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1. Sensitivity Analysis
Trimap IoU computes IoU for a band around the ground
truth boundary and, therefore, it ignores errors away from
the ground truth boundary (e.g. inner mask prediction er-
rors). We generate pseudo-predictions with such errors by
adding holes of random shapes to ground truth masks. In
Figure 1 we show that Trimap IoU penalizes inner mask
prediction errors less than Mask IoU.
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Figure 1: Sensitivity analysis for Trimap IoU. The measure pe-
nalizes inner mask errors less than Mask IoU.

F-measure matches the pixels of the predicted and ground
truth contours if they are within the pixels distance thresh-
old d. In the experiments presented in the main text of this
paper we observe that this strategy makes F-measure ignore
scale type errors for smaller objects. The Mean F-measure
(mF-measure) modification ameliorates this limitation by
averaging several F-measures with different threshold pa-
rameters d. Figure 2 demonstrates the sensitivity curves of
this measure for the scale (dilation) error type. For mF-
measure we use d from 0.1% to 2.1% image diagonal with
0.4% increment (from 1 pixel to 17 pixels on average) to
compare it with Boundary IoU that uses single d set to
2% image diagonal. We observe that mF-measure behaves
similarly to Boundary IoU for large objects, however it
under-penalizes errors in small objects where Boundary IoU
matches Mask IoU behavior. Furthermore, mF-measure is
substantially slower than Boundary IoU as it requires to per-
form the matching of prediction/ground truth pairs several

∗Work done during an internship at Facebook AI Research.

times for different thresholds d.
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Figure 2: Sensitivity analysis for mean F-measure (mF-
measure). The measure under-penalizes scale type (dilation)
errors in small objects in comparison with Boundary IoU that
matches Mask IoU behavior for such objects. F-measure curves
for different threshold parameters d are shown in gray.

Boundary IoU can award a perfect score for two non-
identical masks (see Figure 3). For real-world segmenta-
tion evaluation metrics, we propose a simple combination
of Mask IoU and Boundary IoU by taking their minimum
to mitigate this limitation.

R1 R1

R2 d

Figure 3: Boundary IoU gives a perfect score for two non-identical
masks: a disc mask and a ring mask that has the same center and
outer radius as the disk, plus the inner radius that is exactly d pixels
smaller than the outer one.
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COCO [14] LVIS∗v0.5 [8] Cityscapes [7]
Mask resolution Evaluation metric AP APS APM APL AP APS APM APL AP APS APM APL

28× 28
Mask AP 96.5 98.9 95.7 95.1 94.3 96.7 93.7 93.9 93.5 98.4 91.6 91.4

Boundary AP 85.9 98.9 93.0 73.0 85.5 96.7 91.4 73.1 75.9 98.4 86.4 55.9

56× 56
Mask AP 99.5 99.8 99.4 99.3 98.2 98.4 99.0 98.9 98.9 99.7 99.0 98.7

Boundary AP 95.2 99.8 99.3 89.5 94.6 98.4 98.8 89.9 90.9 99.7 97.7 80.5

112× 112
Mask AP 99.9 100.0 99.9 99.9 98.8 98.5 99.7 99.9 99.8 99.9 99.9 99.9

Boundary AP 99.0 100.0 99.9 97.9 98.1 98.5 99.7 98.3 97.2 99.9 99.9 94.9

Table 1: Boundary AP and Mask AP on COCO val set, LVIS∗v0.5 val set and Cityscapes val set for synthetic 28× 28, 56× 56, and
112 × 112 predictions generated from the ground truth. Unlike Mask AP, Boundary APL successfully captures the lack of fidelity in the
synthetic prediction with lower effective resolution for large objects that have area > 962.

