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ABSTRACT
Software-intensive organizations rely on large numbers of software
assets of different types, e.g., source-code files, tables in the data
warehouse, and software configurations. Who is the most suitable
owner of a given asset changes over time, e.g., due to reorganiza-
tion and individual function changes. New forms of automation can
help suggest more suitable owners for any given asset at a given
point in time. By such efforts on ownership health, accountability
of ownership is increased. The problem of finding the most suitable
owners for an asset is essentially a program comprehension prob-
lem: how do we automatically determine who would be best placed
to understand, maintain, evolve (and thereby assume ownership of)
a given asset. This paper introduces the Facebook Ownesty system,
which uses a combination of ultra large scale data mining and ma-
chine learning and has been deployed at Facebook as part of the
company’s ownership management approach. Ownesty processes
many millions of software assets (e.g., source-code files) and it takes
into account workflow and organizational aspects. The paper sets
out open problems and challenges on ownership for the research
community with advances expected from the fields of software
engineering, programming languages, and machine learning.
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1 INTRODUCTION
Managing software asset ownership in any organization is impor-
tant. Many pressing industrial concerns such as security, reliability,
and integrity depend crucially on well-defined ownership so that
there are clear lines of responsibility for maintenance tasks, code
review, incident response, and others. Ownership management re-
quires and connects research on a wide variety of topics including
∗Author order is alphabetical. Contact author: Ralf Lämmel (rlaemmel@acm.org). This
paper appears in Proceedings of 28th International Conference on Program Com-
prehension, ICPC 2020. The subject of the paper is covered by the contact author’s
keynote at the same conference.

program comprehension, and more generally, software engineering,
programming languages, and machine learning.

In this paper, when we refer to (software) ‘asset’ we include
entities as diverse as source-code files, tables in the data warehouse,
and software configurations. When we refer to the ‘owner’ of an
asset, we mean this term in a broad sense: a set of people who take
responsibility for the asset. The set can be singleton, but may also
be a group or sub-organization. The owner can also vary depending
on purpose – such as code review versus incident response. If
the set was ever empty, the asset is unowned. Standard processes,
e.g., based on escalation, are typically in place to rule out unowned
assets, as theywould clearly be a cause for concern. Amore nuanced
question is the one of ‘ownership health’, i.e., whether each asset is
attributed to the ‘most suitable’ owner. Who is the most suitable
owner of a given asset changes over time, e.g., due to reorganization
and individual function changes. Ownership health give rises to
interesting research problems and challenges.

Attributing assets to owners and measuring ownership health
encompasses a combination of static and dynamic properties of
the software assets themselves, the workflows for developing and
managing the assets, and the structures of the organization that
possesses the assets. As such, the problem of ownership draws on
topics from a diverse set of research fields and previously studied
problem domains, such as global software engineering [11, 13, 14]
at the highest level of abstraction through to program dependence
analysis [7, 42, 45] at the lowest level of abstraction.

The paper outlines the authors’ work at Facebook on the problem
of ownership management with a focus on ultra large scale data
mining and machine learning, subject to collaboration with other
teams focusing on additional aspects such as tooling and workflow
integration. This work has resulted in the Ownesty system, which
is introduced in Section 2.

There remain many open challenges and problems that need to
be addressed in the more specific context of, for example, reverse
engineering, architecture recovery, mining software repositories,
process mining, and interpretable models. None of these challenges
and problems are specific to the Facebook setting and, in fact, much
of the progress in this area can be expected to be achieved in the
context of research on open-source ecosystems. Therefore, the
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Figure 1: Overall Ownesty data flow for ownership recom-
mendation. (See the text for the numbered arrows. The data flow
starts from the asset-to-owner attribution mapping on the left.)

paper describes, in Section 3, a set of challenges and open problems
for an ongoing research agenda onmodern ownership management.

2 THE OWNESTY SYSTEM
Let us briefly describe the Ownesty system for ownership manage-
ment, as developed and used at Facebook.

2.1 Vocabulary of Ownership Management
The term asset refers to any sort of entity that is a part of a system or
is possessed by a company of interest. (We skip over hardware here
for simplicity.) Examples of assets are these: a file in the repository
for a system, a database that is part of the system, a VM to run the
system, or a configuration of the VM. Ownership is also lifted to
compound or distributed entities such as components, products,
apps, or the scattered implementation of a logging feature.

The term owner candidate refers to any sort of individual or
group entity which is associated with the system (or company) of
interest and could possibly be accountable for any number of assets
in this scope. In the work on Ownesty at Facebook, we deal with a
few types of owner candidates: individual owner, team (supported
by a director), reporting team (supported by a manager), and oncall
rotation (some sort of response team type). There are a few more ob-
scure types that we skip here. In the engineering practice, the types
individual owner and oncall rotation are particularly important.

