
A Scalable Cloud-based Architecture to Deploy JupyterHub for
Computational Social Science Research

Da Li, Robert Pyke, Runchao Jiang
Facebook, Inc.

Menlo Park, California, USA
{dali,robertpyke,runchaojiang}@fb.com

ABSTRACT
With the increasing popularity of computational approaches to
conduct social science research, building a scalable and efficient
computing platform has become a topic of interest for academia to
empower research labs and institutes to analyze large-scale data.
While social science researchers have been very excited about the
advancement of emerging technologies in big data, deep learning,
computer vision, network analysis, etc., they are also constrained
by the available computing resources to analyze data. This paper
describes a scalable solution to deploy JupyterHub for computa-
tional social science research on the cloud. We use a reference
architecture on AWS to walk through the design principles and
details. Our architecture has helped facilitate several collaborations
between Facebook and academia. The case study (Facebook Open
Research and Transparency platform) shows that our architecture,
using technologies like containerization and serverless computing,
can support thousands of users to analyze web-scale datasets.

CCS CONCEPTS
• Computer systems organization→ Cloud computing.

KEYWORDS
Jupyter, Kubernetes, Cloud Computing, Scalability, Computational
Social Science
ACM Reference Format:
Da Li, Robert Pyke, Runchao Jiang. 2021. A Scalable Cloud-based Archi-
tecture to Deploy JupyterHub for Computational Social Science Research.
In Practice and Experience in Advanced Research Computing (PEARC ’21),
July 18–22, 2021, Boston, MA, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3437359.3465591

1 INTRODUCTION
Computational social science (CSS) usually refers to using computa-
tional approaches to study and explain social phenomena. CSS is a
multi-disciplinary field that combines social science and computer
science to deliver research outcomes in quantitative ways. CSS sig-
nificantly extended the traditional empirical research approaches
in social science to the extensive use of data analysis and computer
simulation, which is considered revolutionary.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PEARC ’21, July 18–22, 2021, Boston, MA, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8292-2/21/07.
https://doi.org/10.1145/3437359.3465591

In the early years of CSS, researchers would use their personal
computers to analyze collected data or conduct simulations. Nowa-
days, CSS research has become increasingly dependent on comput-
ing infrastructure availability, including data storage and computa-
tional resources. On the one hand, many advancements in computer
science, including complex network analysis, neural networks, com-
puter vision, text mining, etc., created excitement in CSS because
of the potential to adopt similar tools and methodologies to analyze
social science datasets. On the other hand, lack of programming
expertise and data infrastructure resources have become barriers
to conducting interdisciplinary research in computational social
science.

Jupyter Notebook [10] allows a single user to write code and
display inline results from a web-based interface. Once available,
it quickly gained popularity among researchers. Later, the project
JupyterHub [9] further extended the Jupyter Notebook to a multi-
user platform, which makes it suitable for organizational use cases.
An instance of JupyterHub offers both practical and legal/policy
benefits because it allows a researcher to freely analyze data with-
out needing a copy of it. This style of bringing “compute to the
data" instead of the other way around is particularly beneficial
when the data are very large (e.g., too slow and expensive to copy)
and when there are legal or other limitations on its use (e.g., ensur-
ing compliance via auditing and logging may be impossible without
centralized infrastructure) [2]. This, along with the diverse themes
and extensions available for the Jupyter ecosystem, make Jupyter-
Hub one of the best choices for scientific research communities.

However, JupyterHub only provides limited scalability for each
of the notebook servers, thus is not capable of large-scale data
processing in the notebook. To analyze large, especially web-scale
datasets, users need to access a cluster and submit jobs from the
notebook so that the cluster can process offloaded computation.
This is difficult to set up for many small research labs and/or non-
prestigious universities due to resource and budget limitations.

To address above-mentioned issues and democratize the data
infrastructure of the social science research community, in this
work, we propose a cloud-based architecture to host a scalable and
cost-efficient JupyterHub deployment. Our contributions can be
summarized as follows:

• We propose a scalable architecture to build the data infras-
tructure for computational social science research and ex-
ploit the state-of-the-art technologies, including container-
ization and serverless computing, to achieve elasticity and
cost-efficiency.

