
Published as a conference paper at ICLR 2017

TRAINING AGENT FOR FIRST-PERSON SHOOTER

GAME WITH ACTOR-CRITIC CURRICULUM LEARNING

Yuxin Wu
Carnegie Mellon University
ppwwyyxx@gmail.com

Yuandong Tian
Facebook AI Research
yuandong@fb.com

ABSTRACT

In this paper, we propose a new framework for training vision-based agent for
First-Person Shooter (FPS) Game, in particular Doom. Our framework combines
the state-of-the-art reinforcement learning approach (Asynchronous Advantage
Actor-Critic (A3C) model [Mnih et al. (2016)]) with curriculum learning. Our
model is simple in design and only uses game states from the AI side, rather than
using opponents’ information [Lample & Chaplot (2016)]. On a known map, our
agent won 10 out of the 11 attended games and the champion of Track1 in ViZ-
Doom AI Competition 2016 by a large margin, 35% higher score than the second
place.

1 INTRODUCTION

Deep Reinforcement Learning has achieved super-human performance in fully observable environ-
ments, e.g., in Atari Games [Mnih et al. (2015)] and Computer Go [Silver et al. (2016)]. Recently,
Asynchronous Advantage Actor-Critic (A3C) [Mnih et al. (2016)] model shows good performance
for 3D environment exploration, e.g. labyrinth exploration. However, in general, to train an agent
in a partially observable 3D environment from raw frames remains an open challenge. Direct appli-
cation of A3C to competitive 3D scenarios, e.g. 3D games, is nontrivial, partly due to sparse and
long-term rewards in such scenarios.

Doom is a 1993 First-Person Shooter (FPS) game in which a player fights against other computer-
controlled agents or human players in an adversarial 3D environment. Previous works on FPS
AI [van Waveren (2001)] focused on using hand-tuned state machines and privileged information,
e.g., the geometry of the map, the precise location of all players, to design playable agents. Although
state-machine is conceptually simple and computationally efficient, it does not operate like human
players, who only rely on visual (and possibly audio) inputs. Also, many complicated situations
require manually-designed rules which could be time-consuming to tune.

In this paper, we train an AI agent in Doom with a framework that based on A3C with convolutional
neural networks (CNN). This model uses only the recent 4 frames and game variables from the AI
side, to predict the next action of the agent and the value of the current situation. We follow the
curriculum learning paradigm [Bengio et al. (2009); Jiang et al. (2015)]: start from simple tasks and
then gradually try harder ones. The difficulty of the task is controlled by a variety of parameters
in Doom environment, including different types of maps, strength of the opponents and the design
of the reward function. We also develop adaptive curriculum training that samples from a varying
distribution of tasks to train the model, which is more stable and achieves higher score than A3C
with the same number of epoch. As a result, our trained agent, named F1, won the champion in
Track 1 of ViZDoom Competition 1 by a large margin.

There are many contemporary efforts on training a Doom AI based on the VizDoom plat-
form [Kempka et al. (2016)] since its release. Arnold [Lample & Chaplot (2016)] also uses game
frames and trains an action network using Deep Recurrent Q-learning [Hausknecht & Stone (2015)],
and a navigation network with DQN [Mnih et al. (2015)]. However, there are several important dif-
ferences. To predict the next action, they use a hybrid architecture (CNN+LSTM) that involves
more complicated training procedure. Second, in addition to game frames, they require internal

1http://vizdoom.cs.put.edu.pl/competition-cig-2016/results

1



Published as a conference paper at ICLR 2017

Policy function

Environment	

State
Value function

Next State Trajectory

Actor	 Cri)c	

st

Ac#on	at

Reward	/	Next	state	

rt, st+1

π(a|s;wπ) {(st, at, rt)}
T

t=1
V (s;wV )

Gradient

Exploration

Figure 1: The basic framework of actor-critic model.

game status about the opponents as extra supervision during training, e.g., whether enemy is present
in the current frame. IntelAct [Dosovitskiy & Koltun (2017)] models the Doom AI bot training in a
supervised manner by predicting the future values of game variables (e.g., health, amount of ammo,
etc) and acting accordingly. In comparison, we use curriculum learning with asynchronized actor-
critic models and use stacked frames (4 most recent frames) and resized frames to mimic short-term
memory and attention. Our approach requires no opponent’s information, and is thus suitable as a
general framework to train agents for close-source games.

