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Abstract

While strong progress has been made in image caption-
ing recently, machine and human captions are still quite dis-
tinct. This is primarily due to the deficiencies in the gener-
ated word distribution, vocabulary size, and strong bias in
the generators towards frequent captions. Furthermore, hu-
mans – rightfully so – generate multiple, diverse captions,
due to the inherent ambiguity in the captioning task which
is not explicitly considered in today’s systems.

To address these challenges, we change the training ob-
jective of the caption generator from reproducing ground-
truth captions to generating a set of captions that is in-
distinguishable from human written captions. Instead of
handcrafting such a learning target, we employ adversar-
ial training in combination with an approximate Gumbel
sampler to implicitly match the generated distribution to the
human one. While our method achieves comparable perfor-
mance to the state-of-the-art in terms of the correctness of
the captions, we generate a set of diverse captions that are
significantly less biased and better match the global uni-,
bi- and tri-gram distributions of the human captions.

1. Introduction

Image captioning systems have a variety of applications
ranging from media retrieval and tagging to assistance for
the visually impaired. In particular, models which combine
state-of-the-art image representations based on deep convo-
lutional networks and deep recurrent language models have
led to ever increasing performance on evaluation metrics
such as CIDEr [39] and METEOR [8] as can be seen e.g.
on the COCO image Caption challenge leaderboard [6].

Despite these advances, it is often easy for humans to
differentiate between machine and human captions – partic-
ularly when observing multiple captions for a single image.

Ours: a person on skis jumping
over a ramp

Ours: a skier is making a turn
on a course

Ours: a cross country skier
makes his way through the snow

Ours: a skier is headed down a
steep slope

Baseline: a man riding skis down a snow covered slope

Figure 1: Four images from the test set related to skiing,
with captions from our model and a baseline. Baseline de-
scribes all four images with a generic caption, whereas our
model produces diverse and more image specific captions.

As we analyze in this paper, this is likely due to artifacts and
deficiencies in the statistics of the generated captions, which
is more apparent when observing multiple samples. Specif-
ically, we observe that state-of-the-art systems frequently
“reveal themselves” by generating a different word distribu-
tion and using smaller vocabulary. Further scrutiny reveals
that generalization from the training set is still challenging
and generation is biased to frequent fragments and captions.

Also, today’s systems are evaluated to produce a single
caption. Yet, multiple potentially distinct captions are typi-
cally correct for a single image – a property that is reflected
in human ground-truth. This diversity is not equally repro-
duced by state-of-the-art caption generators [40, 23].

Therefore, our goal is to make image captions less distin-
guishable from human ones – similar in the spirit to a Turing



Test. We also embrace the ambiguity of the task and extend
our investigation to predicting sets of captions for a single
image and evaluating their quality, particularly in terms of
the diversity in the generated set. In contrast, popular ap-
proaches to image captioning are trained with an objective
to reproduce the captions as provided by the ground-truth.

Instead of relying on handcrafting loss-functions to
achieve our goal, we propose an adversarial training mecha-
nism for image captioning. For this we build on Generative
Adversarial Networks (GANs) [14], which have been suc-
cessfully used to generate mainly continuous data distribu-
tions such as images [9, 30], although exceptions exist [27].
In contrast to images, captions are discrete, which poses a
challenge when trying to backpropagate through the gen-
eration step. To overcome this obstacle, we use a Gumbel
sampler [20, 28] that allows for end-to-end training.

We address the problem of caption set generation for im-
ages and discuss metrics to measure the caption diversity
and compare it to human ground-truth. We contribute a
novel solution to this problem using an adversarial formu-
lation. The evaluation of our model shows that accuracy of
generated captions is on par to the state-of-the-art, but we
greatly increase the diversity of the caption sets and better
match the ground-truth statistics in several measures. Qual-
itatively, our model produces more diverse captions across
images containing similar content (Figure 1) and when sam-
pling multiple captions for an image (see supplementary)1.

2. Related Work

Image Description. Early captioning models rely on first
recognizing visual elements, such as objects, attributes, and
activities, and then generating a sentence using language
models such as a template model [13], n-gram model [22],
or statistical machine translation [34]. Advances in deep
learning have led to end-to-end trainable models that com-
bine deep convolutional networks to extract visual features
and recurrent networks to generate sentences [11, 41, 21].

Though modern description models are capable of pro-
ducing coherent sentences which accurately describe an
image, they tend to produce generic sentences which are
replicated from the train set [10]. Furthermore, an image
can correspond to many valid descriptions. However, at
test time, sentences generated with methods such as beam
search are generally very similar. [40, 23] focus on increas-
ing sentence diversity by integrating a diversity promoting
heuristic into beam search. [42] attempts to increase the
diversity in caption generation by training an ensemble of
caption generators each specializing in different portions of
the training set. In contrast, we focus on improving diver-
sity of generated captions using a single model. Our method
achieves this by learning a corresponding model using a dif-

1https://goo.gl/3yRVnq

ferent training loss as opposed to after training has com-
pleted. We note that generating diverse sentences is also
a challenge in visual question generation, see concurrent
work [19], and in language-only dialogue generation stud-
ied in the linguistic community, see e.g. [23, 24].