2. Application
2.1. Instance Segmentation

Datasets. We evaluate instance segmentation on three
datasets: COCO [14], LVIS [8] and Cityscapes [7].
COCO [14] is the most popular instance segmentation
benchmark for common objects. It contains 80 categories.
There are 118k images for training, 5k images for validation
and 20k images for testing.
LVIS [8] is a federated dataset with more than 1000 cat-
egories. It shares the same set of images as COCO but
the dataset has higher quality ground truth masks. We
use LVISv0.5 version of the dataset. Following [13], we
construct the LVIS∗v0.5 dataset which keeps only the 80
COCO categories from LVISv0.5. LVIS∗v0.5 allows us
to compare models trained on COCO using higher quality
mask annotations from LVIS (i.e. AP∗ in [13]).
Cityscapes [7] is a street-scene high-resolution dataset.
There are 5k images annotated with high quality pixel-level
annotations and 8 classes with instance-level segmentation.

Evaluation on synthetic predictions. We simulate predic-
tions by capping the effective resolution of each mask. First,
we downscale cropped ground truth masks to a fixed reso-
lution mask with continuous values, we then upscale it back
using bilinear interpolation, and finally binarize it. Figure 4
show visualization of the synthetic predictions with differ-
ent effective resolutions. In Table 1 we compare Mask AP
and Boundary AP for the synthetic predictions with differ-
ent synthetic scales across different datasets.

Evaluation on real predictions. In addition to the exper-
iments with COCO in the main text, we evaluate Mask R-
CNN [9], PointRend [13], and Boundary-preserving Mask
R-CNN (BMask R-CNN) [5] on LVIS∗v0.5 and Cityscapes
in Table 2. For each method we feed ground truth boxes to
isolate the segmentation quality aspect of the instance seg-
mentation task. On all datasets we observe that Boundary
AP better captures improvements in the mask quality.

Ground Truth 28 × 28 56 × 56 112 × 112

Figure 4: Synthetic predictions visualization. First, we down-
scale cropped ground truth masks to a fixed resolution (from
28 × 28 to 112 × 112) mask with continuous values, we then
upscale it back using bilinear interpolation, and finally binarize
it. Synthetic prediction with low effective resolution are close to
the ground truth masks for smaller objects (top row), however the
discrepancy grows with object size (bottom row).

Method APmask APboundary APboundary
S APboundary

M APboundary
L

Mask R-CNN 51.5 38.3 45.4 48.7 29.2
PointRend 56.8 (+5.3) 45.9 (+7.6) 49.6 (+4.2) 56.0 (+7.3) 42.2 (+13.0)

BMask R-CNN 57.8 (+6.3) 46.1 (+7.8) 50.8 (+5.4) 56.3 (+7.6) 40.7 (+11.5)

(a) The models are trained on COCO and evaluated on LVIS∗v0.5
val set, which has higher annotation quality.

Method APmask APboundary APboundary
S APboundary

M APboundary
L

Mask R-CNN 35.5 16.4 22.3 22.0 9.7
PointRend 42.2 (+6.7) 23.6 (+7.2) 29.9 ( +7.6) 29.0 (+7.0) 19.8 (+10.1)

BMask R-CNN 43.3 (+7.8) 24.0 (+7.6) 36.0 (+13.7) 29.4 (+7.4) 18.7 ( +9.0)

(b) The models are trained and evaluated on Cityscapes.

Table 2: Mask R-CNN comparison with the methods designed to
improve the mask quality. All models are fed with ground truth
boxes. Boundary AP better captures improvements in the mask
quality. BMask R-CNN, which outputs 28 × 28 resolution pre-
dictions, outperforms PointRend for smaller objects but trails it
for large objects where 224× 224 output resolution of PointRend
improves boundary quality.
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Mask AP Boundary AP
Name Backbone LRS AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

Mask R-CNN [9]

R50 [10] 1× 35.2 56.3 37.5 17.2 37.7 50.3 21.2 46.4 16.8 17.1 31.6 19.7
R50 [10] 3× 37.2 58.6 39.9 18.6 39.5 53.3 23.1 49.6 19.0 18.6 33.4 22.2

R101 [10] 3× 38.6 60.4 41.3 19.5 41.3 55.3 24.5 51.7 20.3 19.4 35.0 23.9
X101-32×8d [16] 3× 39.5 61.7 42.6 20.7 42.0 56.5 25.4 53.2 21.0 20.6 35.8 24.7