In VizDoom AI Competition 2016 at IEEE Computational Intelligence And Games (CIG) Confer-
ence2, our AI won the champion of Track1 (limited deathmatch with known map), and IntelAct won
the champion of Track2 (full deathmatch with unknown maps). Neither of the two teams attends the
other track. Arnold won the second places of both tracks and CLYDE [Ratcliffe et al. (2017)] won
the third place of Track1.

2 THE ACTOR-CRITIC MODEL

The goal of Reinforcement Learning (RL) is to train an agent so that its behavior maxi-
mizes/minimizes expected future rewards/penalties it receives from a given environment [Sutton
& Barto (1998)]. Two functions play important roles: a value function V (s) that gives the expected
reward of the current state s, and a policy function π(a|s) that gives a probability distribution on the
candidate actions a for the current state s. Getting the groundtruth value of either function would
largely solve RL: the agent just follows π(a|s) to act, or jumps in the best state provided by V (s)
when the number of candidate next states is finite and practically enumerable. However, neither is
trivial.

Actor-critic models [Barto et al. (1983); Sutton (1984); Konda & Tsitsiklis (1999); Grondman et al.
(2012)] aim to jointly estimate V (s) and π(a|s): from the current state st, the agent explores the
environment by iteratively sampling the policy function π(at|st;wπ) and receives positive/negative
reward, until the terminal state or a maximum number of iterations are reached. The exploration
gives a trajectory {(st, at, rt), (st+1, at+1, rt+1), · · · }, from which the policy function and value
function are updated. Specifically, to update the value function, we use the expected reward Rt

along the trajectory as the ground truth; to update the policy function, we encourage actions that
lead to high rewards, and penalize actions that lead to low rewards. To determine whether an action
leads to high- or low-rewarding state, a reference point, called baseline [Williams (1992)], is usually
needed. Using zero baseline might increase the estimation variance. [Peters & Schaal (2008)] gives
a way to estimate the best baseline (a weighted sum of cumulative rewards) that minimizes the
variance of the gradient estimation, in the scenario of episodic REINFORCE [Williams (1992)].

In actor-critic frameworks, we pick the baseline as the expected cumulative reward V (s) of the cur-
rent state, which couples the two functions V (s) and π(a|s) together in the training, as shown in
Fig. 1. Here the two functions reinforce each other: a correct π(a|s) gives high-rewarding trajecto-
ries which update V (s) towards the right direction; a correct V (s) picks out the correct actions for
π(a|s) to reinforce. This mutual reinforcement behavior makes actor-critic model converge faster,
but is also prone to converge to bad local minima, in particular for on-policy models that follow the
very recent policy to sample trajectory during training. If the experience received by the agent in
consecutive batches is highly correlated and biased towards a particular subset of the environment,
then both π(a|s) and V (s) will be updated towards a biased direction and the agent may never see

2http://vizdoom.cs.put.edu.pl/competition-cig-2016

2



Published as a conference paper at ICLR 2017

FlatMap CIGTrack1

Figure 2: Two maps we used in the paper. FlatMap is a simple square containing four pillars .
CIGTrack1 is the map used in Track1 in ViZDoom AI Competition (We did not attend Track2).
Black dots are items (weapons, ammo, medkits, armors, etc).

the whole picture. To reduce the correlation of game experience, Asynchronous Advantage Actor-
Critic Model [Mnih et al. (2016)] runs independent multiple threads of the game environment in
parallel. These game instances are likely uncorrelated, therefore their experience in combination
would be less biased.