When training recurrent description models, the most
common method is to predict a word wt conditioned on an
image and all previous ground truth words. At test time,
each word is predicted conditioned on an image and previ-
ously predicted words. Consequently, at test time predicted
words may be conditioned on words that were incorrectly
predicted by the model. By only training on ground truth
words, the model suffers from exposure bias [31] and can-
not effectively learn to recover when it predicts an incorrect
word during training. To avoid this, [4] proposes a sched-
uled sampling training scheme which begins by training
with ground truth words, but then slowly conditions gen-
erated words on words previously produced by the model.
However, [17] shows that the scheduled sampling algorithm
is inconsistent and the optimal solution under this objec-
tive does not converge to the true data distribution. Tak-
ing a different direction, [31] proposes to address the expo-
sure bias by gradually mixing a sequence level loss (BLEU
score) using REINFORCE rule with the standard maximum
likelihood training. Several other works have followed this
up with using reinforcement learning based approaches to
directly optimize the evaluation metrics like BLEU, ME-
TEOR and CIDER [33, 25]. However, optimizing the eval-
uation metrics does not directly address the diversity of the
generated captions. Since all current evaluation metrics use
n-gram matching to score the captions, captions using more
frequent n-grams are likely to achieve better scores than
ones using rarer and more diverse n-grams.

In this work, we formulate our caption generator as a
generative adversarial network. We design a discriminator
that explicitly encourages generated captions to be diverse
and indistinguishable from human captions. The genera-
tor is trained with an adversarial loss with this discrimina-
tor. Consequently, our model generates captions that better
reflect the way humans describe images while maintaining
similar correctness as determined by a human evaluation.

Generative Adversarial Networks. The Generative Ad-
versarial Networks (GANs) [14] framework learns gener-
ative models without explicitly defining a loss from a tar-
get distribution. Instead, GANs learn a generator using a
loss from a discriminator which tries to differentiate real
and generated samples, where the generated samples come
from the generator. When training to generate real images,
GANs have shown encouraging results [9, 30]. In all these
works the target distribution is continuous. In contrast our
target, a sequence of words, is discrete. Applying GANs to
discrete sequences is challenging as it is unclear how to best
back-propagate the loss through the sampling mechanism.

https://goo.gl/3yRVnq


A few works have looked at generating discrete distribu-
tions using GANs. [27] aim to generate a semantic image
segmentation with discrete semantic labels at each pixel.
[46] uses REINFORCE trick to train an unconditional text
generator using the GAN framework but diversity of the
generated text is not considered.

Most similar to our work are concurrent works which use
GANs for dialogue generation [24] and image caption gen-
eration [7]. While [24, 46, 7] rely on the reinforcement rule
[43] to handle backpropagation through the discrete sam-
ples, we use the Gumbel Softmax [20]. See Section 3.1 for
further discussion. [24] aims to generate a diverse dialogue
of multiple sentences while we aim to produce diverse sen-
tences for a single image. Additionally, [24] uses both the
adversarial and the maximum likelihood loss in each step
of generator training. We however train the generator with
only adversarial loss after pre-training. Concurrent work [7]
also applies GANs to diversify generated image captions.
Apart from using the gumbel softmax as discussed above,
our work differs from [7] in the discriminator design and
quantitative evaluation of the generator diversity.

3. Adversarial Caption Generator
The image captioning task can be formulated as follows:

given an input image x the generator G produces a caption,
G(x) = [w0, . . . , wn−1], describing the contents of the im-
age. There is an inherent ambiguity in the task, with multi-
ple possible correct captions for an image, which is also re-
flected in diverse captions written by human annotators (we
quantify this in Table 4). However, most image captioning
architectures ignore this diversity during training. The stan-
dard approach to model G(x) is to use a recurrent language
model conditioned on the input image x [11, 41], and train
it using a maximum likelihood (ML) loss considering every
image–caption pair as an independent sample. This ignores
the diversity in the human captions and results in models
that tend to produce generic and commonly occurring cap-
tions from the training set, as we will show in Section 5.3.

We propose to address this by explicitly training the gen-
erator G to produce multiple diverse captions for an input
image using the adversarial framework [14]. In adversar-
ial frameworks, a generative model is trained by pairing it
with adversarial discriminator which tries to distinguish the
generated samples from true data samples. The generator is
trained with the objective to fool the discriminator, which is
optimal when G exactly matches the data distribution. This
is well-suited for our goal because, with an appropriate dis-
criminator network we could coax the generator to capture
the diversity in the human written captions, without having
to explicitly design a loss function for it.

To enable adversarial training, we introduce a second
network, D(x, s), which takes as input an image x and a
caption set Sp = {s1, . . . , sp} and classifies it as either real

Figure 2: Caption generator model. Deep visual features are
input to an LSTM to generate a sentence. A Gumbel sam-
pler is used to obtain soft samples from the softmax distri-
bution, allowing for backpropagation through the samples.

or fake. Providing a set of captions per image as input to the
discriminator allows it to factor in the diversity in the cap-
tion set during the classification. The discriminator can pe-
nalize the generator for producing very similar or repeated
captions and thus encourage the diversity in the generator.

