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Abstract
Recommender systems are facing scrutiny because of their
growing impact on the opportunities we have access to. Cur-
rent audits for fairness are limited to coarse-grained parity
assessments at the level of sensitive groups. We propose to
audit for envy-freeness, a more granular criterion aligned with
individual preferences: every user should prefer their recom-
mendations to those of other users. Since auditing for envy
requires to estimate the preferences of users beyond their
existing recommendations, we cast the audit as a new pure
exploration problem in multi-armed bandits. We propose a
sample-efficient algorithm with theoretical guarantees that it
does not deteriorate user experience. We also study the trade-
offs achieved on real-world recommendation datasets.

1 Introduction
Recommender systems shape the information and opportu-
nities available to us, as they help us prioritize content from
news outlets and social networks, sort job postings, or find
new people to connect with. To prevent the risk of unfair
delivery of opportunities across users, substantial work has
been done to audit recommender systems (Sweeney 2013; As-
plund et al. 2020; Imana et al. 2021). For instance, Datta et al.
(2015) found that women received fewer online ads for high-
paying jobs than equally qualified men, while Imana et al.
(2021) observed different delivery rates of ads depending on
gender for different companies proposing similar jobs.

The audits above aim at controlling for the possible accept-
able justifications of the disparities, such as education level
in job recommendation audits. Yet, the observed disparities
in recommendation do not necessarily imply that a group
has a less favorable treatment: they might as well reflect that
individuals of different groups tend to prefer different items.
To strengthen the conclusions of the audits, it is necessary to
develop methods that account for user preferences. Audits for
equal satisfaction between user groups follow this direction
(Mehrotra et al. 2017), but they also have limitations. For
example, they require interpersonal comparisons of measures
of satisfaction, a notoriously difficult task (Sen 1999).

We propose an alternative approach to incorporating user
preferences in audits which focuses on envy-free recommen-
dations: the recommender system is deemed fair if each user
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prefers their recommendation to those of all other users. Envy-
freeness allows a system to be fair even in the presence of
disparities between groups as long as these are justified by
user preferences. On the other hand, if user B systematically
receives better opportunities than user A from A’s perspective,
the system is unfair. The criterion does not require interper-
sonal comparisons of satisfaction, since it relies on compar-
isons of different recommendations from the perspective of
the same user. Similar fairness concepts have been studied in
classification tasks under the umbrella of preference-based
fairness (Zafar et al. 2017; Kim et al. 2019; Ustun et al.
2019). Envy-free recommendation is the extension of these
approaches to personalized recommender systems.

Compared to auditing for recommendation parity or equal
satisfaction, auditing for envy-freeness poses new challenges.
First, envy-freeness requires answering counterfactual ques-
tions such as “would user A get higher utility from the rec-
ommendations of user B than their own?”, while searching
for the users who most likely have the best recommendations
from A’s perspective. This type of question can be answered
reliably only through active exploration, hence we cast it
in the framework of pure exploration bandits (Bubeck et al.
2009). To make such an exploration possible, we consider
a scenario where the auditor is allowed to replace a user’s
recommendations with those that another user would have
received in the same context. Envy, or the absence thereof,
is estimated by suitably choosing whose recommendations
should be shown to whom. While this scenario is more in-
trusive than some black-box audits of parity, auditing for
envy-freeness provides a more compelling guarantee on the
wellbeing of users subject to the recommendations.

The second challenge is that active exploration requires
randomizing the recommendations, which in turn might alter
the user experience. In order to control this cost of the audit
(in terms of user utility), we follow the framework of con-
servative exploration (Wu et al. 2016; Garcelon et al. 2020),
which guarantees a performance close to the audited system.
We provide a theoretical analysis of the trade-offs that arise,
in terms of the cost and duration of the audit (measured in
the number of timesteps required to output a certificate).

Our technical contributions are twofold. (1) We provide
a novel formal analysis of envy-free recommender systems,
including a comparison with existing item-side fairness cri-
teria and a probabilistic relaxation of the criterion. (2) We



cast the problem of auditing for envy-freeness as a new pure
exploration problem in bandits with conservative exploration
constraints, and propose a sample-efficient auditing algorithm
which provably maintains, throughout the course of the audit,
a performance close to the audited system.

We discuss the related work in Sec. 2. Envy-free recom-
mender systems are studied in Sec. 3. In Sec. 4, we present
the bandit-based auditing algorithm. In Sec. 5, we investigate
the trade-offs achieved on real-world datasets.

2 Related work
Fair recommendation The domain of fair machine learn-
ing is organized along two orthogonal axes. The first axis is
whether fairness is oriented towards groups defined by pro-
tected attributes (Barocas and Selbst 2016), or rather oriented
towards individuals (Dwork et al. 2012). The second axis
is whether fairness is a question of parity (predictions [or
prediction errors] should be invariant by group or individ-
ual) (Corbett-Davies and Goel 2018; Kusner et al. 2017), or
preference-based (predictions are allowed to be different if
they faithfully reflect the preferences of all parties) (Zafar
et al. 2017; Kim et al. 2019; Ustun et al. 2019). Our work
takes the perspective of envy-freeness, which follows the
preference-based approach and is aimed towards individuals.

The literature on fair recommender systems covers two
problems: auditing existing systems, and designing fair rec-
ommendation algorithms. Most of the auditing literature fo-
cused on group parity in recommendations (Hannak et al.
2014; Lambrecht and Tucker 2019), and equal user utility
(Mehrotra et al. 2017; Ekstrand et al. 2018), while our audit
for envy-freeness focuses on whether personalized results are
aligned with (unknown) user preferences. On the designing
side, Patro et al. (2020); Ilvento, Jagadeesan, and Chawla
(2020) cast fair recommendation as an allocation problem,
with criteria akin to envy-freeness. They do not address the
partial observability of preferences, so they cannot guaran-
tee user-side fairness without an additional certificate that
the estimated preferences effectively represent the true user
preferences. Our work is thus complementary to theirs.

While we study fairness for users, recommender systems
are multi-sided (Burke 2017; Patro et al. 2020), thus fair-
ness can also be oriented towards recommended items (Celis,
Straszak, and Vishnoi 2017; Biega et al. 2018; Geyik, Ambler,
and Kenthapadi 2019).

Multi-armed bandits In pure exploration bandits (Bubeck
et al. 2009; Audibert and Bubeck 2010), an agent has to iden-
tify a specific set of arms after exploring as quickly as pos-
sible, without performance constraints. Our setting is close
to threshold bandits (Locatelli, Gutzeit, and Carpentier 2016;
Kano et al. 2019) where the goal is to find arms with better
performance than a given baseline. Outside pure exploration,
in the regret minimization setting, conservative exploration
(Wu et al. 2016) enforces the anytime average performance
to be not too far worse than that of a baseline arm.

In our work, the baseline is unknown – it is the current
recommender system – and the other “arms” are other users’
policies. The goal is to make the decision as to whether
an arm is better than the baseline, while not deteriorating

performance compared to the baseline. We thus combine
pure exploration and conservative constraints.

Existing work on fairness in exploration/exploitation
(Joseph et al. 2016; Jabbari et al. 2017; Liu et al. 2017) is
different from ours because unrelated to personalization.

Fair allocation Envy-freeness was first studied in fair allo-
cation (Foley 1967) in social choice. Our setting is different
because: a) the same item can be given to an unrestricted
number of users, and b) true user preferences are unknown.

3 Envy-free recommendations
3.1 Framework
There are M users, and we identify the set of users with
[M ] = {1, . . . ,M}. A personalized recommender system
has one stochastic recommendation policy πm per user m.
We denote by πm(a|x) the probability of recommending item
a ∈ A for user m ∈ [M ] in context x ∈ X . We assume that
X andA are finite to simplify notation, but this has no impact
on the results. We consider a synchronous setting where at
each time step t, the recommender system observes a context
xmt ∼ qm for each user, selects an item amt ∼ πm(.|xmt )
and observes reward rmt ∼ νm(amt |xmt ) ∈ [0, 1]. We denote
by ρm(a|x) the expected reward for user m and item a in
context x, and, for any recommendation policy π, um(π) is
the utility of m for π:

um(π) = Ex∼qmEa∼π(.|x)Er∼νm(a|x) [r]

=
∑
x∈X

∑
a∈A

qm(x)π(a|x)ρm(a|x) (1)

We assume that the environment is stationary: the context
and reward distributions qm and νm, as well as the policies
πm are fixed. Even though in practice policies evolve as
they learn from user interactions and user needs change over
time, we leave the study of non-stationarities for future work.
The stationary assumption approximately holds when these
changes are slow compared to the time horizon of the audit,
which is reasonable when significant changes in user needs
or recommendation policies take e.g., weeks. Our approach
applies when items a are single products as well as when
items are structured objects such as rankings. Examples of
(context x, item a) pairs include: x is a query to a search
engine and a is a document or a ranking of documents, or x
is a song chosen by the user and a a song to play next or an
entire playlist. Remember, our goal is not to learn the user
policies πm, but rather to audit existing πms for fairness.