We assume a special part of a system: its asset-to-owner attri-
bution mapping or just attribution, which maps assets to owner
candidates, which are thus referred to as owners. Individuals or pro-
cesses with appropriate permissions may modify the mapping. In
particular, when an asset is mapped to a new owner, then this may
be referred to as ownership transfer. The main purpose of a system
like Ownesty is to recommend suitable owners and thereby also
to validate ownership health, i.e., the suitability of the currently
attributed owners. To this end, machine learning and heuristics are
leveraged. Humans may be in the loop for the purpose of confirma-
tion, also depending on the degree of confidence for the available
recommendations.

2.2 The ML Architecture
In Figure 1, the arrows denote data flow (computation). The gray
shapes and arrows (see on the left) exist regardless of Ownesty.
Several of the arrows are supported by metadata, which we do not
further detail here for brevity.

The gray arrows on the left express that the asset-to-owner
attribution mapping is partially encoded in the assets themselves
such as by annotation within files or a metastore for tables, in which
case extraction can be applied to assets (1) or possibly to logs (2)
that record the owners ‘in action’.

Ownesty extracts features from the available logs (3) that record
some relevant form of interactions between assets and owner can-
didates. (For instance, a log for a database admin tool would record
whowas takingwhat administrative actionwhen.) This is a data and
feature engineering challenge because of the plethora of logs and
the fact that they were not designed with ownership management
in mind. Feature extraction also involves assets and attribution
(4–5), e.g., features obtained by source-code analysis. (For instance,
we may extract a feature regarding an oncall annotation from a
build file.) The individually extracted features are composed into
feature vectors (6) – these are specific to the asset type.

Ownesty leverages supervised learning and thus relies on labeled
data for positive and negative attribution. To this end, so-called
‘labeling events’ are extracted from the logs (7), e.g., events that
recorded reliable human decisions to accept or reject owner recom-
mendations for attributing assets to owner candidates. The labeled
data for training and test is then obtained by joining labeled events
with the feature vectors for those events (8–9).

We build interpretable models and provide prediction sets (10–
12) for the various asset types. Interpretable or explainable models
(e.g., basic decision trees or linear models lifted to scoring systems)
are essential because the predictions and the underlying models
need to be understood by humans.

Subject to further metadata (e.g., documentation for the fea-
tures), predictions are mapped to actionable ‘explanations’ and
surfaced through project/ownership management tooling (13) so
that humans in the loop can accept or reject, thereby modifying
the asset-to-owner attribution mapping (14) (and providing more
labeled data eventually).

2.3 Ownership at Large
In this section we describe the scale of ownership management
at Facebook, giving some key metrics we use to characterize the
asset-owner space covered.

Number of asset types. We distinguish a few hundreds of types.
Of course, not every type calls for advanced heuristics or ML for
ownership management. The number of asset types is an artifact
of the kind of distinctions made. For instance, we do not simply
use the type ‘database table’, but we distinguish different storage
engines, as they need to be addressed in different ways, e.g., in
terms of ownership signal, in fact, features.

Number of assets of type t . This depends on t , of course. For
instance, there are many millions of files under version control;
there are millions of tables based on different storage engines;
there are several 100k assets for scheduled pipelines in the data
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warehouse. Even a type with just 10k+ assets may benefit from
advanced heuristics or ML, if precision is high and the investment
is outweighed by the resulting savings from the automation.

Number of owner types. As discussed, there are two particularly
important ones: individual owners and oncall owners.

Number of owner candidates of type t . The number of individual
owner candidates translates to the number of employees or engi-
neers or yet other appropriately defined subsets of employees at
Facebook; we typically look at several 1k or 10k individual owner
candidates. The number of oncall rotations is less than 10k.

Number of (shortlisted) owner candidates for a given asset a. It
is often possible, subject to heuristics based on key features, to
narrow down to a short list of (3-100) owner candidates that are at
all plausible for the asset a and that need to be ranked thus.

Daily churn for asset type t . (That is, the number of assets of
type t that are added, deleted, or changed per day.) Such churn is
relevant, as it may affect ownership, but see the next metric for
deeper insight. For instance, the daily churn for source-code files
in one of the bigger mono repos of Facebook is around 100k.