Specifically, the discriminator is trained to classify the
captions drawn from the reference captions set, R(x) =
{r0, · · · , rk−1}, as real while classifying the captions pro-
duced by the generator, G(x), as fake. The generator G
can now be trained using an adversarial objective, i.e. G is
trained to fool the discriminator to classify G(x) as real.

3.1. Caption generator

We use a near state-of-the art caption generator model
based on [36]. It uses the standard encoder-decoder frame-
work with two stages: the encoder model which extracts
feature vectors from the input image and the decoder which
translates these features into a word sequence.
Image features. Images are encoded as activations from a
pre-trained convolutional neural network (CNN). Caption-
ing models also benefit from augmenting the CNN features
with explicit object detection features [36]. Accordingly,
we extract a feature vector containing the probability of oc-
currence of an object and provide it as input to the generator.
Language Model. Our decoder shown in Figure 2, is
adopted from a Long-Short Term Memory (LSTM) based
language model architecture presented in [36] for image
captioning. It consists of a three-layered LSTM network
with residual connections between the layers. The LSTM
network takes two features as input. First is the object de-
tection feature, xo, which is input to the LSTM at only 0th
time step and shares the input matrix with the word vectors.
Second is the global image CNN feature, xc, and is input to
the LSTM at all time-steps through its own input matrix.

The softmax layer at the output of the generator produces



a probability distribution over the vocabulary at each step.

yt = LSTM(wt−1, xc, yt−1, ct−1) (1)
p(wt|wt−1, x) = softmax [βWd ∗ yt] , (2)

where ct is the LSTM cell state at time t and β is a scalar
parameter which controls the peakyness of the distribution.
Parameter β allows us to control how large a hypothesis
space the generator explores during adversarial training. An
additional uniform random noise vector z, is input to the
LSTM in adversarial training to allow the generator to use
the noise to produce diversity.
Discreteness Problem. To produce captions from the
generator we could simply sample from this distribution
p(wt|wt−1, x), recursively feeding back the previously
sampled word at each step, until we sample the END to-
ken. One can generate multiple sentences by sampling and
pick the sentence with the highest probability as done in
[12]. Alternatively we could also use greedy search ap-
proaches like beam-search. However, directly providing
these discrete samples as input to the discriminator does
not allow for backpropagation through them as they are dis-
continuous. Alternatives to overcome this are the reinforce
rule/trick [43], using the softmax distribution, or using the
Gumbel-Softmax approximation [20, 28].

Using policy gradient algorithms with the reinforce
rule/trick [43] allows estimation of gradients through dis-
crete samples [16, 2, 46, 24]. However, learning using re-
inforce trick can be unstable due to high variance [38] and
some mechanisms to make learning more stable, like es-
timating the action-value for intermediate states by gen-
erating multiple possible sentence completions (e.g used
in [46, 7]), can be computationally intensive.

Another option is to input the softmax distribution to the
discriminator instead of samples. We experimented with
this, but found that the discriminator easily distinguishes
between the softmax distribution produced by the generator
and the sharp reference samples, and the GAN training fails.

The last option, which we rely on in this work, it to
use a continuous relaxation of the samples encoded as one-
hot vectors using the Gumbel-Softmax approximation pro-
posed in [20] and [28]. This continuous relaxation com-
bined with the re-parametrization of the sampling process
allows backpropagation through samples from a categori-
cal distribution. The main benefit of this approach is that it
plugs into the model as a differentiable node and does not
need any additional steps to estimate the gradients. Whereas
most previous methods to applying GAN to discrete out-
put generators use policy gradient algorithms, we show that
Gumbel-Softmax approximation can also be used success-
fully in this setting. An empirical comparison between the
two approaches can be found in [20].

We use straight-through variation of the Gumbel-
Softmax approximation [20] at the output of our generator

Figure 3: Discriminator Network. Caption set sampled
from the generator is used to compute image to sentence
(distx(Sp, x)) and sentence-to-sentence (dists(Sp)) dis-
tances. They are used to score the set as real/fake.

to sample words during the adversarial training.

3.2. Discriminator model

The discriminator network, D takes an image x, repre-
sented using CNN feature xc, and a set of captions Sp =
{s1, . . . , sp} as input and classifies Sp as either real or fake.
Ideally, we want D to base this decision on two criteria: a)
do si ∈ Sp describe the image correctly ? b) is the set Sp is
diverse enough to match the diversity in human captions ?

To enable this, we use two separate distance measuring
kernels in our discriminator network as shown in Figure 3.
The first kernel computes the distances between the image
x and each sentence in Sp. The second kernel computes the
distances between the sentences in Sp. The architecture of
these distance measuring kernels is based on the minibatch
discriminator presented in [35]. However, unlike [35], we
only compute distances between captions corresponding to
the same image and not over the entire minibatch.