3.2 ε-envy-free recommendations
Existing audits for user-side fairness in recommender systems
are based on two main criteria:
1. recommendation parity: the distribution of recommended

items should be equal across (groups of) users,
2. equal user utility: all (groups of) users should receive the

same utility, i.e. ∀m,n, um(πm) = un(πn).

There are two ways in which these criteria conflict with the
goal of personalized recommender systems to best accomo-
date user preferences. First, recommendation parity does not



control for disparities that are aligned with user preferences.
Second, equal user utility drives utility down as soon as users
have different best achievable utilities. To address these short-
falls, we propose envy-freeness as a complementary diagno-
sis for the fairness assessment of personalized recommender
systems. In this context, envy-freeness requires that users
prefer their recommendations to those of any other user:

Definition 3.1. Let ε≥0. A recommender system is ε-envy-
free if: ∀m,n ∈ [M ] : um(πn) ≤ ε+ um(πm).

Envy-freeness, originally studied in fair allocation (Foley
1967) and more recently fair classification (Balcan et al. 2018;
Ustun et al. 2019; Kim et al. 2019), stipulates that it is fair
to apply different policies to different individuals or groups
as long as it benefits everyone. Following this principle, we
consider the personalization of recommendations as fair only
if it better accommodates individuals’ preferences. In con-
trast, we consider unfair the failure to give users a better
recommendation when one such is available to others.

Unlike parity or equal utility, envy-freeness is in line with
giving users their most preferred recommendations (see Sec.
3.3). Another improvement from equal user utility is that it
does not involve interpersonal utility comparisons.

Envy can arise from a variety of sources, for which we
provide concrete examples in our experiments (Sec. 5.1).
Remark. We discuss an immediate extension of envy-freeness
from individuals to groups of users in App. B, in the spe-
cial case where groups have homogeneous preferences and
policies. Defining group envy-free recommendations in the
general case is nontrivial and left for future work.

3.3 Compatibility of envy-freeness
Optimal recommendations are envy-free1 Let πm,∗ ∈
argmaxπ u

m(π) denote an optimal recommendation policy
for m. Then the optimal recommender system (πm,∗)m∈M
is envy-free since: um(πm,∗) = maxπ u

m(π) ≥ um(πn,∗).
In contrast, achieving equal user utility in general can only
be achieved by decreasing the utility of best-served users for
the benefit of no one. It is also well-known that achieving
parity in general requires to deviate from optimal predictions
(Barocas, Hardt, and Narayanan 2018).

Envy-freeness vs. item-side fairness Envy-freeness is a
user-centric notion. Towards multisided fairness (Burke
2017), we analyze the compatibility of envy-freeness with
item-side fairness criteria for rankings from Singh and
Joachims (2018), based on sensitive categories of items (de-
notedA1, ...,AS). Parity of exposure prescribes that for each
user, the exposure of an item category should be proportional
to the number of items in that category. In Equity of expo-
sure2, the exposure of item categories should be proportional
to their average relevance to the user.

The optimal policies under parity and equity of expo-
sure constraints, denoted respectively by (πm,par)Mm=1 and

1App.A shows the difference between envy-freeness and opti-
mality certificates.

2Singh and Joachims (2018) use the terminology of demographic
parity (resp. disparate treatment) for what we call parity (resp. eq-
uity) of exposure. Our use of “equity” follows Biega et al. (2018).

(πm,eq)Mm=1, are defined given user m and context x as:

(parity) πm,par(.|x) = argmax
p:A→[0,1]∑
a p(a)=1

∑
a∈A

p(a)ρm(a|x)

u.c. ∀s ∈ [S],
∑
a∈As

p(a) =
|As|
|A|

. (2)

Optimal policies under equity of exposure are defined simi-

larly3, but the constraints are ∀s,
∑
a∈As

p(a) =

∑
a∈As

ρm(a|x)∑
a∈A

ρm(a|x) .

We show their relation to envy-freeness:
Proposition 1. With the above notation:
• the policies (πm,par)Mm=1 are envy-free, while
• the policies (πm,eq)Mm=1 are not envy-free in general.

Optimal recommendations under parity of exposure are
envy-free because the parity constraint (2) is the same for
all users. Given two users m and n, πm,par is optimal for m
under (2) and πn,par satisfies the same constraint, so we have
um(πm,par) ≥ um(πn,par).

In contrast, the optimal recommendations under equity
of exposure are, in general, not envy-free. A first reason
is that less relevant item categories reduce the exposure of
more relevant categories: a user who prefers item a but who
also likes item b from another category envies a user who
only liked item is a. Note that amortized versions of the
criterion and other variants considering constraint averages
over user/contexts (Biega et al. 2018; Patro et al. 2020) have
similar pitfalls unless envy-freeness is explictly enforced, as
in Patro et al. (2020) who developed an envy-free algorithm
assuming the true preferences are known. For completeness,
we describe in App.A a second reason why equity of exposure
constraints create envy, and an edge case where they do not.

3.4 Probabilistic relaxation of envy-freeness
Envy-freeness, as defined in Sec. 3.2, (a) compares the rec-
ommendations of a target user to those of all other users, and
(b) these comparisons must be made for all users. In practice,
as we show, this means that the sample complexity of the
audit increases with the number of users, and that all users
must be part of the audit.

In practice, it is likely sufficient to relax both conditions
on all users to give a guarantee for most recommendation
policies and most users. Given two small probabilities λ and
γ, the relaxed criterion we propose requires that for at least
1−λ fraction of users, the utility of users for their own policy
is in the top-γ% of their utilities for anyone else’s policy. The
formal definition is given below. The fundamental observa-
tion, which we prove in Th. 2 in Sec. 4.5, is that the sample
complexity of the audit and the number of users impacted
by the audit are now independent on the total number of
users. We believe that these relaxed criteria are thus likely to
encourage the deployment of envy-free audits in practice.

3The original criterion (Singh and Joachims 2018, Eq. 4) would
be written in our case as ∀s, s′ ∈ [S], 1

|As|
∑

a∈As p(a) =
1

|As′ |
∑

a∈As′
p(a), which is equivalent to (2). A similar remark

holds for the equity constraint.



Figure 1: Auditing scenario: the auditor either shows the user
their recommendation in the current rec. system, or explores
by showing the recommendation given to another user.

Definition 3.2. Let ε, γ, λ≥ 0. Let UM denote the discrete
uniform distribution over [M ]. A user m is (ε, γ)-envious if:

Pn∼UM
[
um(πm) + ε < um(πn)

]
> γ.

A recommender system is (ε, γ, λ)-envy-free if at least a
(1− λ) fraction of its users are not (ε, γ)-envious.

4 Certifying envy-freeness
4.1 Auditing scenario
The envy-freeness auditor must answer the counterfactual
question: “had user m been given the recommendations of
user n, would m get higher utility?”. The main challenge
is that the answer requires to access to user preferences,
which are only partially observed since users only interact
with recommended items. There is thus a need for an active
exploration process that recommends items which would not
have been recommended otherwise.

To make such an exploration possible, we consider the
following auditing scenario: at each time step t, the auditor
chooses to either (a) give the user a “normal” recommenda-
tion, or (b) explore user preferences by giving the user a rec-
ommendation from another user (see Fig. 1) . This scenario
has the advantage of lightweight infrastructure requirements,
since the auditor only needs to query another user’s policy,
rather than implementing a full recommender system within
the operational constraints of the platform. Moreover, this in-
terface is sufficient to estimate envy because envy is defined
based on the performance of other user’s policies. This type
of internal audit (Raji et al. 2020) requires more access than
usual external audits that focus on recommendation parity,
but this is necessary to explore user preferences.

We note that the auditor must make sure that this approach
follows the relevant ethical standard for randomized experi-
ments in the context of the audited system. The auditor must
also check that using other users’ recommendation policies
does not pose privacy problems. From now on, we assume
these issues have been resolved.

4.2 The equivalent bandit problem
We now cast the audit for envy-freeness as a new variant of
pure exploration bandit problems. We first focus on auditing
envy for a single target user and define the corresponding
objectives, then we present our auditing algorithm. Finally
we specify how to use it for the certification of either the
exact or probabilistic envy-freeness criteria.