For on-policy models, the same mutual reinforcement behavior will also lead to highly-peaked
π(a|s) towards a few actions (or a few fixed action sequences), since it is always easy for both
actor and critic to over-optimize on a small portion of the environment, and end up “living in their
own realities”. To reduce the problem, [Mnih et al. (2016)] added an entropy term to the loss to
encourage diversity, which we find to be critical. The final gradient update rules are listed as follows:

wπ ← wπ + α(Rt − V (st))∇wπ
log π(at|st) + β∇wπ

H(π(·|st)) (1)

wV ← wV − α∇wV
(Rt − V (st))

2 (2)

where Rt =
∑

T

t′=t
γt

′
−trt′ is the expected discounted reward at time t and α, β are the learning

rate. In this work, we use Huber loss instead of the L2 loss in Eqn. 2.

Architecture. While [Mnih et al. (2016)] keeps a separate model for each asynchronous agent
and perform model synchronization once in a while, we use an alternative approach called Batch-
A3C, in which all agents act on the same model and send batches to the main process for gradient
descent optimization. The agents’ models are updated after each gradient update. Note that the
contemporary work GA3C [Babaeizadeh et al. (2017)] also proposes a similar architecture. In their
architecture, there is a prediction queue that collects agents’ experience and sends them to multiple
predictors, and a training queue that collects experience to feed the optimization.

3 DOOM AS A REINFORCEMENT LEARNING PLATFORM

In Doom, the player controls the agent to fight against enemies in a 3D environment (e.g., in a maze).
The agent can only see the environment from his viewpoint and thus receives partial information
upon which it makes decisions. On modern computers, the original Doom runs in thousands of
frames per second, making it suitable as a platform for training AI agent. ViZDoom [Kempka et al.
(2016)] is an open-source platform that offers programming interface to communicate with Doom
engine, ZDoom3. From the interface, users can obtain current frames of the game, and control the
agent’s action. ViZDoom offers much flexibility, including:

Rich Scenarios. Many customized scenarios are made due to the popularity of the game, offering
a variety of environments to train from. A scenario consists of many components, including 2D
maps for the environment, scripts to control characters and events. Open-source tools, such as

3https://zdoom.org/

3



Published as a conference paper at ICLR 2017

SLADE4, are also widely available to build new scenarios. We built our customized map (Fig. 2(b))
for training.

Game variables. In addition to image frames, ViZDoom environment also offers many games vari-
ables revealing the internal state of the game. This includes HEALTH, AMMO ? (agent’s health and
ammunition), FRAG COUNT (current score) and so on. ViZDoom also offers USER? variables that
are computed on the fly via scenario scripts. These USER? variables can provide more information
of the agent, e.g., their spatial locations. Enemy information could also be obtained by modifying
ViZDoom [Lample & Chaplot (2016)]. Such information is used to construct a reward function, or
as a direct supervision to accelerate training [Lample & Chaplot (2016)].

Built-in bots. Built-in bots can be inserted in the battle. They are state machines with privileged in-
formation over the map and the player, which results in apparently decent intelligence with minimal
computational cost. By competing against built-in bots, the agent learns to improve.

Evaluation Criterion. In FPS games, to evaluate their strength, multiple AIs are placed to a scenario
for a deathmatch, in which every AI plays for itself against the remaining AIs. Frags per episode,
the number of kills minus the number of suicides for the agent in one round of game, is often used
as a metric. An AI is stronger if its frags is ranked higher against others. In this work, we use an
episode of 2-minute game time (4200 frames in total) for all our evaluations unless noted otherwise.

Regular 
frames (RGB)

Attention 
frames (RGB) 

Conv+ReLU Policy function π(a|s;wπ)

Value function

State s

V (s;wV )

wV wπ shared

v
b

Game variables
(Health and ammo) 

FC

Figure 3: The network structure of the proposed model. It takes 4 recent game frames plus 4 recent
attention frames as the input state s, and outputs a probability distribution π(a|s) of the 6 discrete
actions. The policy and value network share parameters.

4 METHOD

4.1 NETWORK ARCHITECTURE

We use convolutional neural networks to extract features from the game frames and then combine
its output representation with game variables. Fig. 3 shows the network architecture and Tbl. 1 gives
the parameters. It takes the frames as the input (i.e., the state s) and outputs two branches, one that
outputs the value function V (s) by regression, while the other outputs the policy function π(s|a) by
a regular softmax. The parameters of the two functions are shared before the branch.