Daily owner churn for asset type t . (That is, the number of assets
of type t where the owner is changed per day.) Such churn is rel-
evant as heuristics / ML are supposed to automate (recommend,
validate) these changes. For instance, for an important asset type for
scheduled pipelines in the data warehouse with about 100k assets,
the aggregated daily owner churn over the last 4 months is about
10k while there were several days with several hundreds of affected
assets – this is a consequence of prioritized efforts on ownership
management at Facebook, based on Ownesty or otherwise.

3 OPEN PROBLEMS AND CHALLENGES
We lay out a number of research areas around ownership by describ-
ing the open problems and challenges in these areas and referring
to related work to capture the state of the art.

3.1 Heterogeneity of Owned Assets
Ownership recommendation – especially when focusing on code
assets – is related to code authorship attribution [22], as relevant,
for example, for detecting malicious or plagiarized code, subject to
stylometry methods and the overarching assumption of distinctive
writing style to be viewed as a fingerprint.

Ownership recommendation bears also similarities with reviewer
recommendation [27] which aims at recommending reviewers for
new patches (diffs, commits) based on a model built from past
patches and possibly other data. For instance, one may extract
features such as filenames, module, author, lines deleted, added,
number of braces and train a Bayesian Network for recommenda-
tions [21]. Reviewer recommendation focuses on code assets – here:
files and patches under the regime of version control and code
review. We mention in passing that there are many challenges of
automating reviewer recommendations at scale [4], e.g., the need
for load balancing so that reviewers are not overloaded.

Ownership recommendation needs to address the heterogeneity
of asset types such as database tables and software configurations
in addition to just code. Even just the ‘code type’ breaks down

into many different subtypes based on language and purpose. Each
asset type necessitates specific features. Accordingly, a generic core
is needed to be reused across different types and ‘patterns’ are
needed to help onboarding new types. All these features are to be
organized and standardized in a manner to convey and leverage
similarities across asset types. Further, the multitude of models and
the underlying computations need to be managed in an efficient
and robust manner.

Within each asset there resides a wealth of information that
can be used to determine a suitable owner. Such information has
been the topic of study in the program comprehension commu-
nity for many years. For example, program slicing [24], concept
assignment [18], and search-based optimization [17], as well as
many other analysis techniques, have all been used to investigate
structural components of a software asset to support programmers’
comprehension of the asset. The same kind of information can be
used to provide features to machine learning, the aim of which is
to identify owner candidates who are best-placed to understand
the asset in question.

3.2 Dependency Awareness
We cannot look at assets in isolation, but we need to leverage and re-
spect various kinds of dependencies. Let us draw again inspiration
from reviewer recommendation with an instance of heterogeneous
dependencies, in this case, between regular and library code [36]
where such dependencies are aggregated over all developer con-
tributions, thereby essentially aggregating developer experiences
which can be considered in addition to ‘blame’-based information
for finding reviewers. (The cited work relies on a form of token
extraction applied to regular and library code; it uses then cosine
similarity for comparing aggregated experience of developers with
the ‘required’ experience for patches in need of a review.)

More generally, we need to take into account build dependencies
(e.g., a file being generated from another file), usage dependencies
(e.g., a database table being consumed by a pipeline), feature map-
ping (e.g., a logging configuration being associated with a product
feature), product mapping (e.g., a collection of assets being shared
across products, subject to per-product owners), and requirements
to assets mapping. Several of the mentioned dependencies are also
version-/variant-specific.

Research is hence needed to integrate ownership management,
with various software engineering aspects such as feature loca-
tion [12], software variability [6], packagemanagement and reuse [5],
build management [23], traceability recovery [10, 37], change im-
pact analysis [26, 35, 38], and software ecosystems [20, 28, 30–32].

Existing dependency analyses need to be further generalized to
apply better to heterogeneous assets and the problem of attributing
assets to owners. For instance, provenance or lineage may be aimed
at dependencies for data assets while information flow may be
aimed at program assets, but combinations or generalizations of
suchmethods are needed to cover the asset types that occur together
in practice [1, 9, 43].

3.3 Workflow and Organizational Aspects
Attribution of assets to owners also needs to take into account
interactions of owner candidates with the assets. In Section 2, we
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already discussed the essential use of system logs for ownership
recommendation such as interpreting the logged used of a data-
base admin tool as an ownership signal. Let us receive inspiration
again from the area of reviewer recommendation, where additional
developer-workflow data such as reviewer activity for commits or
commenting in an issue tracker are leveraged to identify and rank
reviewer candidates [46].