For a target user m, the auditor must estimate whether
um(πm) + ε ≥ um(πn), for n in a subset {n1, ..., nK} of
K users from [M ] (where K is specified later, depending

Algorithm 1: OCEF algorithm. ξt (line 4) evaluates the
conservative exploration constraint and is defined in (4).
Values for βk(t) and confidence bounds µ

k
and µk are

given in Lemma 4.
input :Confidence parameter δ, conservative exploration

parameter α, envy parameter ε
output :envy or ε−no-envy

1 S0 ← [K] // all arms except 0
2 for t=1, . . . do
3 Choose `t from St−1 // e.g., unif.sample
4 if β0(t−1)> min

k∈St−1

βk(t−1) or ξt<0 then kt ← 0

5 else kt ← `t
6 Observe context xt ∼ q, show at ∼ πkt(.|xt) and

observe rt ∼ ν(at|xt) // i.e., pull arm kt
and update conf.intervals with Lem.4

7 St ←
{
k ∈ St−1 : µk(t) > µ

0
(t) + ε

}
8 if ∃k ∈ St, µk(t) > µ0(t) then return envy
9 if St = ∅ then return ε-no-envy

10 end

on the criterion). As we first focus on auditing envy for
one target user m, we drop all superscripts m to simplify
notation. We identify {n1, ..., nK} with [K] and rename(
um(πn1), ..., um(πnK )

)
as (µ1, ..., µK). To estimate µk,

we obtain samples by making recommendations using the
policy πk and observing the reward. The remaining challenge
is to choose which user k to sample at each time step while
not deteriorating the experience of the target user too much.
Index 0 represents the target user: we use µ0 for the utility
of the user for their policy (i.e., um(πm)). Because the audit
is a special form of bandit problem, following the bandit
literature, an index of a user is called an arm, and arm 0 is
the baseline.

Objectives and evaluation metrics We present our algo-
rithm OCEF (Online Certification of Envy-Freeness) in the
next subsection. Given ε > 0 and α ≥ 0, OCEF returns either
envy or ε-no-envy and has two objectives:
1. Correctness: if OCEF returns envy, then ∃k, µk > µ0. If

OCEF returns ε-no-envy then max
k∈[K]

µk ≤ µ0 + ε.

2. Recommendation performance: during the audit, OCEF
must maintain a fraction 1−α of the baseline performance.
Denoting by ks ∈ {0, . . . ,K} the arm (group index) cho-
sen at round s, this requirement is formalized as a conser-
vative exploration constraint (Wu et al. 2016):

∀t, 1

t

t∑
s=1

µks ≥ (1− α)µ0 . (3)

We focus on the fixed confidence setting, where given
a confidence parameter δ ∈ (0, 1) the algorithm provably
satisfies both objectives with probability 1− δ. In addition,
there are two criteria to assess an online auditing algorithm:
1. Duration of the audit: the number of time-steps before the

algorithm stops.



2. Cost of the audit: the cumulative loss of rewards incurred.
Denoting the duration by τ , the cost is τµ0 −

∑τ
s=1 µks .

It is possible that the cost is negative when there is envy.
In that case, the audit increased recommendation perfor-
mance by finding better recommendations for the group.

We note the asymmetry in the return statements of the al-
gorithm: envy does not depend on ε. This asymmetry is
necessary to obtain finite worst-case bounds on the duration
and the cost of audit, as we see in Theorem 1.

Our setting had not yet been addressed by the pure ex-
ploration bandit literature, which mainly studies the iden-
tification of (ε-)optimal arms (Audibert and Bubeck 2010).
Auditing for envy-freeness requires proper strategies in order
to efficiently estimate the arm performances compared to the
unknown baseline. Additionally, by making the cost of the au-
dit a primary evaluation criterion, we also bring the principle
of conservative exploration to the pure exploration setting,
while it had only been studied in regret minimization (Wu
et al. 2016). In our setting, conservative constraints involve
nontrivial trade-offs between the duration and cost of the
audit. We now present the algorithm, and then the theoretical
guarantees for the objectives and evaluation measures.

4.3 The OCEF algorithm
OCEF is described in Alg. 1. It maintains confidence inter-
vals on arm performances (µk)Kk=0. Given the confidence
parameter δ, the lower and upper bounds on µk at time step
t, denoted by µ

k
(t) and µk(t), are chosen so that with prob-

ability at least 1 − δ, we have ∀k, t, µk ∈ [µ
k
(t), µk(t)]. In

the algorithm, βk(t) = (µk(t)−µ
k
(t))/2. As Jamieson et al.

(2014), we use anytime bounds inspired by the law of the
iterated logarithm. These are given in Lem. 4 in App. E.

OCEF maintains an active set St of all arms in [K] (i.e.,
excluding the baseline) whose performance are not confi-
dently less than µ0 + ε. It is initialized to S0 = [K] (line
1). At each round t, the algorithm selects an arm `t ∈ St
(line 3). Then, depending on the state of the conservative ex-
ploration constraint (described later), the algorithm pulls kt,
which is either `t or the baseline (lines 4-6). After observing
the reward rt, the confidence interval of µ`t is updated, and
all active arms that are confidently worse than the baseline
plus ε are de-activated (line 7). The algorithm returns envy
if an arm k is confidently better than the baseline (line 8),
returns ε-no-envy if there are no more active arms, (line 9)
or continues if neither of these conditions are met.

Conservative exploration To deal with the conservative
exploration constraint (3), we follow (Garcelon et al. 2020).
Denoting At = {s ≤ t : ks 6= 0} the time steps at
which the baseline was not pulled, we maintain a confi-
dence interval such that with probability ≥ 1 − δ, we have
∀t > 0,

∣∣∑
s∈At(µks − rs)

∣∣ ≤ Φ(t). The formula for Φ is
given in Lem. 6 in App. E. This confidence interval is used
to estimate whether the conservative constraint (3) is met at
round t as follows. First, let us denote by Nk(t) the number
of times arm k has been pulled until t, and notice that (3) is
equivalent to

∑
s∈At µks − ((1−α)t−N0(t))µ0 ≥ 0. After

choosing `t (line 3), we use the lower bound on
∑
s∈At µks

and the upper bound for µ0 to obtain a conservative estimate
of (3). Using τ = t− 1, this leads to:

ξt =
∑
s∈Aτ

rs − Φ(t) + µ
`t
(τ) + (N0(τ)− (1− α)t)µ0(τ) . (4)

Then, as long as the confidence intervals hold, pulling `t
does not break the constraint (3) if ξt ≥ 0. The algorithm
thus pulls the baseline arm when ξt < 0. To simplify the
theoretical analysis, OCEF also pulls the baseline if it does
not have the tightest confidence interval (lines 4-6).

4.4 Analysis
The main theoretical result of the paper is the following:
Theorem 1. Let ε ∈ (0, 1], α ∈ (0, 1], δ ∈ (0, 1

2 ) and ηk =

max(µk−µ0, µ0+ε−µk) and hk = max(1, 1
ηk

).Using µ, µ
and Φ given in Lemmas 4 and 6 (App. E), OCEF achieves
the following guarantees with probability ≥ 1− δ:
• OCEF is correct and satisfies the conservative constraint

on the recommendation performance (3).

• The duration is in O
( K∑
k=1

hk log
(K log(Khk/δηk)

δ

)
min(αµ0, ηk)

)
.

• The cost is inO
( ∑
k:µk<µ0

(µ0−µk)hk
ηk

log
(K log(Khk/δηk))

δ

))
.

The important problem-dependent quantity ηk is the gap
between the baseline and other arms k. It is asymmetric
depending on whether the arm is better than the baseline
(µk−µ0) or the converse (µ0−µk + ε) because the stopping
condition for envy does not depend on ε. This leads to a
worst case that only depends on ε, since ηk = max(µk −
µ0, µ0 − µk + ε) ≥ ε

2 , while if the condition was symmetric,
we would have possibly unbounded duration when µk = µ0+
ε for some k 6= 0. Overall, ignoring log terms, we conclude
that when αµ0 is large, the duration is of order

∑
k

1
η2k

and

the cost is of order
∑
k

1
ηk

. This becomes
∑
k

1
αµ0ηk

and∑
k

1
ηk

when αµ0 is small compared to ηk. This means that
the conservative constraint has an impact mostly when it is
strict. It also means that when either αµ0 � ηk or η2

k � ηk
the cost can be small even when the duration is fairly high.

4.5 Full audit
Exact criterion To audit for envy-freeness on the full sys-
tem, we apply OCEF to all M users simultaneously and with
K = M , meaning that the set of arms corresponds to all
the users’ policies. By the union bound, using δ′ = δ

M in-
stead of δ in OCEF’s confidence intervals, the guarantees of
Theorem 1 hold simultaneously for all users.

For recommender systems with large user databases, the
duration of OCEF thus becomes less manageable as M in-
creases. We show how to use OCEF to certify the probabilis-
tic criterion with guarantees that do not depend on M .