For input, we use the most recent 4 frames plus the center part of them, scaled to the same size
(120 × 120). Therefore, these centered “attention frames” have higher resolution than regular
game frames, and greatly increase the aiming accuracy. The policy network will give 6 actions,
namely MOVE FORWARD, MOVE LEFT, MOVE RIGHT, TURN LEFT, TURN RIGHT, and ATTACK.
We found other on-off actions (e.g., MOVE BACKWARD) offered by ViZDoom less important. Af-
ter feature extraction by convolutional network, game variables are incorporated. This includes the
agent’s Health (0-100) and Ammo (how many bullets left). They are related to AI itself and thus
legal in the game environment for training, testing and ViZDoom AI competition.

4.2 TRAINING PIPELINE

Our training procedure is implemented with TensorFlow [Abadi et al. (2016)] and tensorpack5. We
open 255 processes, each running one Doom instance, and sending experience (st, at, rt) to the

4http://slade.mancubus.net/
5https://github.com/ppwwyyxx/tensorpack

4



Published as a conference paper at ICLR 2017

Layer # 1 2 3 4 5 6 7

C7x7x32s2 C7x7x64s2 MP3x3s2 C3x3x128 MP3x3s2 C3x3x192 FC1024

Table 1: Network parameters. C7x7x32s2 = convolutional layer with 7x7 kernel, stride 2 and number
of output planes 32. MP = MaxPooling. Each convolutional and fully connected layer is followed
by a ReLU, except for the last output layer.

Parameters Description FlatMap CIGTrack1

living Penalize agent who just lives -0.008 / action
health loss Penalize health decrement -0.05 / unit
ammo loss Penalize ammunition decrement -0.04 / unit
health pickup Reward for medkit pickup 0.04 / unit
ammo pickup Reward for ammunition pickup 0.15 / unit
dist penalty Penalize the agent when it stays -0.03 / action
dist reward Reward the agent when it moves 9e-5 / unit distance

dist penalty thres Threshold of displacement 8 15
num bots Number of built-in bots 8 16

Table 2: Parameters for different maps.

main process which runs the training procedure. The main process collects frames from different
game instances to create batches, and optimizes on these batches asynchronously on one or more
GPUs using Eqn. 1 and Eqn. 2. The frames from different processes running independent game
instances, are likely to be uncorrelated, which stabilizes the training. This procedure is slightly
different from the original A3C, where each game instance collects their own experience and updates
the parameters asynchronously.

Despite the use of entropy term, we still find that π(·|s) is highly peaked. Therefore, during trajec-
tory exploration, we encourage exploration by the following changes: a) multiply the policy output
of the network by an exploration factor (0.2) before softmax b) uniformly randomize the action for
10% random frames.

As mentioned in [Kempka et al. (2016)], care should be taken for frame skips. Small frame skip
introduces strong correlation in the training set, while big frame skip reduces effective training
samples. We set frame skip to be 3. We choose 640x480 as the input frame resolution and do not
use high aspect ratio resolution [Lample & Chaplot (2016)] to increase the field of view.

We use Adam [Kingma & Ba (2014)] with ǫ = 10−3 for training. Batch size is 128, discount factor
γ = 0.99, learning rate α = 10−4 and the policy learning rate β = 0.08α. The model is trained
from scratch. The training procedure runs on Intel Xeon CPU E5-2680v2 at 2. 80GHz, and 2 TitanX
GPUs. It takes several days to obtain a decent result. Our final model, namely the F1 bot, is trained
for around 3 million mini-batches on multiple different scenarios.

4.3 CURRICULUM LEARNING

When the environment only gives very sparse rewards, or adversarial, A3C takes a long time to
converge to a satisfying solution. A direct training with A3C on the map CIGTrack1 with 8 built-
in bots does not yield sensible performance. To address this, we use curriculum learning [Bengio
et al. (2009)] that trains an agent with a sequence of progressively more difficult environments. By
varying parameters in Doom (Sec. 3), we could control its difficulty level.

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

Speed 0.2 0.2 0.4 0.4 0.6 0.8 0.8 1.0

Health 40 40 40 60 60 60 80 100

Table 3: Curriculum design for FlatMap. Note that enemy uses RocketLauncher except for
Class 0 (Pistol).