Input captions are encoded into a fixed size sentence em-
bedding vector using an LSTM encoder to obtain vectors
f(si) ∈ RM . The image feature, xc, is also embedded into
a smaller image embedding vector f(xc) ∈ RM . The dis-
tances between f(si), i ∈ {1, . . . , p} are computed as

Ki = Ts · f(si) (3)
cl(si, sj) = exp (−‖Ki,l −Kj,l‖L1) (4)

dl(si) =

p∑
j=1

cl(si, sj) (5)

dists(Sp) = [d1(s1), ..., dO(s1), ..., dO(sp)] ∈ Rp×O (6)

where Ts is a M ×N ×O dimensional tensor and O is the
number of different M ×N distance kernels to use.



Distances between f(si), i ∈ 1, . . . , p and f(xc) are ob-
tained with similar procedure as above, but using a different
tensor Tx of dimensionsM×N×O to yield distx(Sp, x) ∈
Rp×O. These two distance vectors capture the two aspects
we want our discriminator to focus on. distx(Sp, x) cap-
tures how well Sp matches the image x and dists(Sp) cap-
tures the diversity in Sp. The two distance vectors are
concatenated and multiplied with a output matrix followed
by softmax to yield the discriminator output probability,
D(Sp, x), for Sp to be drawn from reference captions.

3.3. Adversarial Training

In adversarial training both the generator and the dis-
criminator are trained alternatively for ng and nd steps re-
spectively. The discriminator tries to classify Sr

p ∈ R(x) as
real and Sg

p ∈ G(x) as fake. In addition to this, we found
it important to also train the discriminator to classify few
reference captions drawn from a random image as fake, i.e.
Sf
p ∈ R(y), y 6= x. This forces the discriminator to learn

to match images and captions, and not just rely on diversity
statistics of the caption set. The complete loss function of
the discriminator is defined by

L(D) = − log
(
D(Sr

p , x)
)
− log

(
1−D(Sg

p , x)
)

− log
(
1−D(Sf

p , x)
)

(7)

The training objective of the generator is to fool the dis-
criminator into classifying Sg

p ∈ G(x) as real. We found
helpful to additionally use the feature matching loss [35].
This loss trains the generator to match activations induced
by the generated and true data at some intermediate layer
of the discriminator. In our case we use an l2 loss to
match the expected value of distance vectors dists(Sp) and
distx(Sp, x) between real and generated data. The genera-
tor loss function is given by

L(G) = − log
(
D(Sg

p , x)
)

+‖E
[
dists(S

g
p)
]
− E

[
dists(S

r
p)
]
‖2

+‖E
[
distx(S

g
p , x)

]
− E

[
distx(S

r
p , x)

]
‖2,

(8)

where the expectation is over a training mini-batch.

4. Experimental Setup
We conduct all our experiments on the MS-COCO

dataset [5]. The training set consists of 83k images with
five human captions each. We use the publicly available
test split of 5000 images [21] for all our experiments. Sec-
tion 5.4 uses a validation split of 5000 images.

For image feature extraction, we use activations from
res5c layer of the 152-layered ResNet [15] convolutional
neural network (CNN) pre-trained on ImageNet. The input
images are scaled to 448× 448 dimensions for ResNet fea-
ture extraction. Additionally we use features from the VGG

network [37] in our ablation study in Section 5.4. Follow-
ing [36], we additionally extract 80-dimensional object de-
tection features using a Faster Region-Based Convolutional
Neural Network (RCNN) [32] trained on the 80 object cat-
egories in the COCO dataset. The CNN features are input
to both the generator (at xp) and the discriminator. Object
detection features are input only to the generator at the xi
input and is used in all the generator models reported here.

4.1. Insights in Training the GAN

As is well known [3], we found GAN training to be sen-
sitive to hyper-parameters. Here we discuss some settings
which helped stabilize the training of our models.

We found it necessary to pre-train the generator us-
ing standard maximum likelihood training. Without pre-
training, the generator gets stuck producing incoherent sen-
tences made of random word sequences. We also found
pre-training the discriminator on classifying correct image-
caption pairs against random image-caption pairs helpful to
achieve stable GAN training. We train the discriminator for
5 iterations for every generator update. We also periodically
monitor the classification accuracy of the discriminator and
train it further if it drops below 75%. This prevents the gen-
erator from updating using a bad discriminator.

Without the feature matching term in the generator loss,
the GAN training was found to be unstable and needed addi-
tional maximum likelihood update to stabilize it. This was
also reported in [24]. However with the feature matching
loss, training is stable and the ML update is not needed.

A good range of values for the Gumbel temperature was
found to be (0.1, 0.8). Beyond this range training was un-
stable, but within this range the results were not sensitive to
it. We use a fixed temperature setting of 0.5 in the experi-
ments reported here. The softmax scaling factor, β in (2),
is set to value 3.0 for training of all the adversarial models
reported here. The sampling results are also with β = 3.0.