Probabilistic criterion The AUDIT algorithm for auditing
the full recommender system is described in Alg. 2. AUDIT
samples a subset of users and a subset of arms for each sam-
pled user. Then it applies OCEF to each user simultaneously



Algorithm 2: AUDIT algorithm. The algorithm ei-
ther outputs a probabilistic certificate of (ε, γ, λ)-envy-
freeness, or evidence of envy.

input :Confidence parameter δ, conservative exploration
parameter α, envy parameters (ε, γ, λ)

output :(ε, γ, λ)-envy-free or not-envy-free
1 Draw a sample S̃ of M̃ =

⌈
log(3/δ)

λ

⌉
users from [M ]

2 for each user m ∈ S̃ in parallel do
3 Sample K =

⌈
log(3M̃/δ)

log(1/(1−γ))

⌉
arms from [M ] \ {m}

4 Run OCEF
(
δ

3M̃
, α, ε

)
for user m with the K arms

5 if OCEF outputs envy then
return not-envy-free

6 end
7 return (ε, γ, λ)-envy-free

with their sampled arms. It stops either upon finding an en-
vious user, or when all sampled users are certified with ε-no
envy. Again there is a necessary asymmetry in the return state-
ments of AUDIT to obtain finite worst-case bounds whether
or not the system is envy-free.

The number of target users M̃ and arms K in Alg. 2 are
chosen so that ε-envy-freeness w.r.t. the sampled users and
arms translates into (ε, γ, λ)-envy-freeness. Combining these
random approximation guarantees with Th. 1, we get:

Theorem 2. Let M̃ =
⌈

log(3/δ)
λ

⌉
and K =

⌈
log(3M̃/δ)

log(1/(1−γ))

⌉
.

With probability 1 − δ, AUDIT is correct, it satisfies the
conservative constraint (3) for all M̃ target users, and the
bounds on duration and cost from Th. 1 (using δ

3M̃
instead

of δ) are simultaneously valid.

Importantly, in contrast to naively using OCEF to compare
all users against all, the audit for the probabilistic relaxation
of envy-freeness only requires to query a constant number of
users and policies that does not depend on the total number
of users M . Therefore, the bounds on duration and cost are
also independent of M , which is a drastic improvement.

5 Experiments
We present experiments describing sources of envy (Sec.
5.1) and evaluating the auditing algorithm OCEF on two
recommendation tasks (Sec. 5.2).

We create a music recommendation task based on the
Last.fm dataset from Cantador et al. (2011), which contains
the music listening histories of 1.9k users. We select the
2500 items most listened to, and simulate ground truth user
preferences by filling in missing entries with a popular ma-
trix completion algorithm for implicit feedback data4. We
also address movie recommendation with the MovieLens-1M
dataset (Harper and Konstan 2015), which contains ratings
of movies by real users, and from which we extract the top
2000 users and 2500 items with the most ratings. We binarize

4Using the Python library Implicit: https://github.com/benfred/
implicit (MIT License).

Figure 2: Envy from model mispecification on MovieLens
and Lastfm: envy is high when the latent factor model is mis-
pecified, but it decreases as the number of factors increases.

ratings by setting those < 3 to zero, and as for Last.fm we
complete the matrix to generate ground truth preferences.

For both recommendation tasks, the simulated recom-
mender system estimates relevance scores using low-rank
matrix completion (Bell and Sejnowski 1995) on a train-
ing sample of 20% of the ground truth preferences, where
the rated / played items are sampled uniformly at random.
Recommendations are given by a fixed-temperature softmax
policy over the predicted scores. We generate binary rewards
using a Bernoulli distribution with expectation given by our
ground truth preferences.

5.1 Sources of envy
We consider two measures of the degree of envy. Denoting
∆m = max( max

n∈[M ]
um(πn)− um(πm), 0), these are:

• the average envy experienced by users: 1
M

∑
m∈[M ]

∆m,

• the proportion of ε-envious users: 1
M

∑
m∈[M ]

1{∆m>ε}.

Envy from model mispecification We demonstrate that
envy arises from a standard recommendation model when the
modeling assumptions are too strong. We vary the number of
latent factors of the matrix completion model and evaluate a
softmax policy with inverse temperature set to 5. In Fig. 2,
with one latent factor we observe no envy. This is because all
users receive the same recommendations since matrix com-
pletion is then equivalent to a popularity-based recommender
system. With enough latent factors, preferences are properly
captured by the model and the degree of envy decreases. For
intermediate number of latent factors, envy is visible.

Envy from equal user utility We show that in contrast to
envy-freeness, enforcing equal user utility (EUU) degrades
user satisfaction and creates envy between users. We compute
optimal EUU policies and unconstrained optimal policies
(OPT) on the ground truth preferences of Last.fm and Movie-
Lens. Our results in Table 1 confirm the pitfalls of EUU,
while illustrating that OPT policies are always envy-free.

We discuss more sources of envy and provide the details
of these computations in App. C.

5.2 Evaluation of the auditing algorithm
Our goal is now to answer for OCEF: in practice, what is the
interplay between the required sample size per user, the cost
of exploration and the conservative exploration parameter?



Last.fm MovieLens
EUU OPT EUU OPT

Total utility 1552 1726 1671 1761
Average envy 0.10 0 0.04 0
Prop. 0.05-envious 0.61 0 0.13 0

Table 1: Optimal policies with equal user utility penalty
(EUU) vs. Unconstrained optimal policies (OPT), computed
on ground truth preferences: EUU deteriorates total utility
and creates envy between users.

Figure 3: Effect of the conservative exploration parameter α
on the duration and cost of auditing on Bandit experiments.

Bandit experiments We first study the trade-off between
duration and cost of the audit on 4 bandit problems with
Bernoulli rewards and 10 arms. In Problem 1, the baseline is
the best arm and all other arms are equally bad. In Prob. 2,
arm 1 is best and all other arms are as bad as the baseline. In
Prob.3 the baseline is best and the means of arms from best
to worst decrease rapidly. Prob. 4 uses the same means as
Prob. 3, but the means of the baseline and arm 1 are swapped,
making the baseline second-to-best. We set δ = ε = 0.05
and report results averaged over 100 trials. The details of the
bandit configurations are given in Appendix D.1.

Figure 3 plots the duration and the cost of exploration
(8) as a function of the conservative constraint parameter α
(smaller α means more conservative). The curves show that
for Problems 2, 3, and 4, duration is minimal for a non-trivial
α. This is because when α is large, all arms are pulled as
much as the baseline, so their confidence intervals are similar.
When α decreases, the baseline is pulled more, which reduces
the length of the relevant confidence intervals β0(t) + βk(t)
for all arms k. This, in turn, shortens the audit because non-
baseline arms are more rapidly discarded or declared better.
When α becomes too small, however, the additional pulls
of the baseline have no effect on β0(t) + βk(t) because it
is dominated by βk(t), so the duration only increases. This
subtle phenomenon is not captured by our analysis (Th. 1),
because the ratios β0(t)/βk(t) are difficult to track formally.

The sign of the cost of exploration depends on whether
there is envy. In Prob. 2 where the baseline has the worst per-
formance, exploration is beneficial to the user and so the cost
is negative. On all other instances however, the cost is posi-
tive. The cost of exploration is closest to 0 when α becomes
small because then β0(t) + βk(t) is the smallest possible for
a given number of pulls of k. For instance, in Prob. 4, the
cost is close to 0 when α is very small and increases with

Figure 4: Scaling w.r.t. α on MovieLens (ML) and Last.fm,
for recommender systems that are either envy-free (EF) or
with envy. There are 41 target users and 75 arms.

α. It is the case where the baseline is not the best arm but is
close to it, and there are many bad arms. When the algorithm
is very conservative, bad arms are discarded rapidly thanks
to the good estimation of the baseline performance. In this
“low-cost” regime however, the audit is significantly longer.

Appendix D.1 contains additional results when varying the
number of arms and the confidence parameter δ.

MovieLens and Last.fm experiments We now evaluate
the certification of the (absence of) envy of recommendation
policies on MovieLens (ML) and Last.fm. We consider two
recommendation policies which are softmax functions over
predicted relevance scores with inverse temperature set to
either 5 or 10. These scores were obtained by matrix com-
pletion with 48 latent factors. On both datasets, with inverse
temperature equal to 5, the softmax recommender system is
envy-free, whereas there is envy when it is set to 10. We use
AUDIT with OCEF to certify the probabilistic criterion. The
envy parameters are set to ε = δ = 0.05 and λ = γ = 0.1,
therefore we have M̃ = 41 target users and K = 75 arms,
independently on the number of users in each dataset.

The results of applying OCEF on each dataset (ML or
Last.fm) with each policy (envy-free or with envy) are shown
in Fig. 4. For the (ε, γ, λ)-envy-free policies, results are aver-
aged over 20 trials and over all the non-(ε, γ)-envious users,
whereas when there is envy, results are averaged over the
target users who are ε-envious. We observe clear tendencies
similar to those of the previous section, although the exact
sweet spots in terms of α depends on the specific configura-
tion. In particular, on envy-free configurations, the cost of the
audit is positive and grows when relaxing the conservative
constraint, while it is negative and decreasing with α when
there is envy. More details are provided in App. D.2.