5



Published as a conference paper at ICLR 2017

Reward Shaping. Reward shaping has been shown to be an effective technique to apply reinforce-
ment learning in a complicated environment with delayed reward [Ng et al. (1999); Devlin et al.
(2011)]. In our case, besides the basic reward for kills (+1) and death (-1), intermediate rewards
are used as shown in Tbl. 2. We penalize agent with a living state, encouraging it to explore and
encounter more enemies. health loss and ammo loss place linear reward for a decrement of
health and ammunition. ammo pickup and health pickup place reward for picking up these
two items. In addition, there is extra reward for picking up ammunition when in need (e.g. almost
out of ammo). dist penalty and dist reward push the agent away from the previous loca-
tions, encouraging it to explore. The penalty is applied every action, when the displacement of the
bot relative to the last state is less than a threshold dist penalty thres. And dist reward

is applied for every unit displacement the agent makes. Similar to [Lample & Chaplot (2016)], the
displacement information is computed from the ground truth location variables provided by Doom
engine, and will not be used in the competition. However, unlike [Lample & Chaplot (2016)] that
uses enemy-in-sight signal for training, locations can be extracted directly from USER? variables,
or can easily be computed roughly with action history.

Curriculum Design. We train the bot on FlatMap that contains a simple square with a few pil-
lars (Fig. 2(a)) with several curricula (Tbl. 3), and then proceed to CIGTrack1. For each map,
we design curricula by varying the strength of built-in bots, i.e., their moving speed, initial health
and initial weapon. Our agent always uses RocketLauncher as its only weapon. Training on
FlatMap leads to a capable initial model which is quickly adapted to more complicated maps. As
shown in Tbl. 2, for CIGTrack1 we increase dist penalty thres to keep the agent moving,
and increase num bots so that the agent encounters more enemies per episode.

Adaptive Curriculum. In addition to staged curriculum learning, we also design adaptive curricu-
lum learning by assigning a probability distribution on different levels for each thread that runs a
Doom instance. The probability distribution shifts towards more difficult curriculum when the agent
performs well on the current distribution, and shifts towards easier level otherwise. We consider the
agent to perform well if its frag count is greater than 10 points.

4.4 POST-TRAINING RULES

For a better performance in the competition, we also put several rules to process the action given
by the trained policy network, called post-training (PT) rules. There are two sets of buttons in
ViZDoom: on-off buttons and delta buttons. While on-off button maps to the binary states of a
keystroke (e.g., pressing the up arrow key will move the agent forward), delta buttons mimic the
mouse behavior and could act faster in certain situations. Therefore, we setup rules that detect the
intention of the agent and accelerate with delta button. For example, when the agent turns by invok-
ing TURN LEFT repeatedly, we convert its action to TURN LEFT RIGHT DELTA for acceleration.
Besides, the trained model might get stuck in rare situations, e.g., keep moving forward but blocked
by an explosive bucket. We also designed rules to detect and fix them.

5 EXPERIMENT

In this section, we show the training procedure (Sec. 5.1), evaluate our AIs with ablation analysis
(Sec. 5.2) and ViZDoom AI Competition (Sec. 5.3). We mainly compare among three AIs: (1)
F1Pre, the bot trained with FlatMap only, (2) F1Plain, the bot trained on both FlatMap and
CIGTrack1, but without post-training rules, and (3) the final F1 bot that attends competition.

5.1 CURRICULUM LEARNING ON FLATMAP

Fig. 4 shows that the curriculum learning increases the performance of the agents over all levels.
When an agent becomes stronger in the higher level of class, it is also stronger in the lower level of
class without overfitting. Fig. 5 shows comparison between adaptive curriculum learning with pure
A3C. We can see that pure A3C can learn on FlatMap but is slower. Moreover, in CIGTrack1, a
direct application of A3C does not yield sensible performance.