5. Results

We conduct experiments to evaluate our adversarial cap-
tion generator w.r.t. two aspects: how human-like the gen-
erated captions are and how accurately they describe the
contents of the image. Using diversity statistics and word
usage statistics as a proxy for measuring how closely the
generated captions mirror the distribution of the human ref-
erence captions, we show that the adversarial model is more
human-like than the baseline. Using human evaluation and
automatic metrics we also show that the captions generated
by the adversarial model performs similar to the baseline
model in terms of correctness of the caption.

Henceforth, Base and Adv refer to the baseline and ad-
versarial models, respectively. Suffixes bs and samp indi-
cate decoding using beamsearch and sampling respectively.



5.1. Measuring if captions are human-like

Diversity. We analyze n-gram usage statistics, compare vo-
cabulary sizes and other diversity metrics presented below
to understand and measure the gaps between human writ-
ten captions and the automatic methods and show that the
adversarial training helps bridge some of these gaps.

To measure the corpus level diversity of the generated
captions we use:
• Vocabulary Size - number of unique words used in all

generated captions
• % Novel Sentences - percentage of generated captions

not seen in the training set.
To measure diversity in a set of captions, Sp, corresponding
to a single image we use:
• Div-1 - ratio of number of unique unigrams in Sp to

number of words in Sp. Higher is more diverse.
• Div-2 - ratio of number of unique bigrams in Sp to

number of words in Sp. Higher is more diverse.
• mBleu - Bleu score is computed between each caption

in Sp against the rest. Mean of these p Bleu scores is
the mBleu score. Lower values indicate more diversity.

Correctness. Just generating diverse captions is not useful
if they do not correctly describe the content of an image. To
measure the correctness of the generated captions we use
two automatic evaluation metrics Meteor [8] and SPICE [1].
However since it is known that the automatic metrics do
not always correlate very well with human judgments of the
correctness, we also report results from human evaluations
comparing the baseline model to our adversarial model.

5.2. Comparing caption accuracy

Table 1 presents the comparison of our adversarial model
to the baseline model. Both the baseline and the adversar-
ial models use ResNet features. The beamsearch results are
with beam size 5 and sampling results are with taking the
best of 5 samples. Here the best caption is obtained by rank-
ing the captions as per probability assigned by the model.

Table 1 also shows the metrics from some recent meth-
ods from the image captioning literature. The purpose of
this comparison is to illustrate that we use a strong baseline
and that our baseline model is competitive to recent pub-
lished work, as seen from the Meteor and Spice metrics.

Comparing baseline and adversarial models in Table 1
the adversarial model does worse in-terms of Meteor scores
and overall spice metrics. When we look at Spice scores on
individual categories shown in Table 2 we see that adver-
sarial models excel at counting relative to the baseline and
describing the size of an object correctly.

However, it is well known that automatic metrics do not
always correlate with human judgments on correctness of a
caption. A primary reason the adversarial models do poorly
on automatic metrics is that they produce significantly more

Method Meteor Spice

ATT-FCN [45] 0.243 –
MSM [44] 0.251 –
KWL [26] 0.266 0.194

Ours Base-bs 0.272 0.187
Ours Base-samp 0.265 0.186
Ours Adv-bs 0.239 0.167
Ours Adv-samp 0.236 0.166

Table 1: Meteor and Spice metrics comparing performance
of baseline and adversarial models.

Method Spice

Color Attribute Object Relation Count Size

Base-bs 0.101 0.085 0.345 0.049 0.025 0.034
Base-samp 0.059 0.069 0.352 0.052 0.032 0.033
Adv-bs 0.079 0.082 0.318 0.034 0.080 0.052
Adv-samp 0.078 0.082 0.316 0.033 0.076 0.053

Table 2: Comparing baseline and adversarial models in dif-
ferent categories of Spice metric.

Comparison Adversarial - Better Adversarial - Worse

Beamsearch 36.9 34.8
Sampling 35.7 33.2

Table 3: Human evaluation comparing adversarial model vs
the baseline model on 482 random samples. Correctness
of captions. With agreement of at least 3 out of 5 judges
in %. Humans agreed in 89.2% and 86.7% of images in
beamsearch and sampling cases respectively.

unique sentences using a much larger vocabulary and rarer
n-grams, as shown in Section 5.3. Thus, they are less likely
to do well on metrics relying on n-gram matches.

To verify this claim, we conduct human evaluations
comparing captions from the baseline and the adversarial
model. Human evaluators from Amazon Mechanical Turk
are shown an image and a caption each from the two mod-
els and are asked “Judge which of the two sentences is a
better description of the image (w.r.t. correctness and rele-
vance)!”. The choices were either of the two sentences or to
report that they are the same. Results from this evaluation
are presented in Table 3. We can see that both adversar-
ial and baseline models perform similarly, with adversarial
models doing slightly better. This shows that despite the
poor performance in automatic evaluation metrics, the ad-
versarial models produce captions that are similar, or even
slightly better, in accuracy to the baseline model.

5.3. Comparing vocabulary statistics

To characterize how well the captions produced by the
automatic methods match the statistics of the human written
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Figure 4: Comparison of n-gram count ratios in generated
test-set captions by different models. Left side shows the
mean n-gram count-ratios as a function of counts on train-
ing set. Right side shows the histogram of the count-ratios.

captions, we look at n-gram usage statistics in the generated
captions. Specifically, we compute the ratio of the actual
count of an n-gram in the caption set produced by a model
to the expected n-gram count based on the training data.