6 Conclusion
We proposed the audit of recommender systems for user-side
fairness with the criterion of envy-freeness. The auditing
problem requires an explicit exploration of user preferences,
which leads to a formulation as a bandit problem with conser-
vative constraints. We presented an algorithm for this problem
and analyzed its performance experimentally.
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item cat. 1 item cat. 2 utilities

(item idx) 1 2 3 4 u1 u2

(rewards) ρ1 1 0 0.8 0.7
ρ2 0.8 0.7 1 0

(policies) π1,eq 0.4 0 0.6 0 0.88 0.92
π2,eq 0.6 0 0.4 0 0.92 0.88

Table 2: Example where the optimal recommendations under
item-side equity of exposure constraints are not user-side
fair because both users envy each other. There are 4 items,
2 item categories and 2 users. User 1 envies user 2 since
u1(π2,eq) > u1(π1,eq). Also, u2(π1,eq) > u2(π2,eq).

A (In-)Compatibility of envy-freeness
A.1 Envy-freeness vs. optimality certificates
We showed in Section 3.3 that envy-freeness is compati-
ble with optimal predictions. To understand the differences
between a certificate of envy-freeness and a certificate of op-
timality, let us denote by Π∗ = {π : ∃u satisfying (1) , π ∈
argmaxπ′ u(π′)} the set of potentially optimal policies. If
the set of users policies approximately covers the set of po-
tentially optimal policies Π∗, then an envy-free system is also
optimal. Formally, let D(π, π′) such that |u(π)− u(π′)| ≤
D(π, π′). It is easy to see that if max

π∈Π∗
min
m∈M

D(π, πm) ≤ ε̃,

then ε-envy-freeness implies ε+ ε̃-optimality.
In practice, the space of optimal policies is much larger

than the number of users (for instance, there are |A||X | op-
timal policies in our setting), so that auditing for envy is
tractable in cases where auditing for optimality is not.

A.2 Envy-freeness vs. equity of exposure
We remind the definition of optimal policies with equity of
exposure constraints from Section 3.3:

(equity) πm,eq(.|x) = argmax
p:A→[0,1]∑
a p(a)=1

∑
a∈A

p(a)ρm(a|x)

u.c. ∀s ∈ [S],
∑
a∈As

p(a) =

∑
a∈As

ρm(a|x)∑
a∈A

ρm(a|x)

The constraints should be ignored when
∑
a∈A

ρm(a|x) = 0.

Following Proposition 1 from Section 3.3, we describe
here a second source of envy when using optimal policies
with equity of exposure constraints. By the linearity of the
optimization problem for πm,eq, the policy assigns to the
best item in a category the exposure of the entire category. It
implies that categories with high average relevance have more
exposure than categories with few but highly relevant items.
Table 2 gives an example with two users and two categories
of items where both users envy each other with the optimal
recommendations under equity of exposure constraints.

In some degenerate cases though, equity of exposure poli-
cies are envy-free.

Lemma 3. If for all contexts x ∈ X , each user m ∈ [M ]
only likes a single item category Asm , i.e. ∀a ∈ A \
Asm , ρm(a|x) = 0, then the policies (πm,eq)Mm=1 are envy-
free.

Proof. We set contexts x aside to simplify notation, but the
generalization is straightforward.

We actually prove a stronger result than the lemma: if
each user m only likes a single item, then (πm,eq)Mm=1 =
(πm,∗)Mm=1, where πm,∗ is the optimal unconstrained policy
for m.

Let ams = argmaxa∈As ρ
m(a) be the favorite item in cat-

egory As for user m, then the optimal equity of exposure
constrained policies has the following analytical expression:

∀s ∈ S,∀a ∈ As, πm,eq(a) = 1{a=ams }

∑
a∈As

ρm(a′)∑
a′∈A

ρm(a′)
,

and we thus have:

um(πm,eq) =
∑
s∈[S]

ρm(ams )

∑
a∈As

ρm(a)∑
a∈A

ρm(a)
. (5)

If each user m ∈ [M ] only likes a single item category

sm ∈ [S], i.e. ∀a ∈ A\Asm , ρm(a) = 0, then

∑
a∈As

ρm(a)∑
a∈A

ρm(a) =

1{s=sm}.
Then um(πm,eq) = ρm(amsm) = maxa∈A ρ

m(a).
Then πm,eq is the optimal unconstrained policy for user

m, meaning the whole system is envy-free (cf. Sec 3.2).
From Eq. 5, we actually note that (πm,eq)Mm=1 =

(πm,∗)Mm=1 if and only if each user m equally values their fa-
vorite items in each category they like, i.e. ∀m, ∃κ > 0,∀s ∈
S, ρm(ams ) > 0⇒ ρm(ams ) = κ.

B Extension to group envy-freeness
We briefly discuss an extension of envy-free recommendation
to groups, since most of the literature on fair machine learning
focuses on systematic differences between groups. Certifying
envy-freeness at the level of groups rather than individuals
also relaxes the criterion because it requires less exploration.
Let us assume we are given a partition G of the users into
disjoint groups. For g, g′ ∈ G, we define the group utility of
g with respect to g′ as:

U(g, g′) =
1

|g|
∑
m∈g

um
(

1

|g′|
∑
n∈g′

πn
)
. (6)

Definition B.1. Given ε≥ 0, the recommender system is ε-
group-envy-free if: ∀g, g′ ∈ G, U(g, g′) ≤ U(g, g)+ε .

Group envy-freeness is equivalent to envy-freeness when
each group is a singleton. When we have prior knowledge that
user preferences and policies are homogeneous within each
group, ε-envy-freeness translates to ε′-group envy-freeness,
with ε′ ≈ ε, and the reciprocal is also true:



Proposition 2. Let ε, ε̃ > 0, and assume that for
all groups and all pairs of users m,n in the same
group g, we have sup

x∈X
‖πm(.|x)− πn(.|x)‖1 ≤ ε̃ and

sup
x∈X
‖ρm(.|x)− ρn(.|x)‖1 ≤ ε̃. Then, ε-group envy-freeness

implies (ε+ 4ε̃)-envy-freeness.

The result is natural since when all groups have users with
homogeneous preferences and policies, groups and users are
a similar entity as regards the assessment of envy-freeness.
The proof is straightforward and omitted. When groups have
heterogeneous policies, the “average policy” 1

|g|
∑
n∈g π

n is
uninformative because it does not represent any user’s policy.
Defining a notion of group utility in the general case is thus
nontrivial and left for future work.

C Sources of envy
In this section, we first list a few possible sources of envy
in recommender systems. Then we provide the details of
experiments5 which showcase one of these sources, namely
model mispecification (App. C.2).

C.1 Examples of sources of envy

Model mispecification Recommender systems often rely
on strong modeling assumptions and multi-task learning,
with methods such as low-rank matrix factorization (Koren,
Bell, and Volinsky 2009). The limited capacity of the models
(e.g., a rank that is too low) or incorrect assumptions might
leave aside users with less common preference patterns. Ap-
pendix C.2 gives a more detailed example on two simulated
recommendation tasks.

Misaligned incentives A recommender system might have
incentives to recommend some items to specific users, e.g.,
sponsored content. Envy appears when there is a mismatch
between users who like these items and users to whom they
are recommended.

Measurement bias Many hybrid recommender systems
rely on user interactions together with user-side data (Burke
2002). This includes side-information such as browsing his-
tory on third-party, partner websites. Envy arises in these
settings if there is measurement bias (Suresh and Guttag
2019), e.g., if the side information is unevenly collected for
all users (e.g., browsing patterns are different across users
and partners are aligned with the patterns of a user groups
only).

Operational constraints Regardless of incentives, recom-
mendations might need to obey additional constraints. As
described in Proposition 1, the item-side fairness constraint
of equity of exposure is an example of possible source of
(user-side) envy. The user-side fairness constraint of equal
utility also creates envy, as we showed in Sec. 5.1.

5For all our experiments, we used Python and a machine with
Intel Xeon Gold 6230 CPUs, 2.10 GHz, 1.3 MiB of cache.

In the following, we provide the details of our experiments
from Sec. 5.1 where we showcase examples of environments
with envy based on movie and music recommendation tasks.

In these experiments, we measure envy based on the quan-
tity:

∆m = max
(

max
n∈[M ]

um(πn)− um(πm), 0
)

In line with (Chevaleyre, Endriss, and Maudet 2017), we
consider two ways of measuring the degree of envy:

• the average envy experienced by users: 1
M

∑
m∈[M ]

∆m,

• the proportion of ε-envious users: 1
M

∑
m∈[M ]

1{∆m>ε}.