6



Published as a conference paper at ICLR 2017

0 1 2 3 4 5 6 7
Class

0

5

10

15

20

25

30

A
v
g
 F

ra
g
s

0 1 2 3 4 5 6 7
Class

0

1

2

3

4

5

Model 0

Model 1

Model 2

Model 3

Model 4

Model 5

Model 6

Figure 4: Average Frags over 300 episodes evaluation, on FlatMap(left) and CIGTrack1(right)
with different levels of enemies (See Tbl. 3 for curriculum design). Models from later stages per-
forms better especially on the difficult map, yet still keeps a good performance on the easier map.

Figure 5: Performance comparison on Class 7 (hardest) of FlatMap between A3C [Mnih et al.
(2016)] and adaptive curriculum learning, at different stage of training. Average frags and max frags
are computed from 100 episodes. Adaptive curriculum shows higher performance and is relatively
more stable.

5.2 ABLATION ANALYSIS

Visualization. Fig. 6 shows the visualization of the first convolutional layer of the trained AI agent.
We could see that the convolutional kernels of the current frame is less noisy than the kernels of
previous frames. This means that the agent makes the most use of the current frames.

Effect of History Frames. Interestingly, while the agent focuses on the current frame, it also uses
motion information. For this, we use (1) 4 duplicated current frames (2) 4 recent frames in reverse
order, as the input. This gives 8.50 and 2.39 mean frags, compared to 10.34 in the normal case,
showing that the agent heavily uses the motion information for better decision. In particular, the bot
is totally confused with the reversed motion feature. Detailed results are shown in Tbl. 5.

t - 3

t - 2

t - 1

t

Figure 6: Visualization of the convolutional filters in the first layer of our network. The filters are
grouped by the frame index they corresponds to. Each group consists of two rows of 32 RGB filters
for the regular and attention frames, respectively. The filters corresponding to the current frame (last
row) is less noisy than those of others, showing that the bot is more focused on the current frame.

7



Published as a conference paper at ICLR 2017

Built-In AI F1Pre F1Plain F1

FlatMap 8.07/20 14.47/24 17.26/29 22.45/37

CIGTrack1 0.48/7 3.56/15 8.58/16 10.65/18

Table 4: Avg/Max frags of each AIs in the internal tournament (150 episodes of 10 minutes each).

FlatMap CIGTrack1

Min Mean Max Min Mean Max

F1 bot (reverse history) 1 9.89 19 -2 2.39 9
F1 bot (duplicated history) 10 24.62 37 2 8.50 17

F1 bot (w/o PT rules) 14 22.80 36 1 8.66 18
F1 bot 16 25.17 37 5 10.34 17

Table 5: Performance evaluation (in terms of frags) on two standard scenarios FlatMap and
CIGTrack1 over 300 episodes. Our bot performs better with post-training rules.

Post-training Rules. Tbl. 5 shows that the post-training rules improve the performance. As a future
work, an end-to-end training involving delta buttons could make the bot better.

Internal Tournament. We also evaluate our AIs with internal tournaments (Tbl. 4). All our bots
beat the performance of built-in bots by a large margin, even though they use privileged information.
F1Pre, trained with only FlatMap, shows decent performance, but is not as good as the models
trained with both FlatMap and CIGTrack1. The final bot F1 performs the best.

Behaviors. Visually, the three bots behave differently. F1Pre is a bit overtrained in FlatMap and
does not move too often, but when it sees enemies, even faraway, it will start to shoot. Occasionally
it will move to the corner and pick medkits. In CIGTrack1, F1Pre stays in one place and ambushes
opponents who pass by. On the other hand, F1Plain and F1 always move forwards and turn at the
corner. As expected, F1 moves and turns faster.

Tactics All bots develop interesting local tactics when exchanging fire with enemy: they slide around
when shooting the enemy. This is quite effective for dodging others’ attack. Also when they shoot
the enemy, they usually take advantage of the splashing effect of rocket to cause additional damage
for enemy, e.g., shooting the wall when the enemy is moving. They do not pick ammunition too
often, even if they can no longer shoot. However, such disadvantage is mitigated by the nature
of deathmatch: when a player dies, it will respawn with ammunition. We also check states with
highest/lowest estimated future value V (s) over a 10-episode evaluation of F1 bot, from which we
can speculate its tactics. The highest value is V = 0.97 when the agent fired, and about to hit the
enemy. One low value is V = −0.44, ammo = 0, when the agent encountered an enemy at the
corner but is out of ammunition. Both cases are reasonable.