Given that an n-gram occurredm times in the training set
we can expect that it occurs m ∗ |test-set|/|train-set| times
in the test set. However actual counts may vary depending
on how different the test set is from the training set. We
compute these ratios for reference captions in the test set to
get an estimate of the expected variance of the count ratios.
The left side of Figure 4 shows the mean count ratios for

uni-, bi- and tri-grams in the captions generated on test-set
plotted against occurrence counts in the training set. His-
togram of these ratios are shown on the right side.

Count ratios for the reference captions from the test-set
are shown in green. We see that the n-gram counts match
well between the training and test set human captions and
the count ratios are spread around 1.0 with a small variance.

The baseline model shows a clear bias towards more fre-
quently occurring n-grams. It consistently overuses more

Vocab- % Novel
Method n Div-1 Div-2 mBleu-4 ulary Sentences

Base-bs
1 of 5 – – – 756 34.18
5 of 5 0.28 0.38 0.78 1085 44.27

Base-samp
1 of 5 – – – 839 52.04
5 of 5 0.31 0.44 0.68 1460 55.24

Adv-bs
1 of 5 – – – 1508 68.62
5 of 5 0.34 0.44 0.70 2176 72.53

Adv-samp
1 of 5 – – – 1616 73.92
5 of 5 0.41 0.55 0.51 2671 79.84

Human 1 of 5 – – – 3347 92.80
captions 5 of 5 0.53 0.74 0.20 7253 95.05

Table 4: Diversity Statistics described in Section 5.1.
Higher values correspond to more diversity in all except
mBleu-4, where lower is better.

Adv-
bs

a group of friends en-
joying a dinner at the
restauarant

several cows in their
pen at the farm

A dog is trying to get
something out of the
snow

Base-
bs

a group of people sitting
around a wooden table

a herd of cattle stand-
ing next to each other

a couple of dogs that
are in the snow

Figure 5: Some qualitative examples comparing comparing
captions generated by the our model to the baseline model.

frequent n-grams (ratio>1.0) from the training set and
under-uses less frequent ones (ratio<1.0). This trend is
seen in all the three plots, with more frequent tri-grams par-
ticularly prone to overuse. It can also be observed in the
histogram plots of the count ratios, that the baseline model
does a poor job of matching the statistics of the test set.

Our adversarial model does a much better job in match-
ing these statistics. The histogram of the uni-gram count
ratios are clearly closer to that of test reference captions.
It does not seem to be significantly overusing the popular
words, but there is still a trend of under utilizing some of
the rarer words. It is however clearly better than the baseline
model in this aspect. The improvement is less pronounced
with the bi- and tri-grams, but still present.

Another clear benefit from using the adversarial training
is observed in terms of diversity in the captions produced by
the model. The diversity in terms of both global statistics
and per image diversity statistics is much higher in captions
produced by the adversarial models compared to the base-
line models. This result is presented in Table 4. We can see
that the vocabulary size approximately doubles from 1085
in the baseline model to 2176 in the adversarial model us-
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Figure 6: Vocabulary size as a function of word counts.

ing beamsearch. A similar trend is also seen comparing the
sampling variants. As expected more diversity is achieved
when sampling from the adversarial model instead of us-
ing beamsearch with vocabulary size increasing to 2671 in
Adv-samp. The effect of this increased diversity can be in
the qualitative examples shown in Figure 5. More qualita-
tive samples are included in the supplementary material.

We can also see that the adversarial model learns to
construct significantly more novel sentences compared to
the baseline model with Adv-bs producing novel captions
72.53% of the time compared to just 44.27% by the beam-
bs. All three per-image diversity statistics also improve in
the adversarial models indicating that they can produce a
more diverse set of captions for any input image.

Table 4 also shows the diversity statistics on the refer-
ence captions on the test set. This shows that although ad-
versarial models do considerably better than the baseline,
there is still a gap in diversity statistics when compared to
the human written captions, especially in vocabulary size.

Finally, Figure 6 plots the vocabulary size as a function
of word count threshold, k. We see that the curve for the ad-
versarial model better matches the human written captions
compared to the baseline for all values of k. This illustrates
that the gains in vocabulary size in adversarial models does
not arise from using words with specific frequency, but is
instead distributed evenly across word frequencies.

5.4. Ablation Study

We conducted experiments to understand the importance
of different components of our architecture. The results are
presented in Table 5. The baseline model for this experi-
ment uses VGG [37] features as xp input and is trained us-
ing maximum likelihood loss and is shown in the first row
of Table 5. The other four models use adversarial training.