C.2 Setup of the experiments on envy from model
mispecification

We describe in this section the details of the experiments on
envy from mispecification presented in Section 5.1. We used
Lastfm-2k (Cantador et al. 2011), a dataset from the online
music service Last.fm6 which contains real play counts of
2k users for 19k artists, and was used by Patro et al. (2020)
who also study envy-freeness as a user-side fairness criterion.
We filter the top 2, 500 items most listened to. Following
(Johnson 2014), we pre-process the raw counts with log-
transformation. We split the dataset into train/validation/test
sets, each including 70%/10%/20% of the user-item listen-
ing counts. We create three different splits using three random
seeds. We estimate relevance scores for the whole user-item
matrix using the standard matrix factorization algorithm7 of
Hu, Koren, and Volinsky (2008) trained on the train set, with
hyperparameters selected on the validation set by grid search.
The number of latent factors is chosen in [16, 32, 64, 128],
the regularization in [0.01, 0.1, 1., 10.], and the confidence
weighting parameter in [0.1, 1., 10., 100.]. The resulted ma-
trix of estimated relevance scores serves as the ground truth
preferences.

We also address movie recommendation using the
MovieLens-1M dataset (Harper and Konstan 2015), which
contains 1 million ratings on a 5-star scale from approxi-
mately 6000 users and 4000 movies. We extract a 2000×2500
user × items matrix, keeping users and items with the most
rating. We transform MovieLens ratings into an implicit feed-
back dataset similar to Last.fm. Since setting ratings < 3 are
usually considered as negative (Wang et al. 2018), we set
ratings < 3 to zero, resulting in a dataset with preference
values among {0, 3, 3.5, 4, 4.5, 5}. We then use the same al-
gorithm as for Last.fm to obtain relevance scores that we use
to simulate ground truth preferences.

We then simulate a recommender system’s estimation of
preferences using low-rank matrix completion (Bell and Se-
jnowski 1995) on a training sample of 70% of the whole
“ground truth” preferences, with hyperparameter selection on
a 10% validation sample. Here, the regularization is chosen

6http://www.lastfm.com
7Using the Python library Implicit: https://github.com/benfred/

implicit (MIT License).



in [0.001, 0.01, 0.1, 1.], and the confidence weighting param-
eter in [0.1, 1., 10., 100.]. The estimated preference scores
are given as input to the recommendation policies.

The recommendation policies we consider are softmax
distributions over the predicted scores with fixed inverse
temperature. These policies recommend a single item, drawn
from the softmax distribution.

We generate binary rewards using a Bernoulli distribution
with expectation given by our ground truth. We consider no
context in these experiments, so that the policies and rewards
only depend on the user and the item.

Figure 2 in Sec. 5.1 was generated by varying the number
of latent factors in the recommender system’s preference esti-
mation model. For each number of latent factors in the range
[1, 2, 4, 8, 16, 32, 64, 128, 256], a new model was trained on
the train set with hyperparameter selection on the validation
set. The degrees of envy are measured on the whole ground
truth preference matrix.

C.3 Envy from equal user utility constraints
We provide the full details of the experiments on envy from
equal user utility presented in Sec. 5.1 from the main paper.
The goal of these experiments is to show that in contrast to
envy-freeness, enforcing equal user utility (EUU) degrades
user satisfaction and creates envy between users. We remind
from Sec. 3.2 that the fairness constraint of EUU is defined
as:

∀m,n ∈ [M ], um(πm) = un(πn),

or equivalently:

∀m ∈ [M ], um(πm) =
1

M

∑
n∈[M ]

un(πn).

Equal user utility is enforced by adding a penalty to the maxi-
mization of user utilities. Optimal EUU policies are found by
maximizing the following concave objective function, where
the parameter b > 0 controls the strength of the penalty:

(EUU) πeuu
b = argmax

p:A→[0,1]M

∀m,
∑
a p

m(a)=1

∑
m∈[M ]

um(pm)− b
√
D(p)

with D(p) =
∑

m∈[M ]

(
um(pm)− 1

M

∑
n∈[M ]

un(pn)

)2

.

(7)
We infer EUU policies using the Frank-Wolfe algorithm

(Frank and Wolfe 1956) with the ground truth preferences
given as input. The parameter of the penalty is set to b = 50.
We also generate the unconstrained optimal policies (OPT)
based on the ground truth (recall that these are um(πm,∗) =
maxπ u

m(π) ≥ um(πn,∗)).
A comparison of EUU and OPT is provided in Table 1

in Sec. 5.1, with the following evaluation measures : total
utility (higher is better), average envy and proportion of 0.05-
envious users (lower is better). The results on both dataset
confirm the claim that enforcing EUU penalties deteriorates
total utility and creates envy between users, while illustrating
the known property that OPT policies are compatible with
envy-freeness.

Figure 5: Effect of the conservative exploration parameter α
on the duration and cost of auditing on Bandit experiments.

D OCEF experiments
D.1 Bandit experiments
We performed experiments on toy bandit environments to
assess the performance of our algorithm OCEF on various
configurations, which were also considered in (Jamieson and
Nowak 2014). The four bandits instances have 10 arms. They
are Bernoulli variables with means equal to
1) µ0 = 0.6 and µk = 0.3 for k ∈ [9],
2) µ0 = 0.3, µ1 = 0.6 and µk = 0.3 for k = 2..9,

3) µk = 0.7 − 0.7 ∗
(
k
10

)0.6
, k = 0, ..., 9, and the baseline

is µ0,
4) same as 3), but permuting µ0 and µ1.

Fig. 5 shows the result of applying OCEF on the various
configurations, where we set δ = ε = 0.05 and report results
averaged over 100 trials. We observe clear tendencies similar
to those presented in Section 5.2, although the exact sweet
spots in terms of α depends on the specific configuration.

The cost of exploration follows similar patterns as in in
Section 5.2. In Prob. 2, the baseline has the worst perfor-
mance, so exploration is beneficial to the user and the cost
is negative. On the other hand, for instance in Prob. 4, the
cost is close to 0 when α is very small and increases with
α. It is the case where the baseline is not the best arm but is
close to it, and there are many bad arms. When the algorithm
is very conservative, bad arms are discarded rapidly thanks
to the good estimation of the baseline performance. In this
“low-cost” regime however, the audit is significantly longer.

We show additional results when varying δ in Figure 6.
Results are averaged over 100 simulations and the conserva-
tive exploration parameter is set to α = 0.05. The duration
decreases as δ increases, i.e. a lower confidence certificate
requires fewer samples per user. The duration for Problem 1
is longer than for the other instances. This is because with
α set to 0.05 and the baseline mean being much higher than
non-baseline arms, the conservative constraint 3 enforces
many pulls of the baseline, since each exploration round is
very costly. As a consequence, too little data is collected on
the non-baseline arms to conclude that they are below µ0 + ε.
Since all non-baseline arms have equal means, the size of the
active set remains the same for a long time, while in Problem
3, where the baseline is also the best arm, arms are eliminated
one at a time.



Figure 6: Effect of the confidence parameter δ on the duration
and cost on 4 different bandit instances.

Figure 7: Effect of the number of arms on the duration on 4
different bandit instances.

We show how OCEF scales with the number of arms
in Figure 7, for fixed values α = δ = ε = 0.05. We set
Kmax = 100 and define 4 instances as in the list above, ex-
cept that K = Kmax instead of K = 9. We run OCEF on
the instances µ0:K′ and vary the value of K ′ ≤ Kmax. The
duration increases for all problems, and the slope depends on
the gaps between µ0 and the µk.

D.2 Setup of the MovieLens and Last.fm
experiments

We now provide additional details on the experimental evalu-
ation of OCEF on MovieLens and Last.fm presented in Sec.
5.2. The protocole to generate the recommendation task is
the same as the one described in App. C for the experiments
on sources of envy. The policies are softmax distributions
over scores predicted by the matrix factorization model with
a number of factors equal to 48.

In these experiments, the auditor interacts with the audited
users. Rewards are drawn from Bernoulli distributions with
expectation equal to the ground truth preferences.

Two recommendation policies are audited. The first one is
a softmax with inverse temperature equal to 5. Since the in-
verse temperature is small, the softmax distribution is closer
to random, which means users get more similar recommenda-
tions: the recommender system is thus envy-free. The second
one is a softmax with inverse temperature equal to 15. With
higher inverse temperature, the distribution is more peaked,
which exacerbates differences between policies. Since the

model with 48 factors is mispecified (see Sec.5.1), envy is
visible.

E Proofs
E.1 Theoretical results
Useful lemmas Recall that OCEF considers a single au-
dited group m, therefore we do not use superscripts m in the
following (e.g., µk, rt...).

The algorithm relies on valid confidence intervals. As in
(Jamieson et al. 2014), we use anytime bounds inspired by
the law of the iterated algorithm (LIL), and a union bound.