• We present a reference design on AWS to reveal details and
design principles. Our proposal is cloud-agnostic so that it
can be extended to other cloud platforms.

https://doi.org/10.1145/3437359.3465591
https://doi.org/10.1145/3437359.3465591


PEARC ’21, July 18–22, 2021, Boston, MA, USA Da Li, Robert Pyke, Runchao Jiang

• We demonstrate how to customize the software system in
JupyterHub to provide flexibility for research without incur-
ring maintenance overhead and security loopholes.

• Our proposal shows the potential to establish public stan-
dards that allow institutes to create data-sharing infrastruc-
tures for their own policy and legal purposes.

2 ARCHITECTURE
In this section, we present the proposed architecture in detail. We
first give the design principles and an overview of the system. Then
using a reference design, we walk through important components
to demonstrate design and implementation trade-offs.

2.1 Design Principles and Overview
Based on our discussion in section 1, the proposed architecture
follows a few design principles:

• Security First: For any platform with data, ensuring ade-
quate security is always the first priority. In social science,
researchers often need to access sensitive user data (e.g., per-
sonally identifiable information (PII) data, survey response)
for analysis. So it’s essential to take necessary measures to
ensure the system can meet commensurate security stan-
dards.

• Cloud-agnostic and Standard Components: We want
the architecture to be cloud-agnostic and consist of stan-
dard components. So with none or minimal modification, it
can be deployed to common public cloud providers (Amazon
Web Services (AWS), Google Cloud Platform (GCP), etc.) or
on-premise data infrastructure.

• High Scalability and Elasticity: We aim to support ter-
abyte to petabyte-scale datasets with the collaboration of
tens to hundreds of researchers. We also want to be mind-
ful of the costs and would like the system to be as elastic
as possible. As a result, our design uses technologies like
containerization and serverless computing.

Based on the above design principles, the architecture has three
high-level components: a client-facing analytics environment, a
proxy service (gateway), and a data processing infrastructure.

Client-facing Analytics Environment is where researchers
can write, debug, and execute code to analyze the data. This requires
the environment to offer a user-friendly interface with support for
popular toolkits and programming languages.

Proxy Service serves as the middleman and the safeguard be-
tween the analytics environment and the backend storage and
computing resources. The benefit of having the proxy service is to
establish a security boundary between the client-facing analytics
environment and other infrastructure services to secure the system
and the data access.

Data Processing Infrastructure provides the storage and com-
puting resources for the analytics environment. The data storage
would include both SQL and NoSQL databases, as well as blob stor-
age to store various structured, semi-structured, and unstructured
data. The computing engine needs to be able to handle large-scale
data with high efficiency.

Figure 1: The reference design using AWS services.

2.2 Reference Design
Figure 1 shows a reference design of our proposed architecture
on AWS. All the icons representing each service are following the
standard of AWS terminologies.

The analytics environment is a JupyterHub instance deployed on
Kubernetes. An Auto Scaling Group is configured to provide worker
nodes to Kubernetes. JupyterHub is installed on Amazon Elastic
Kubernetes Service (EKS) using Helm. With JupyterHub installed,
logged-in users can create notebooks using supported kernels. Cur-
rently, Python, R, and Julia are supported in JupyterHub as the
default kernels without further customization. But a complete list
of kernels can be found on the official wiki [8]. The JupyterHub
deployment is behind an Elastic Load Balancer (ELB) and accessi-
ble via HTTPS. In order to access the environment, users need to
connect to a VPN service first.

The purpose of a Proxy Service is to provide a unified and secure
call path to the backend services, including specific AWS resources
(e.g., Athena, Data Catalog, S3) and other specific private APIs
(e.g., login and authentication). Access to these AWS resources and
private APIs is essential for users but granting access directly in
the Jupyter notebook will incur significant security concerns. Thus,
introducing the proxy service allows all the API calls to be invoked
in a federated way, which is a significant security improvement.
Also, the existence of the proxy service provides extra flexibility
to handle various secrets without exposing them directly in the
Jupyter notebook client environment.

Behind the Proxy Service are the AWS resources to process the
data. The Jupyter Notebook is running on a Kubernetes pod, which
offers computation resources to a user, but it’s still a single node
instance with limited CPU andmemory available. In order to handle
datasets at terabyte or even petabyte-scale, it’s necessary to have a
data warehouse-like backend to offer the storage and compute pool.
AWS offers many solutions, including: Athena and Redshift. Athena
is good for supporting the interactive query of web-scale datasets,
while Redshift could give you a data warehouse-like capability.