Mask R-CNN with R50 [10] 1× 37.5 59.4 40.2 18.4 39.7 54.8 22.8 49.6 18.1 18.3 33.4 22.1
deformable conv. [18] R50 [10] 3× 38.5 60.8 41.1 19.7 40.6 55.7 24.1 51.8 19.4 19.6 34.4 23.4

Mask R-CNN with R50 [10] 1× 36.4 56.9 39.2 17.5 38.7 52.5 22.5 47.9 18.7 17.5 32.6 21.7
cascade box head [2] R50 [10] 3× 38.5 59.6 41.5 19.5 41.1 54.5 24.5 51.2 20.8 19.5 34.8 23.6

PointRend [13]

R50 [10] 1× 36.2 56.6 38.6 17.1 38.8 52.5 23.5 48.4 20.2 17.1 33.0 24.1
R50 [10] 3× 38.3 59.1 41.1 19.1 40.7 55.8 25.4 51.3 22.3 19.1 34.8 26.4

R101 [10] 3× 40.1 61.1 43.0 20.0 42.9 58.6 27.0 54.1 24.2 19.9 37.0 28.7
X101-32×8d [16] 3× 41.1 62.8 44.2 21.5 43.8 59.1 28.0 55.6 25.3 21.5 37.8 29.1

BMask R-CNN [5]
R50 [10] 1× 36.6 56.7 39.4 17.3 38.8 53.8 23.5 48.4 20.2 17.2 33.0 24.5
R50 [10] 3× 38.6 59.2 41.7 19.6 41.1 55.7 25.4 51.4 22.3 19.5 35.2 26.3

Table 3: Boundary AP for recent and classic models on COCO val. All models are based on Detectron2. LRS: learning rate schedule, a
1× learning rate schedule refers to 90,000 iterations and a 3× learning rate schedule refers to 270,000 iterations, with batch size 16.

Mask AP Boundary AP
Backbone AP AP50 AP75 APS APM APL APr APc APf AP AP50 AP75 APS APM APL APr APc APf

R50 [10] 24.4 37.7 26.0 16.7 31.2 41.2 16.0 24.0 28.3 18.8 33.9 18.0 16.7 28.0 19.3 11.9 18.2 22.3
R101 [10] 25.8 39.7 27.3 17.6 33.0 43.7 15.5 26.0 29.6 20.1 35.2 19.8 17.6 29.9 20.8 11.8 20.1 23.5

X101-32×8d [16] 27.0 41.4 28.7 19.0 35.1 43.7 15.4 27.3 31.3 21.4 37.6 21.2 19.0 32.0 21.7 11.2 21.6 25.1

Table 4: Boundary AP of Mask R-CNN baselines on LVISv0.5 val. All models are from the Detectron2 model zoo.

Reference Boundary AP evaluation. We provide Bound-
ary AP evaluation for various recent and classic models on
COCO (Table 3), LVIS (Table 4), and Cityscapes (Table 5)
datasets. We do not train any models ourselves and use the
Detectron2 framework [15] or official implementations in-
stead. These results can be used as a reference to simplify
the comparison for future methods.

Mask AP Boundary AP
Method Backbone AP AP50 AP AP50

Mask R-CNN [9] R50 [10] 33.8 61.5 11.4 37.4
PointRend [13] R50 [10] 35.9 61.8 16.7 47.2

BMask R-CNN [5] R50 [10] 36.2 62.6 15.7 46.2
Panoptic-DeepLab [4] X71 [6] 35.3 57.9 16.5 47.7

Table 5: Boundary AP evaluation on Cityscapes val set for mod-
els implemented in Detectron2 [15]. Note that we set the dilation
width to 0.5% image diagonal for Cityscapes.

2.2. Panoptic Segmentation

The standard evaluation metric for panoptic segmenta-
tion is panoptic quality (PQ or Mask PQ) [12], defined as:

PQ =

∑
(p,g)∈TP IoU(p, g)

|TP|︸ ︷︷ ︸
segmentation quality (SQ)

× |TP|
|TP|+ 1

2
|FP|+ 1

2
|FN|︸ ︷︷ ︸

recognition quality (RQ)

Mask IoU is presented in two places: (1) calculating the
average Mask IoU for true positives in Segmentation Qual-
ity (SQ) component and (2) matching prediction and ground
truth masks to split them into true positives, false posi-
tives, and false negatives. Similarly to Boundary AP, we
replace Mask IoU with min(Mask IoU,Boundary IoU) in
both places and refer the new metric as Boundary PQ.