We say that a random variable is σ-subgaussian if it is
subgaussian with variance proxy σ2. Since we assume the
rewards for each user are bounded, more precisely rt ∈ [0, 1],
they are 1

2 -subgaussian.
Throughout the paper, we assume that rewards for each

user are independent conditionally to the arm played.
Lemma 4. Let δ ∈ (0, 1). Assume the rewards are σ-
subgaussian.

Let ω ∈ (0, 1), θ = log(1 + ω)
(

ωδ
2(2+ω)

) 1
1+ω .

Let Nk(t) =

t∑
s=1

1{ks=k} µ̂k(t) =

∑t
s=1 rs1{ks=k}

Nk(t)

βk(t) =

√
2σ2(1 +

√
ω)2(1 + ω)

Nk(t)

×

√
log

(
2(K + 1)

θ
log((1 + ω)Nk(t))

)
µ
k
(t) = µ̂k(t)− βk(t) µk(t) = µ̂k(t) + βk(t)

Then,

P
[
∀t > 0,∀k ∈ [K], µk ∈ [µ

k
(t);µk(t)]

]
≥ 1− δ

2
.

Notice that the choice of θ makes sure that βk is well
defined as long as Nk(t) > 0. We use the convention that
when Nk(t) = 0, βk(t) is strictly larger than when Nk(t) =
1 to ensure βk is strictly decreasing with Nk. Also, when
Nk(t) = 0, we set µ̂k(t) = 0.

Following (Garcelon et al. 2020), our lower bound on
the conservative constraint relies on Freedman’s martingale
inequality (Freedman 1975).
Lemma 5. Assume all rewards are σ-subgaussian. Let
At = {s ≤ t : ks 6= 0} be the number of times a non-
baseline arm k 6= 0 has been pulled up to time t. Let

φ(t) = σ
√

2|At−1| log
( 6|At−1|2

δ

)
+ 2

3 log
( 6|At−1|2

δ

)
.

Then, ∀δ > 0,

P

∀t > 0,

∣∣∣∣ ∑
s∈At−1

(µks − rs)
∣∣∣∣ ≤ φ(t)

 ≥ 1− δ

2
.

As in Lemma 4, we use the convention φ(t) = 0 when
|At−1| = 0.



Lemma 6. Let δ ∈ (0, 1).
Let Φ(t) = min

(∑K
k=1 βk(t− 1)Nk(t− 1), φ(t)

)
, with

φ(t) defined in Lemma 5. Let E be the event under which all
confidence intervals are valid, i.e.:
E = E1 ∩ E2 with

E1 =
{
∀k ∈ {0, . . . ,K},∀t > 0, µk(t) ∈ [µ

k
(t);µk(t)

}
E2 =

{
∀t > 0,

∣∣∣∣ ∑
s∈At−1

(µks − rs)
∣∣∣∣ ≤ Φ(t)

}
.

Then P [E ] ≥ 1− δ.

Proof. By Lemma 4, P [E1] ≥ 1 − δ
2 . By the lemma

above, with probability 1 − δ
2 , we have for all t > 0,∣∣∑

s∈At−1
(µks − rs)

∣∣ ≤ φ(t).

Then, notice that∣∣∣∣ ∑
s∈At−1

(µks − rs)
∣∣∣∣ =

∣∣∣∣ K∑
k=1

Nk(t− 1)(µk − µ̂k(t− 1))

∣∣∣∣.
Hence under E1 we also have:∣∣∣∣ ∑

s∈At−1

(µks − rs)
∣∣∣∣ ≤ K∑

k=1

Nk(t− 1)βk(t− 1).

Therefore,

E = E1 ∩ E2 = E1 ∩
{∣∣ ∑

s∈At−1

(µks − rs)
∣∣ ≤ φ(t)

}
,

and thus, by a union bound, we have: P [E ] ≥ 1− δ.

Theorems We now provide our complete theoretical guar-
antees for correctness (Theorem 7), duration (Theorem 8)
and cost (Theorem 9), which we then prove in App. E.2 and
E.3. From these results, we derive Theorem 1 in the main
paper, which we prove in App. E.4.
Theorem 7 (Correctness). With probability at least 1− δ:
1. OCEF satisfies the safety constraint (3) at every time step,
2. if OCEF outputs ε-no-envy then the user m is not ε-

envious, and if it outputs envy, then m is envious.
We denote log+(.) = max(1, log(.)).

Theorem 8 (Duration). Let ηk = max(µk−µ0, µ0+ε−µk),

δ ∈ (0, 1), θ = log(2)
√

δ
6 , and

∀k 6= 0, Hk = 1 +
64

η2
k

log

(2(K + 1) log+
( 128(K+1)

θη2k

)
θ

)
,

H0 = max

(
max
k∈[K]

Hk,
6K + 2

αµ0

+

K∑
k=1

256 log
(

2(K+1) log(2Hk)
θ

)
αµ0ηk

)
.

With probability at least 1− δ, OCEF stops in at most τ
steps, with

τ ≤
K∑
k=0

Hk .

Finally, we define the cost of exploration as the potential
reward lost because of exploration actions, in our case the
cumulative reward lost, on average over users in the group:

Ct = tµ0 −
t∑

s=1

µks . (8)

In the worst case, the following bound holds:

Theorem 9 (Cost of exploration). Under the assumptions
and notation of Theorem 8, let τ be the time step where OCEF
stops. With probability 1− δ, we have:

Cτ ≤
∑

k:µk<µ0

(µ0 − µk)Hk (9)

Certification of the exact criterion for all users The au-
dit of the full system for the exact envy-freeness criterion
consists in running OCEF for every user. Since we are making
multiple tests, we need to use a tighter confidence parameter
for each user so that the confidence intervals simultaneously
hold for all users.

Corollary 9.1 (Online certification). With probability at least
1− δ, running OCEF simultaneously for all M users, each
with confidence parameter δ′ = δ

M , we have:

1. for all m ∈ [M ] OCEF satisfies the constraints (3),
2. all users for which OCEF returns ε-NO ENVY are not ε-

envious of any other users, and all users for which OCEF
returns ENVY are envious of another user.

3. For every user, the bounds on the duration of the experi-
ment and the cost of exploration given by Theorems 8 and
9 (using δ/M instead of δ) are simultaneously valid.

For the certification of the probabilistic envy-freeness cri-
terion, we refer to Theorem 2 in the main paper, which we
prove in App. E.5.

E.2 Proof of Theorem 7
Proof. We assume that event E holds true. Then all confi-
dence intervals are valid, i.e., for all k = 0, ...,K, µ

k
(t) ≤

µk ≤ µk(t), and
∑
s∈At−1

µks ≥
∑
s∈At−1

rs − Φ(t).

Let Zt be the safety budget, defined as Zt =
∑t
s=1 µks −

(1−α)µ0t, so that the conservative constraint (3) is equivalent
to ∀t, Zt ≥ 0. We have Zt =

∑
s∈At−1

µks +µkt + (N0(t−
1)− (1− α)t)µ0. Therefore, ξt (eq. (4)) is a lower bound on
the safety budget Zt if `t is played. By construction of the
algorithm, the safety constraint (3) is immediately satisfied
since a pull that could violate it is not permitted.

By the validity of confidence intervals under E , if OCEF
stops because of the first condition, then ∃k, µk > µ0. There-
fore 0 is not ε-envious of k and OCEF is correct.

If OCEF stops because of the second condition, i.e.,
∀k, µk(t) ≤ µ

0
(t) + ε, then ∀k, µk ≤ µ0 + ε. Therefore

0 is not envious and OCEF is correct.
Since P [E ] ≥ 1− δ, OCEF satisfies the safety constraint

and is correct with probability ≥ 1− δ.



E.3 Proofs of Theorem 8 and Theorem 9
Notation For conciseness, we use K̃ = K + 1, and

ψk(t) = 2σ2(1 +
√
ω)2(1 + ω) log

(
2K̃

θ
log((1 + ω)Nk(t))

)
,

so that βk(t) =

√
ψk(t)

Nk(t)
.

We shall also use Γω = 2σ2(1 +
√
ω)2(1 + ω). We use

the convention ψk(t) = 0 when Nk(t) = 0, and set βk(t) to
some value strictly larger than when Nk(t) = 1.

We remind that ω ∈ (0, 1), θ = log(1+ω)
(

ωδ
2(2+ω)

) 1
1+ω

and ηk = max(µk−µ0, µ0 + ε−µk). We denote by ηmin =
mink∈[K] ηk.

Finally, we notice that under event E (as defined in
Sec. E.1), we have for all k ∈ {0, . . . ,K} and all t:

µk + 2βk(t) ≥ µk(t) ≥ µk ≥ µk(t) ≥ µk − 2βk(t). (10)

Lemma 10. Under event E , for every k ∈ [K], if k is pulled
at round t, then 4βk(t) ≥ ηk.