2.3 JuputerHub on Kubernetes
JupyterHub is a multi-user platform to use notebooks to access com-
putational resources. Its web-based UI makes it simple to provide
access to users from web browsers on various devices. In our ref-
erence design, we deploy JuputerHub on Kubernetes. The Jupyter
community has curated detailed instructions [1] for deployment in
the cloud with Helm to manage Kubernetes applications.



A Scalable Cloud-based Architecture to Deploy JupyterHub for Computational Social Science Research PEARC ’21, July 18–22, 2021, Boston, MA, USA

Kubernetes is an open-source system for container orchestration
and application management. It makes the deployment automation
and horizontal/vertical scaling of containerized applications very
easy. Kubernetes has become a popular system and supported by
almost all major cloud providers. Our reference design utilizes
the Amazon EKS, which is the AWS managed Kubernetes service.
Amazon EKS utilizes an Auto Scaling Group (ASG), which contains
a logical group of Amazon EC2 instances to perform automatic
scaling and management. With ASG and Kubernetes Autoscaler, the
JupyterHub on Kubernetes becomes a scalable and elastic solution
to run with up to tens of thousands of users.

2.4 Authentication and Authorization
Authentication (also referred to as "AuthN") is the process of iden-
tifying a user/service. The result of AuthN is that the "Identity" is
known. The identity consists of one or more principals (identifying
pieces of information). JupyterHub Authenticator supports several
OAuth-based login mechanisms, including Google and GitHub. We
also implemented and open-sourced an authenticator based on
Facebook Login flow.

Authorization (also referred to as "AuthZ") is the process of
allowing a user/service access to a resource based on the "Identity".
AuthN is knowing the identity; AuthZ is then giving that identity
access based on its principals. By default, JupyterHub only supports
two types of users: regular and admin. In our reference design, we
implemented a more complicated permission system to federate
access to different types of resources.

2.5 Proxy Service
The Proxy Service is implemented using AWS API Gateway with
Lambda integration. The API Gateway defines: (1) The routing con-
figuration for all calls. (2) The valid request models, call paths, and
response models. (3) The integration type for each route (Lambda,
Static-Content, EC2, S3, etc.) (4) The authorization configuration
for each route. (5) The input/output transformations (optional) (6)
The HTTP-status code mappings

The API Gateway can be configured with different hosting op-
tions: REGIONAL (public-facing, hosted in the specified region),
EDGE (public-facing, hosted via a Cloudfront distribution (CDN)),
or PRIVATE (hosted inside a VPC and only reachable either from
the VPC, or from a peered-VPC). In our proposal, we recommend
using a PRIVATE API Gateway. We propose hosting your Proxy
Service API Gateway in the same VPC as the hosted JupyterHub
environment or hosting it in a peered VPC. This ensures the API
Gateway cannot be communicated to directly from the public in-
ternet, providing an additional layer of network security.

In addition, we propose using an authenticator in the API Gate-
way, which provides an additional auth check (beyond the Jupyter
authenticator), before exposing users to backend resources. This
API Gateway authenticator will allow you to use the user’s iden-
tity information to make advanced decisions, e.g., you can enforce
usage limits, enable auditing, provide per-user storage isolation,
etc.

We model our Proxy Service APIs using OpenAPI [6]. API Gate-
way can generate an API Gateway endpoint using this model defini-
tion. While this a useful feature, the main benefit we see from using

this standard definition is you can then generate clients using the
open-source client generator package from the model you created.
This lets you generate clients in your supported Jupyter Kernel
programming languages, making it significantly easier to maintain
multiple kernels, e.g., Python and R.

2.6 Serverless Computing
Serverless computing refers to the idea that the cloud provider
would allocate machine resources on-demand, taking care of the
servers on behalf of their customers. Serverless computing helps us
get rid of server management, and the "pay-as-you-go" plan makes
it cost-efficient for our erratic usage pattern. More importantly,
serverless architectures are inherently scalable and elastic. In the
reference design, we mainly exploit two serverless services from
AWS: Lambda and Athena.

Lambda is an AWS serverless compute service to run code with-
out provisioning an EC2 instance. We use Lambda extensively for
our Proxy Service as AWS provides the native Lambda integration
with API Gateway. Although Lambda has several limitations (e.g.,
execution time, code size), we find that all our use cases for the
Proxy Service can fit nicely into this model.

Athena is a serverless interactive query service from Amazon.
It is powered by Presto and works with a variety of data formats,
including CSV, JSON, Apache Parquet, etc. Athena is easy to set
up and use. Users only need to write standard SQL statements to
query data from multiple sources once configured.