5.3 COMPETITION

We attended the ViZDoom AI Competition hosted by IEEE CIG. There are 2 tracks in the compe-
tition. Track 1 (Limited Deathmatch) uses a known map and fixed weapons, while Track 2 (Full
Deathmatch) uses 3 unknown maps and a variety of weapons. Each bot fights against all others for
12 rounds of 10 minutes each. Due to server capacity, each bot skips one match in the first 9 rounds.
All bots are supposed to run in real-time (>35fps) on a GTX960 GPU.

Round 1 2 3 4 5 6 7 8 9 10 11 12 Total

Our bot 56 62 n/a 54 47 43 47 55 50 48 50 47 559

Arnold 36 34 42 36 36 45 36 39 n/a 33 36 40 413

CLYDE 37 n/a 38 32 37 30 46 42 33 24 44 30 393

Table 6: Top 3 teams in ViZDoom AI Competition, Track 1. Our bot attended 11 out of 12 games,
won 10 of them and won the champion by a large margin. For design details, see Arnold [Lample &
Chaplot (2016)] and CLYDE [Ratcliffe et al. (2017)].

8



Published as a conference paper at ICLR 2017

Our F1 bot won 10 out of 11 attended games and won the champion for Track 1 by a large margin.
We have achieved 559 frags, 35.4% higher than 413 frags achieved by Arnold [Lample & Chaplot
(2016)], that uses extra game state for model training. On the other hand, IntelAct [Dosovitskiy &
Koltun (2017)] won Track 2. The full videos for the two tracks have been released67, as well as
an additional game between Human and AIs8. Our bot behaves reasonable and very human-like in
Track 1. In the match between Human and AIs, our bot was even ahead of the human player for a
short period (6:30 to 7:00).

6 CONCLUSION

Teaching agents to act properly in complicated and adversarial 3D environment is a very challeng-
ing task. In this paper, we propose a new framework to train a strong AI agent in a First-Person
Shooter (FPS) game, Doom, using a combination of state-of-the-art Deep Reinforcement Learning
and Curriculum Training. Via playing against built-in bots in a progressive manner, our bot wins
the champion of Track1 (known map) in ViZDoom AI Competition. Furthermore, it learns to use
motion features and build its own tactics during the game, which is never taught explicitly.

Currently, our bot is still an reactive agent that only remembers the last 4 frames to act. Ideally, a
bot should be able to build a map from an unknown environment and localize itself, is able to have
a global plan to act, and visualize its reasoning process. We leave them to future works.

REFERENCES

Abadi, Martı́n, Agarwal, Ashish, Barham, Paul, Brevdo, Eugene, Chen, Zhifeng, Citro, Craig, Cor-
rado, Gregory S., Davis, Andy, Dean, Jeffrey, Devin, Matthieu, Ghemawat, Sanjay, Goodfellow,
Ian J., Harp, Andrew, Irving, Geoffrey, Isard, Michael, Jia, Yangqing, Józefowicz, Rafal, Kaiser,
Lukasz, Kudlur, Manjunath, Levenberg, Josh, Mané, Dan, Monga, Rajat, Moore, Sherry, Murray,
Derek Gordon, Olah, Chris, Schuster, Mike, Shlens, Jonathon, Steiner, Benoit, Sutskever, Ilya,
Talwar, Kunal, Tucker, Paul A., Vanhoucke, Vincent, Vasudevan, Vijay, Viégas, Fernanda B.,
Vinyals, Oriol, Warden, Pete, Wattenberg, Martin, Wicke, Martin, Yu, Yuan, and Zheng, Xiao-
qiang. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. CoRR,
abs/1603.04467, 2016. URL http://arxiv.org/abs/1603.04467.

Babaeizadeh, Mohammad, Frosio, Iuri, Tyree, Stephen, Clemons, Jason, and Kautz, Jan. Reinforce-
ment learning through asynchronous advantage actor-critic on a gpu. International Conference
on Learning Representations (ICLR), 2017.