Clearly, ownership recommendation requires a generalization
of the analysis of interactions to account for the different types
of assets and owner candidates and diverse forms of interaction.
Ultimately, the identification of the most suitable owners for assets
relies on a deeper understanding of the involved workflows of engi-
neers. For instance, we may take into account project management-
based workflow constraints [8]. In this manner, we enter the realm
of process mining or workflow modeling and encounter the chal-
lenging notion of case ID recovery [16, 25, 34].

Human-to-asset and human-to-human interaction and collabo-
ration does not only exercise workflow aspects; it also relates to
organizational aspects of ownership management. In this manner,
we enter the realm of global software engineering [11, 13, 14, 44].
The systematic extraction, integration, and interpretation of all
the diverse ownership-related signal (per-asset data, asset depen-
dencies, workflows, organizational structures) calls for knowledge
management [15], subject to a dedicated knowledge graph [19].

To be more concrete, organizational structure may support better
understanding of ownership in that, for example, the health of
a particular attribution of an asset to an owner may depend on
past, recent, and upcoming changes to teams (‘reorganizations’)
or individual roles. This may suggest future research to revise
existing (software engineering) concepts. For example, consider
change-impact analysis [26, 35, 38], which needs to be advanced to
take into account organizational aspects – the impact of a change
depends not only on the forward slice of the change locations, but
also the owners of those affected assets in the forward slice.

Human aspects of ownership and their interplay with technical
aspects provide a rich area of future research. We can expect Com-
puter Supported Collaborative Working (CSCW) [3] and Crowd-
sourced Software Engineering (CSE) [33] to have a role to play here.
Tools for CSCW can be developed or adapted to support ownership,
while CSE can contribute a ground-truth approach for ownership
decisions used in machine learning.

3.4 Understandable Recommendations
It is important for recommended owners to be ‘understandable’,
thereby entering the realm of interpretable or explainable models
in machine learning [40], giving rise to the following options.

Ideally, the ownership model is directly interpretable, as in the
case of ‘plain’ decision trees with some limit on the depth (such as
5). We can also use scoring systems based on supersparse linear
integer models [41], even though they require extra effort to deal
with correlated features. (We currently favor decision tree-based
algorithms in Ownesty, but also consider embeddings.) One may
also commence with an indirectly interpretable model using, for
example, permutation-based feature importance [2].

If we were to give up on interpretable models, we can still main-
tain that individual predictions (owners) can be directly explained.

This is possible, for example, when decision trees (e.g., random for-
est or gradient boosting) are used. In addition, prediction-specific
feature importance [29] can be taken into account. (Adding some
sophistication, one can also explain predictions by an interpretation
around a given prediction [39].)

When black-box models are used (e.g., embeddings with deep
learning), individual predictions can be still explained by using
counterfactuals by means of perturbing input features. For instance,
an explanation can take the form “Had you touched the file in the
last 2 days, you would have been recommended as owner”.

The following domain-specific constraints challenge the provi-
sion of interpretable and explainable models for ownership recom-
mendation; dedicated research is needed thus:

• The attribution relationship between assets and owner candi-
dates may be intrinsically inconclusive. That is, some assets
may be hard to associate with very suitable owners because,
for example, the most suitable candidates may just have left
the team or the company. Also, some assets may associate
with several similarly suitable candidates, which is also prob-
lematic in terms of acting on such recommendations; see the
next item.

• The process of communicating, discussing, and deciding
on ownership is a social one. For instance, ownership rec-
ommendations may be subject to rejection, delegation, and
escalation – these decisions are not solely based on facts and
the resulting limits of feature engineering and explainable
predictions need to be explored. (Compare this with image
recognition: Human subjects will typically agree on how to
distinguish cats and dogs.)

• The introduction of rigorous ownership management is a
process as opposed to the installment of a recommendation
system. The side effect of a project like Ownesty is that one
provides highly structured and aggregated information that
would not be available otherwise. Those who need to accept
or reject recommendations may start to take a dependency
on data they would not have had available before. This may
lead to ‘concept drift’ that needs to be addressed by the ML
approach.

4 CONCLUSION
This paper characterizes the general notion of ownership manage-
ment and the specific aspects of using ownership recommendation
for attributing assets to owners and measuring the health of any
such attribution for large and complex projects and systems. The
recommendation of suitable owners and the assessment of owner-
ship health relies on data extracted from assets (per-asset data as
well as asset dependencies), workflows and organizational struc-
tures. We hope to stimulate interest and activity in this exciting
area. We have introduced the FacebookOwnesty system to illustrate
the practical industrial relevance of the accompanying ownership
research agenda. We also set out open problems and challenges and
their relationships to existing research activities and communities.
We are keen to collaborate with the research communities working
on software engineering, programming languages, and machine
learning on these open problems and challenges.
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