2.7 Auditability
Our proposal leverages the native logging and auditability support
of the infrastructure components (e.g., S3 Access Logs and Cloud-
Trail Events) to provide comprehensive auditability of user-level
actions. For instance, user action related AWS API calls use user-
specific IAM sessions. Same as all user executed Athena queries.
Container Insights provides per-user pod metrics to track metrics
that may be useful to audit, such as bytes sent and received. Besides,
API Gateway provides per API call request and response logging
via CloudWatch, as well as tracing support (X-Ray), allowing to
record every request to the proxy service. As these calls are de-
pendent on an authorizer, all API Gateway logs are attributable at
user-level. These examples are not exhaustive, but demonstrate that
by using a proxy service to facilitate access to data and leveraging
the logging frameworks of the supporting services, we can provide
comprehensive audit capabilities of all user actions.

3 SOFTWARE CUSTOMIZATION
While the previous section covers the architecture, this section will
provide details on the software components of the proposed archi-
tecture. It includes the following two parts: (1) How to customize
Jupyter Notebook; (2) How to customize the Docker Images.

3.1 Jupyter Notebook
The Jupyter Notebook comes with the default theme. But you can
easily make it customizable by running "pip install jupyterthemes".
This is the easiest way to enhance the coding environment and
the presentation. Another way is to install Notebook extensions,
which are modules that modify the user experience and interface.



PEARC ’21, July 18–22, 2021, Boston, MA, USA Da Li, Robert Pyke, Runchao Jiang

For instance, Jupyter Notebook has built-in autocompletion by
pressing the tab button. But there are extensions (e.g., Hinterland)
that enable code autocompletion for every keystroke, which makes
the experience very similar to an IDE. Besides these two methods, a
more advanced approach involves front-end programming work by
directly customizing the Jupyter Notebook source code and making
your own distribution. This provides you the most flexibility in
customizing the experience, but requires more upkeep.

3.2 Docker Images
In our system, we use a proprietary docker image repository pro-
vided by AWS for Kubernetes to pull images for the Jupyter note-
book pods, so that we can customize the image based on our needs.
In order to customize the docker image, a docker file will be used,
which you can customize by adding instructions. You can start by
importing the standard images so that you will already have a set
of commonly used tools and then customize the software instal-
lation. For instance, if you need to install extra Python packages,
you can add a line such as "RUN pip install nltk" in the docker
file. Often, you want to install proprietary software developed by
your own institute to perform analysis. You just need to pack them
(e.g., build a python wheel) and install them by customizing the
docker file. Once you update the docker file, you can compile it into
a docker image and then push it to your image repository. With
proper image tagging and the setting of corresponding helm config
for JupyterHub, the new image will be able to be pulled by the pod
automatically. This will allow you to customize as much as you can
to meet all your needs.

4 CASE STUDY: FACEBOOK OPEN RESEARCH
AND TRANSPARENCY

In 2018, Facebook began an initiative to support independent aca-
demic research on social media’s role in elections and democracy.
As part of the effort, we designed and built the Facebook Open Re-
search and Transparency (FORT) platform to facilitate responsible
research by providing flexible access to high quality and privacy
protective data. Let’s take two released datasets as examples.

URL Sharing [3]: This dataset, protected by differential privacy,
consists of links that had been shared publicly on Facebook by at
least 100 unique Facebook users. It included information about
share counts, ratings by Facebook’s third-party fact-checkers, user
reporting on spam, hate speech, and false news associated with
those links. The dataset includes more than 38 million unique links
with aggregated information to help academic researchers analyze
how many people saw these links on Facebook and how they in-
teracted with that content with reactions. We’ve also aggregated
these shares by age, gender, country, and month.

Ads Targeting [5]: This dataset contains targeting information
for more than 1.65 million social issues, electoral, and political Face-
book ads. It includes ads that ran during the three-month period
prior to Election Day in the United States, from August 3 to Novem-
ber 3, 2020. We exclude ads with fewer than 100 impressions, which
is one of several steps we have taken to protect users’ privacy.