Barto, Andrew G, Sutton, Richard S, and Anderson, Charles W. Neuronlike adaptive elements that
can solve difficult learning control problems. IEEE transactions on systems, man, and cybernetics,
(5):834–846, 1983.

Bengio, Yoshua, Louradour, Jérôme, Collobert, Ronan, and Weston, Jason. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48. ACM,
2009.

Devlin, Sam, Kudenko, Daniel, and Grześ, Marek. An empirical study of potential-based reward
shaping and advice in complex, multi-agent systems. Advances in Complex Systems, 14(02):
251–278, 2011.

Dosovitskiy, Alexey and Koltun, Vladlen. Learning to act by predicting the future. International
Conference on Learning Representations (ICLR), 2017.

Grondman, Ivo, Busoniu, Lucian, Lopes, Gabriel AD, and Babuska, Robert. A survey of actor-critic
reinforcement learning: Standard and natural policy gradients. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), 42(6):1291–1307, 2012.

6Track 1: https://www.youtube.com/watch?v=94EPSjQH38Y
7Track 2: https://www.youtube.com/watch?v=tDRdgpkleXI
8Human vs AIs: https://www.youtube.com/watch?v=Qv4esGWOg7w. Bottom left is our bot

while bottom right is a human player

9



Published as a conference paper at ICLR 2017

Hausknecht, Matthew J. and Stone, Peter. Deep recurrent q-learning for partially observable mdps.
CoRR, abs/1507.06527, 2015. URL http://arxiv.org/abs/1507.06527.

Jiang, Lu, Meng, Deyu, Zhao, Qian, Shan, Shiguang, and Hauptmann, Alexander G. Self-paced
curriculum learning. In AAAI, volume 2, pp. 6, 2015.

Kempka, Michał, Wydmuch, Marek, Runc, Grzegorz, Toczek, Jakub, and Jaśkowski, Wojciech.
Vizdoom: A doom-based ai research platform for visual reinforcement learning. arXiv preprint
arXiv:1605.02097, 2016.

Kingma, Diederik and Ba, Jimmy. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Konda, Vijay R and Tsitsiklis, John N. Actor-critic algorithms. In NIPS, volume 13, pp. 1008–1014,
1999.

Lample, Guillaume and Chaplot, Devendra Singh. Playing fps games with deep reinforcement
learning. arXiv preprint arXiv:1609.05521, 2016.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Rusu, Andrei A, Veness, Joel, Bellemare,
Marc G, Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K, Ostrovski, Georg, et al. Human-
level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Mnih, Volodymyr, Badia, Adria Puigdomenech, Mirza, Mehdi, Graves, Alex, Lillicrap, Timothy P,
Harley, Tim, Silver, David, and Kavukcuoglu, Koray. Asynchronous methods for deep reinforce-
ment learning. arXiv preprint arXiv:1602.01783, 2016.

Ng, Andrew Y, Harada, Daishi, and Russell, Stuart. Policy invariance under reward transformations:
Theory and application to reward shaping. In ICML, volume 99, pp. 278–287, 1999.

Peters, Jan and Schaal, Stefan. Reinforcement learning of motor skills with policy gradients. Neural
networks, 21(4):682–697, 2008.

Ratcliffe, D., Devlin, S., Kruschwitz, U., and Citi, L. Clyde: A deep reinforcement learning doom
playing agent. AAAI Workshop on What’s next for AI in games, 2017.

Silver, David, Huang, Aja, Maddison, Chris J, Guez, Arthur, Sifre, Laurent, Van Den Driessche,
George, Schrittwieser, Julian, Antonoglou, Ioannis, Panneershelvam, Veda, Lanctot, Marc, et al.
Mastering the game of go with deep neural networks and tree search. Nature, 529(7587):484–489,
2016.

Sutton, Richard S and Barto, Andrew G. Reinforcement learning: An introduction, volume 1. 1998.

Sutton, Richard Stuart. Temporal credit assignment in reinforcement learning. 1984.

van Waveren, J.M.P. The Quake III Arena bot. University of Technology Delft, 2001.

Williams, Ronald J. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

10