Datasets. We use two popular datasets with panoptic anno-
tation: COCO panoptic [12] and Cityscapes [7].
COCO panoptic [12] combines annotations from COCO in-
stance segmentation [14] and COCO stuff segmentation [1]
into a unified panoptic format with no overlaps. COCO
panoptic has 80 things and 53 stuff categories.
Cityscapes [7] has 8 thing and 11 stuff categories.
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Mask PQ Boundary PQ
Dataset Method Backbone PQ SQ RQ PQ SQ RQ

COCO panoptic [12] Panoptic FPN [11]
R50 [10] 41.5 79.1 50.5 30.8 70.0 41.7
R101 [10] 43.0 80.0 52.1 32.5 70.9 43.7

X101-32×8d [16] 44.4 80.4 53.8 33.9 71.4 45.5

UPSNet [17] R50 [10] 42.5 78.2 52.4 31.0 68.7 43.3
DETR [3] R50 [10] 43.4 79.3 53.8 32.8 71.0 45.2

Cityscapes [7]
UPSNet [17] R50 [10] 59.4 79.7 73.1 33.4 63.1 51.9

Panoptic-DeepLab [4]
R50 [10] 59.8 80.0 73.5 36.3 64.3 55.6
X71 [6] 63.0 81.7 76.2 41.0 65.5 61.7

Table 6: Reference Boundary PQ evaluation for various models on COCO panoptic val and Cityscapes val.

Similar to the instance segmentation task, we set dilation
width to 2% image diagonal for COCO panoptic and 0.5%
image diagonal for Cityscapes.

Analysis with synthetic predictions. Following our ex-
perimental setup for instance segmentation, we evaluate
Boundary PQ on low-fidelity synthetic predictions gener-
ated from ground truth annotations to avoid any potential
bias toward a specific model. The synthetic predictions are
generated by downscaling ground truth panoptic segmenta-
tion maps for each image and then upscaling it back using
nearest neighbor interpolation in both cases. This image-
level generation process ensures a unified treatment of both
things and stuff segments following the idea behind the
panoptic segmentation task.

In Table 7, we report Panoptic Quality and its two com-
ponents: Segmentation Quality (SQ) and Recognition Qual-
ity (RQ) for synthetic predictions with various downscaling
ratios across different datasets. Similar to our findings for
AP, Boundary PQ better tracks boundary quality improve-
ments than Mask PQ for panoptic segmentation. Further-
more, we find that the difference between Boundary PQ
and Mask PQ is mainly caused by the difference in SQ.
This observation confirms that Boundary IoU better tracks
the mask quality of predictions and does not significantly
change other aspects like the matching procedure between
prediction and ground truth segments.

References Boundary PQ evaluation. We provide
Boundary PQ evaluation for various models on COCO
panoptic and Cityscapes datasets in Table 6. We do not
train any models ourselves and use models trained by their
authors. These results can be used as a reference to simplify
the comparison for future methods.

Downscaling Evaluation COCO panoptic [12] Cityscapes [7]
ratio metric PQ SQ RQ PQ SQ RQ

8
Mask PQ 62.6 78.5 78.4 66.3 77.8 83.7

Boundary PQ 52.8 68.1 77.0 47.1 58.6 80.2

4
Mask PQ 81.0 85.9 93.7 84.3 85.7 98.2

Boundary PQ 76.6 81.4 93.7 75.0 76.3 98.2

2
Mask PQ 92.5 93.4 99.0 94.2 94.2 99.9

Boundary PQ 90.8 91.6 99.0 90.7 90.7 99.9

Table 7: Boundary PQ and Mask PQ evaluated on COCO panop-
tic val and Cityscapes val sets for synthetic prediction with 8, 4,
and 2 downscaling ratios generated from the ground truth. Bound-
ary PQ is more sensitive than Mask PQ in its Segmentation Quality
(SQ) component while the Recognition Quality (RQ) component
is comparable.
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