To help researchers analyze differentially private datasets, we
install a proprietary software package, Statistical Valid Inference
(SVInfer), on the FORT platform. In general, a privacy protective

dataset contains designed noise ingested to protect the individuals’
privacy. If the researchers use the off-the-shelf statistical packages
to analyze the dataset, they may reach biased conclusions caused by
the noise, which makes the released dataset less useful. As a result,
such analysis toolkits should be provided along with the privacy
protective data releases. We initially implement Linear Regression in
SVInfer based on [7] and expand to Logistic Regression and Summary
Statistics. Our open-sourced [4] implementation includes both an
in-memory and a scalable SQL version.

5 CONCLUSION AND FUTUREWORK
This paper proposes a scalable architecture for computational social
science research and explores different design spaces. The case
study shows that our architecture can support hundreds of users
and execute over 1000 daily queries to analyze terabyte to petabyte-
scale datasets released by Facebook.

In the future, we plan to extend our architecture to support
additional technical and policy needs. Technically, we plan to sup-
port hybrid clouds (e.g., public-private) with GPU compute capa-
bility for machine learning workloads. We also want to introduce
mechanisms to secure the system and offer fine-grained permis-
sion controls to facilitate collaboration among users. From a policy
perspective, we plan to develop public standards for data-sharing
infrastructure and the reproducibility of research.

ACKNOWLEDGMENTS
We would like to thank Andrew Gruen, Bennett Hillenbrand, and
Chaya Nayak for reading earlier versions of this paper and con-
tributing to many improvements. We thank the many Facebook
engineers who built, reviewed, and scaled the original implemen-
tation of the architecture and software for providing us with the
design insights.

REFERENCES
[1] 2017. Zero to JupyterHub with Kubernetes. Retrieved March 29, 2021 from

https://zero-to-jupyterhub.readthedocs.io/en/stable/
[2] 2020. NCI Cloud Resources. Retrieved April 7, 2021 from https://datascience.

cancer.gov/data-commons/cloud-resources
[3] 2020. New privacy-protected Facebook data for independent research

on social media’s impact on democracy. Retrieved March 30, 2021
from https://research.fb.com/blog/2020/02/new-privacy-protected-facebook-
data-for-independent-research-on-social-medias-impact-on-democracy/

[4] 2020. SVInfer. Retrieved March 30, 2021 from https://github.com/
facebookresearch/svinfer

[5] 2021. Introducing new election-related ad data sets for researchers. RetrievedMarch
30, 2021 from https://research.fb.com/blog/2021/02/introducing-new-election-
related-ad-data-sets-for-researchers/

[6] 2021. OpenAPI Initiative. Retrieved March 30, 2021 from https://www.openapis.
org/about

[7] Georgina Evans and Gary King. 2021. Statistically Valid Inferences from Differ-
entially Private Data Releases, with Application to the Facebook URLs Dataset.
Political Analysis (2021).

[8] Jupyter Kernels 2015. Wiki: Jupyter Kernels. Retrieved March 30, 2021 from
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

[9] JupyterHub 2021. JupyterHub: A multi-user version of the notebook designed
for companies, classrooms and research labs. Retrieved March 29, 2021 from
https://jupyter.org/hub

[10] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason
Grout, Sylvain Corlay, et al. 2016. Jupyter Notebooks - a publishing format for
reproducible computational workflows. Vol. 2016.

https://zero-to-jupyterhub.readthedocs.io/en/stable/
https://datascience.cancer.gov/data-commons/cloud-resources
https://datascience.cancer.gov/data-commons/cloud-resources
https://research.fb.com/blog/2020/02/new-privacy-protected-facebook-data-for-independent-research-on-social-medias-impact-on-democracy/
https://research.fb.com/blog/2020/02/new-privacy-protected-facebook-data-for-independent-research-on-social-medias-impact-on-democracy/
https://github.com/facebookresearch/svinfer
https://github.com/facebookresearch/svinfer
https://research.fb.com/blog/2021/02/introducing-new-election-related-ad-data-sets-for-researchers/
https://research.fb.com/blog/2021/02/introducing-new-election-related-ad-data-sets-for-researchers/
https://www.openapis.org/about
https://www.openapis.org/about
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://jupyter.org/hub

	Abstract
	1 Introduction
	2 Architecture
	2.1 Design Principles and Overview
	2.2 Reference Design
	2.3 JuputerHub on Kubernetes
	2.4 Authentication and Authorization
	2.5 Proxy Service
	2.6 Serverless Computing
	2.7 Auditability

	3 Software Customization
	3.1 Jupyter Notebook
	3.2 Docker Images

	4 Case Study: Facebook Open Research and Transparency
	5 Conclusion and Future Work
	Acknowledgments
	References

