeg - Isgeg” + ||Iigjseg - Izgjseg”a (S8)
Lo= Ly — Lell,  (89)
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where chamfer(-) is the chamfer distance between two
point clouds; VY ,Vf’j are the positions of eyeglasses prim-
itives before and after person-dependent deformations re-

’

spectively; and Ig%/g, I fj/seg, I, are the rendered eyeglasses
mask, and segmentation of the corresponding eyeglasses de-
formations.

An [y-regularization is also applied to the facial defor-

mation terms

Lio = |l6s]l3 + ORI + [|6¢])3. (S10)

The training of the network Ay relies on estimated nor-
mals n. For each eyeglasses mesh {./\/ligj, ij}, we extract
its per-vertex surface normal and learn normals inside each
primitive such that the predicted normals are coherent with
the ones on the closest vertices.

During morphable geometry training, we first train the
face model G on face only dataset following [2]. We then
jointly train other models on face wearing glasses dataset.
Likewise, during relightable appearance training, we first
train the face model Ay on face only dataset; then we train
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Figure S4. Morphable Geometry Networks. We illustrate the network architectures of £y, Gy, G54, Gss. The “MLP” in the figure
denotes a linear layer followed by a leaky-ReLLU with 0.2 negative slope. The “Up” denotes an up-sampling layer consists of a transpose
convolutional layer (4 X 4 kernel, stride 2), followed by a leaky-ReLU. The “Distance Map” computes the l» distance between each of the

glasses primitives to its closest face primitives.

other modules on the face wearing glasses dataset. We em-
pirically found that the pretraining of the face modules is
critical for stable training of the remaining modules includ-
ing the interactions between faces and glasses.

S3. Networks Architectures

In this section, we provide the architectures of Mor-
phable Geometry Networks and Relightable Appearance
Networks in Fig. S4 and Fig. S5 separately.

S4. Lens Insertion

We propose to model lenses as a postprocess by intro-
ducing an analytical model instead of jointly modeling them
with eyeglasses frames from image observations. The ad-
vantage of this analytical model of lens is that it yields plau-
sible and photorealistic reflection and refraction for any pre-
scription and doesn’t required large dataset of lens for train-
ing. As shown in Fig. S6, we can even control the prescrip-
tions of eyeglasses and intensity of the reflections.

Without loss the generality, we focus on the left lens for
explanation. A similar formulation is applied to the right
lens.

Lens boundary. We denote the detected key points of
glasses in the image space. We first triangulate these key
points to 3D. As shown in Fig. S7, the key points for left

lens are not precise enough to draw lens. We therefore it-
eratively subdivide points and find the closest primitive po-
sitions. We apply the subdivision several times to obtain a
fine lens boundary as shown in Fig. S8. With the estimated
lens boundary, it is trivial to define a triangle mesh m of lens
by connecting the lens center with each boundary point.

Lens ray-marching for refraction and reflection. During
ray marching, lens refraction and reflection only happens on
those rays that are intersect with the lens mesh. Given the
intersection point p of the camera ray d and lens mesh m,
the distorted camera ray d’ is given by

' p_cl
_ p-c 1
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where c is the camera position; f is the lens focal length,
which can be derived from prescriptions; n is the normal of
lens mesh m; o is the optical center of lens, where we use
the average of the lens boundary for approximation.

To compute the reflection direction, we approximate the
lens as a sphere with radius r as shown in Fig. S8. The
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Figure S5. Relightable Appearance Networks. We illustrate the network architectures of Ay, As , Aspec, Ag. The “Up” denotes the same
operation as in Fig. S4. The “Spherical Gaussians” takes normal n, view direction v, and light direction ! as input, and computes three

specular lobes via s = exp(r(ﬁnT

reflection ray d” can be computed as

d'=d—2drT)yr, d= 2" (S13)
llp— ||
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When the camera ray is intersect with lens, we updated
ray directions to a refraction ray and a reflective ray, and
proceed the volume rendering, except when the ray does not
intersect with any primitives, we query the sphere-mapped
environment map. Then the reflection and refraction are

—1)). In our experiments, we choose the following three roughness terms r = {64, 128, 1000}.

blended as
1= a-[refra + ﬂlreﬂea (SlS)

where «, [ is the ratio of refraction and reflection respec-
tively.