Comparing rows 1 and 2 of Table 5, we see that adversar-
ial training with a discriminator evaluating a single caption
does badly. Both the diversity and Meteor score drop com-
pared to the baseline. In this setting the generator can get
away with producing one good caption (mode collapse) for

Image
Feature

Evalset
size (p)

Feature
Matching

Meteor Div-2 Vocab.
Size

VGG baseline 0.247 0.44 1367

VGG 1 No 0.179 0.40 812
VGG 5 No 0.197 0.52 1810
VGG 5 yes 0.207 0.59 2547
ResNet 5 yes 0.236 0.55 2671

Table 5: Performance comparison of various configurations
of the adversarial caption generator on the validation set.

an image as the discriminator is unable to penalize the lack
of diversity in the generator.

However, comparing rows 1 and 3, we see that adver-
sarial training using a discriminator evaluating 5 captions
simultaneously does much better in terms of Div-2 and vo-
cabulary size. Adding feature matching loss further im-
proves the diversity and also slightly improves accuracy
in terms of Meteor score. Thus simultaneously evaluating
multiple captions and using feature matching loss allows us
to alleviate mode collapse generally observed in GANs.

Upgrading to the ResNet[15] increases the Meteor score
greatly and slightly increases the vocabulary size. ResNet
features provide richer visual information which is used by
the generator to produce diverse but still correct captions.

We also notice that the generator learns to ignore the in-
put noise. This is because there is sufficient stochasticity in
the generation process due to sequential sampling of words
and thus the generator doesn’t need the additional noise in-
put to increase output diversity. Similar observation was
reported in other conditional GAN architectures [18, 29]

6. Conclusions

We have presented an adversarial caption generator
model which is explicitly trained to generate diverse cap-
tions for images. We achieve this by utilizing a discrimina-
tor network designed to promote diversity and use the ad-
versarial learning framework to train our generator. Results
show that our adversarial model produces captions which
are diverse and match the statistics of human generated cap-
tions significantly better than the baseline model. The ad-
versarial model also uses larger vocabulary and is able to
produce significantly more novel captions. The increased
diversity is achieved while preserving accuracy of the gen-
erated captions, as shown through a human evaluation.

Acknowledgements

This research was supported by the German Research
Foundation (DFG CRC 1223) and by the Berkeley Artifi-
cial Intelligence Research (BAIR) Lab.



References
[1] P. Anderson, B. Fernando, M. Johnson, and S. Gould. Spice:

Semantic propositional image caption evaluation. In Euro-
pean Conference on Cmoputer Vision (ECCV), 2016. 6

[2] J. Andreas and D. Klein. Reasoning about pragmatics with
neural listeners and speakers. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Processing
(EMNLP), 2016. 4

[3] M. Arjovsky and L. Bottou. Towards principled methods for
training generative adversarial networks. In Proceedings of
the International Conference on Learning Representations
(ICLR), 2017. 5

[4] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. Scheduled
sampling for sequence prediction with recurrent neural net-
works. In Advances in Neural Information Processing Sys-
tems (NIPS), 2015. 2

[5] X. Chen, T.-Y. L. Hao Fang, R. Vedantam, S. Gupta, P. Dollr,
and C. L. Zitnick. Microsoft COCO captions: Data collec-
tion and evaluation server. arXiv preprint arxiv:1504.00325,
2015. 5

[6] COCO. Microsoft COCO Image Captioning Chal-
lenge. https://competitions.codalab.org/
competitions/3221#results, 2017. 1

[7] B. Dai, D. Lin, R. Urtasun, and S. Fidler. Towards diverse
and natural image descriptions via a conditional gan. 2017.
3, 4

[8] M. Denkowski and A. Lavie. Meteor universal: Language
specific translation evaluation for any target language. ACL
2014, 2014. 1, 6

[9] E. L. Denton, S. Chintala, R. Fergus, et al. Deep genera-
tive image models using a laplacian pyramid of adversarial
networks. In Advances in Neural Information Processing
Systems (NIPS), 2015. 2

[10] J. Devlin, H. Cheng, H. Fang, S. Gupta, L. Deng, X. He,
G. Zweig, and M. Mitchell. Language models for image cap-
tioning: The quirks and what works. In Proceedings of the
Annual Meeting of the Association for Computational Lin-
guistics (ACL), 2015. 2

[11] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach,
S. Venugopalan, K. Saenko, and T. Darrell. Long-term recur-
rent convolutional networks for visual recognition and de-
scription. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2015. 2, 3

[12] J. Donahue, L. A. Hendricks, M. Rohrbach, S. Venugopalan,
S. Guadarrama, K. Saenko, and T. Darrell. Long-term recur-
rent convolutional networks for visual recognition and de-
scription. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2016. 4

[13] A. Farhadi, M. Hejrati, M. Sadeghi, P. Young, C. Rashtchian,
J. Hockenmaier, and D. Forsyth. Every picture tells a story:
Generating sentences from images. In Proceedings of the
European Conference on Computer Vision (ECCV), 2010. 2

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In Advances in Neural Information
Processing Systems (NIPS), 2014. 2, 3

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2016. 5, 8

[16] L. A. Hendricks, Z. Akata, M. Rohrbach, J. Donahue,
B. Schiele, and T. Darrell. Generating visual explanations.
In Proceedings of the European Conference on Computer Vi-
sion (ECCV), 2016. 4

[17] F. Huszar. How (not) to train your generative model:
Scheduled sampling, likelihood, adversary? arXiv preprint
arXiv:1511.05101, 2015. 2

[18] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image
translation with conditional adversarial networks. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017. 8

[19] U. Jain, Z. Zhang, and A. Schwing. Creativity: Generating
diverse questions using variational autoencoders. 2017. 2

[20] E. Jang, S. Gu, and B. Poole. Categorical reparameteriza-
tion with gumbel-softmax. Proceedings of the International
Conference on Learning Representations (ICLR), 2016. 2, 3,
4

[21] A. Karpathy and L. Fei-Fei. Deep visual-semantic align-
ments for generating image descriptions. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015. 2, 5

[22] G. Kulkarni, V. Premraj, V. Ordonez, S. Dhar, S. Li, Y. Choi,
A. C. Berg, and T. L. Berg. Babytalk: Understanding and
generating simple image descriptions. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 35(12), 2013.
2

[23] J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan. A
diversity-promoting objective function for neural conversa-
tion models. In Proceedings of the Conference of the North
American Chapter of the Association for Computational Lin-
guistics (NAACL), 2016. 1, 2

[24] J. Li, W. Monroe, T. Shi, A. Ritter, and D. Jurafsky. Ad-
versarial learning for neural dialogue generation. In Pro-
ceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2017. 2, 3, 4, 5

[25] S. Liu, Z. Zhu, N. Ye, S. Guadarrama, and K. Murphy. Opti-
mization of image description metrics using policy gradient
methods. arXiv preprint arXiv:1612.00370, 2016. 2

[26] J. Lu, C. Xiong, D. Parikh, and R. Socher. Knowing when
to look: Adaptive attention via a visual sentinel for image
captioning. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017. 6

[27] P. Luc, C. Couprie, S. Chintala, and J. Verbeek. Seman-
tic segmentation using adversarial networks. In Advances
in Neural Information Processing Systems Workshops (NIPS
Workshops), 2016. 2, 3

[28] C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete
distribution: A continuous relaxation of discrete random
variables. Proceedings of the International Conference on
Learning Representations (ICLR), 2016. 2, 4

[29] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale
video prediction beyond mean square error. Proceedings of
the International Conference on Learning Representations
(ICLR), 2016. 8

https://competitions.codalab.org/competitions/3221#results
https://competitions.codalab.org/competitions/3221#results


[30] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-
sentation learning with deep convolutional generative adver-
sarial networks. Proceedings of the International Conference
on Learning Representations (ICLR), 2016. 2

[31] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba. Sequence
level training with recurrent neural networks. In Proceedings
of the International Conference on Learning Representations
(ICLR), 2016. 2

[32] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-
wards real-time object detection with region proposal net-
works. In Advances in Neural Information Processing Sys-
tems (NIPS), 2015. 5

[33] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel.
Self-critical sequence training for image captioning. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017. 2

[34] M. Rohrbach, W. Qiu, I. Titov, S. Thater, M. Pinkal, and
B. Schiele. Translating video content to natural language
descriptions. In Proceedings of the IEEE International Con-
ference on Computer Vision (ICCV), 2013. 2

[35] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-
ford, and X. Chen. Improved techniques for training gans. In
Advances in Neural Information Processing Systems (NIPS),
2016. 4, 5

[36] R. Shetty, H. R-Tavakoli, and J. Laaksonen. Exploiting
scene context for image captioning. In ACMMM Vision and
Language Integration Meets Multimedia Fusion Workshop,
2016. 3, 5

[37] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In Proceedings
of the International Conference on Learning Representations
(ICLR), 2015. 5, 8

[38] R. S. Sutton and A. G. Barto. Reinforcement learning: An
introduction, volume 1. MIT press Cambridge, 1998. 4

[39] R. Vedantam, C. Lawrence Zitnick, and D. Parikh. CIDEr:
Consensus-based image description evaluation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015. 1

[40] A. K. Vijayakumar, M. Cogswell, R. R. Selvaraju, Q. Sun,
S. Lee, D. Crandall, and D. Batra. Diverse beam search: De-
coding diverse solutions from neural sequence models. arXiv
preprint arXiv:1610.02424, 2016. 1, 2

[41] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and
tell: A neural image caption generator. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2015. 2, 3

[42] Z. Wang, F. Wu, W. Lu, J. Xiao, X. Li, Z. Zhang, and
Y. Zhuang. Diverse image captioning via grouptalk. In Pro-
ceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 2016. 2

[43] R. J. Williams. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8(3-4), 1992. 3, 4

[44] T. Yao, Y. Pan, Y. Li, Z. Qiu, and T. Mei. Boosting image
captioning with attributes. arXiv preprint arXiv:1611.01646,
2016. 6

[45] Q. You, H. Jin, Z. Wang, C. Fang, and J. Luo. Image
captioning with semantic attention. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2016. 6

[46] L. Yu, W. Zhang, J. Wang, and Y. Yu. SeqGAN: sequence
generative adversarial nets with policy gradient. Proceedings
of the Conference on Artificial Intelligence (AAAI), 2016. 3,
4