S5. Few-Shot Reconstruction

Our method is fully differentiable. Hence, once trained,
we can use only a few images to reconstruct the geome-
try and material of novel glasses unseen during training.
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Figure S6. Lens insertion. Top row shows nearsighted lens re-
fraction with different focal lengths. Second row shows farsighted
lens refraction with different focal lengths. Bottom row shows the
combination effects of the lens reflection, refraction and colored
lens insertion.

Initial Lens Boundary Fine Lens Boundary

OO OO

Figure S7. Lens boundary estimation. We demonstrate how the
coarse boundary from glasses key points is refined to a finer lens
boundary. Left is the six key points detected from images. Right is
the fine lens boundary after one subdivision. In our experiments,
we repeat the proposed subdivision three times.

Specifically, we optimize the geometry latent code and ap-
pearance latent code via photometric loss:

9 9 — argmi -1 1
2feor 2 = argmin y_ || I, (S16)
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Figure S8. Lens refraction and reflection. The left and right
shows how the ray refraction and reflection works in our lens in-
sertion modeling.

where I is the observed images; and I’ is the rendered im-
ages using the latent code zgeo, 2, .

S6. Implementation details of comparisons

In this section, we explain implementation details of
our comparisons including the modifications we make to
GeLaTO [8] and GIRAFFE [9] to support our own dataset.

S6.1. Implementation of GeLaTO [8]

GeLaTO is not open sourced, and their training dataset
is also not released. Therefore, we implement their method
following their paper and train using our Faces with Eye-
glasses dataset. We use the detected segmentation of
glasses as a ground-truth foreground mask. To align the
three billboards proposed in their work, we use the detected
3D key points as in our training pipeline for fair compari-
son.

S6.2. Implementation of GIRAFFE [9]

GIRAFFE proposed a compositional neural radiance
field that supports adding and changing objects in a scene.
However, the official implementation only supports objects
within the same category. For a fair comparison, we adapt
their method to support adding generative objects in multi-
ple categories.

Specifically, their official implementation supports only
two models: a background model and a object model. We
extend this to support three different models for a back-
ground, faces, and glasses. To further facilitate the decom-
position of faces and glasses, we combine Faces only and
Faces with Eyeglasses datasets for training. Without this,
we observe that GIRAFFE learns to model faces and glasses
in a single model as they are always co-located.

S6.3. Implementation of Envmap Relighting

Following Bi ez al. [ 1], we represent environmental lights
as a set of distant lights, and compute shadow features for
each light source. Due to the linearity of light transport, we
can synthesize faces and eyeglasses under arbitrary envi-
ronmental lights by linearly blending contributions of each
light. Note that the global intensity and color balance may
not be consistent between ours and Lumos because Lumos



does not release their tone mapping function or global in-
tensity scale.

S7. Limitations

While our model successfully models the deformation
residuals on glasses conditioned by face identity and ex-
pressions, the initial position of glasses and subtle motions
caused by facial expression changes are entangled. Future
work could address this limitation by incorporating more
fine-grained data capture and loss functions to facilitate dis-
entanglement. Another limitation is that our current frame-
work infers relighting results under a single point light. On
one hand, due to the linearity of light transport [3], we can
synthesize physically plausible relighting under natural illu-
minations by weighted sum of multiple point light sources.
On the other hand, running the relighting network for each
point light source is too expensive for real-time use. As
demonstrated for face relighting [!], distilling our point-
light based model to an efficient student model should be
possible for real-time use cases.
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