Proof of Lemma 10. Since k is pulled at t, the two following
inequalities hold:

µk(t− 1) > µ
0
(t− 1) + ε (11)

µ
k
(t− 1) ≤ µ0(t− 1) (12)

We prove them by contradiction. If (11) does not hold, then
k should be discarded from the active set at time t− 1, and
therefore cannot be pulled at t. Likewise, if (12) does not
hold, then the algorithm stops at t− 1, so k cannot be pulled
at t.

Using (11) and (10), we have:

µk+2βk(t−1) ≥ µk(t−1) > µ
0
(t−1)+ε ≥ µ0−2β0(t−1)+ε.

Since 0 was not pulled at time t, we also have β0(t− 1) ≤
βk(t− 1), hence 4βk(t− 1) ≥ µ0 + ε− µk.

Using (12) and (10) we have µk − 2βk(t) ≤ µ0 + 2β0(t)
and since β0(t) ≤ βk(t), we obtain 4βk(t− 1) ≥ µk − µ0.

In the following lemma, we recall that we denote
log+(.) = max(1, log(.)).
Lemma 11. Under event E , ∀τ > 0,∀k ∈ [K], we have

Nk(τ) ≤ Hk with

Hk = 1 +
32σ2(1 +

√
ω)2(1 + ω)

η2
k

×

log

(2(K + 1) log+
( 64(K+1)σ2(1+

√
ω)2(1+ω)2

θη2k

)
θ

)
Proof. Let τ > 0, k ∈ [K], and let t ≤ τ be last time step
before τ at which k was pulled. If such a t does not exist,
then Nk(τ) = 0 and the result holds. In all cases, we have
Nk(t) = Nk(τ).

We consider t > 0 from now on.
By Lemma 10, we have 4βk(t−1) ≥ ηk, and thus Nk(t−

1) ≤ 16ψk(t−1)
η2k

, which writes, if Nk(t) > 0:

Nk(t− 1) ≤ 16ψk(t− 1)

η2
k

≤ 16Γω
η2
k

log

(
2K̃

θ
log ((1 + ω)Nk(t− 1))

)
.

(13)
Using 1

t log
(

log((1+ω)t)
Ω

)
≥ c ⇒ t ≤

1
c log

(
log((1+ω)/cΩ)

Ω

)
(see Equation (1) in (Jamieson

et al. 2014)) with Ω = θ
2K̃

and c =
η2k

16Γω
, we obtain

Nk(t− 1) ≤ 16Γω
η2
k

log
(2K̃

θ
log
( (1 + ω)32K̃Γω

θη2
k

))
(14)

Since Nk(t) = Nk(t − 1) + 1, using log+ instead of log
inside to deal with the case Nk(t− 1) = 0 gives the desired
result.

Lemma 12. Under event E , at every time step τ , we have

N0(τ) ≤ max

(
max
k∈[K]

Hk,
6K + 2

αµ0

+

K∑
k=1

64σ2(1 +
√
ω)2(1 + ω) log

(
2(K+1) log((1+ω)Hk)

θ

)
αµ0ηk

)
Proof. Let τ > 0 and t ≤ τ the last time 0 was pulled before
τ . We assume t > 0.

Case 1: 0 was pulled because β0(t−1) > mink∈[K] βk(t−
1).

Then N0(τ) = N0(t− 1) + 1 ≤ 1 + max
k 6=0

Nk(t− 1).

By lemma 10, we thus have N0(τ) ≤ maxk∈[K]Hk.

Case 2: 0 was pulled because ξt < 0. Here the proof fol-
lows similar steps as that of Theorem 5 in (Wu et al. 2016).∑
s∈At−1

rs − Φ(t)+µ
`t

(t−1)

+ (N0(t−1)− (1− α)t)µ0(t−1) < 0

We drop µ
`t

(t−1), replace t by
∑K
k=0Nk(t − 1) + 1 and

rearrange terms to obtain:

αN0(t− 1)µ0(t− 1) ≤ (1− α)µ0(t− 1)

+ (1− α)

K∑
k=1

Nk(t− 1)µ0(t− 1)−
∑

s∈At−1

rs + Φ(t)

(15)

Since we have β0(t− 1) ≤ βk(t− 1) (otherwise we would
be in case 1), and At−1 =

∑K
k=1Nk(t − 1), we bound the



the sum over arms in (15):
K∑
k=1

Nk(t− 1)µ0(t− 1)

≤
K∑
k=1

Nk(t− 1)(µ0 + 2β0(t− 1))

≤
K∑
k=1

Nk(t− 1)(µ0 + 2βk(t− 1))

=
∑

s∈At−1

µ0 +

K∑
k=1

2βk(t− 1)Nk(t− 1).

Using Lemma 6, we also bound −
∑
s∈At−1

rs ≥∑
s∈At−1

µs + Φ(t) (under E).
Plugging this into (15) gives:
αN0(t− 1)µ0(t− 1) ≤ (1− α)µ0(t− 1)

+ 2(1− α)
K∑
k=1

Nk(t− 1)βk(t− 1)

+
∑

s∈At−1

((1− α)µ0 − µks) + 2Φ(t).

Recall that Φ(t) = min(
∑K
k=1Nk(t−1)βk(t−1), φ(t)),

and therefore Φ(t) ≤
∑K
k=1Nk(t− 1)βk(t− 1).

Using µ0−µks ≤ ηks and
∑
s∈At−1

ηks =
∑K
k=1Nk(t−

1)ηk, we obtain:

αN0(t− 1)µ0(t− 1) ≤ (1− α)µ0(t− 1)

+

K∑
k=1

(
(ηk − αµ0)Nk(t− 1)

+ 4
√

Ψk(t− 1)Nk(t− 1)

)
.

We bound fk := (ηk − αµ0)Nk(t − 1) +

4
√

Ψk(t− 1)Nk(t− 1).
Since (13)Nk(t−1) ≤ 16ψk(t−1)

η2k
+1 , and ηk−αµ0 ≤ ηk,

we have

fk ≤
16ψk(t− 1)

ηk
+ ηk + 4

√
16ψk(t− 1)2

η2
k

+ ψk(t− 1)

Using
√

(xz )2 + x ≤ x
z + z

2 for x ≥ 0, z > 0, with x =
4ψk(t− 1) and z = ηk, we obtain:

fk ≤
16ψk(t− 1)

ηk
+

16ψk(t− 1)

ηk
+ 3ηk

≤ 32ψk(t− 1)

ηk
+ 3ηk. (16)

Using ψk(t− 1) = Γω log
(

2K̃
θ log((1 + ω)Nk(t− 1))

)
if

Nk(t) > 0 and Nk(t− 1) ≤ Hk by Lemma 11, we obtain

fk ≤
32Γω
ηk

log

(
2K̃

θ
log ((1 + ω)Hk)

)
+ 3ηk .

This bound is also valid when Nk(t) > 0.
Going back to (15), and since µ0 ≤ µ0(t− 1) under E , we

have (notice ηk ≤ 2 since µk ∈ [0, 1] and ε ∈ [0, 1]):

αN0(t− 1)µ0 ≤(1− α)µ0(t− 1) + 6K

+

K∑
k=1

32Γω
ηk

log

(
2K̃

θ
log ((1 + ω)Hk)

)
.

(17)
To bound the first term of the right-hand side, let us first

notice that the final result holds ifN0(t−1) ≤ maxk∈[K]Hk.
So we can assume N0(t− 1) > maxk∈[K]Hk from now on.
By the definition of the Hks (see above (13)), this implies
N0(t− 1) > 16ψ0(t−1)

η2min
, which in turn implies 4β0(t− 1) ≤

ηmin.
We thus use µ0(t−1) ≤ µ0+2β0(t−1) ≤ µ0+ ηmin

2 ≤ 2,
which gives the final result.

The result directly follows from (17).

The proof of Theorem 8 follows from τ =
∑K
k=1Nk(τ) +

N0(τ), by setting ω = 1 for ease of reading, and σ = 1
2 since

Bernoulli variables are 1
2 -subgaussian (using Hoeffding’s

inequality (Hoeffding 1963)).
We prove Corollary 9.1 from Theorem 7 and Theorem 8.
We now prove Theorem 9:

Proof. Since playing the baseline is neutral in the cost of
exploration, it can be re-written as:

Cτ =

K∑
k=1

(µ0 − µk)Nk(τ) ≤
∑

k:µk<µ0

(µ0 − µk)Nk(τ),

where τ is the time the algorithm stops. Using Lemma 11 to
upper bound Nk(τ), we obtain the result.

Corollary 9.1 simply follows from the fact that by apply-
ing each algorithm with confidence δ/M , the confidence
intervals are then simultaneously valid for all users with prob-
ability 1− δ, so all the correctness/duration/cost proofs holds
for all groups simultaneously with probability 1 − δ. For
the statistical guarantees on certifying the probabilistic envy-
freeness criterion, we provide the proof of Theorem 2 in App.
E.5.

E.4 Proof of Theorem 1
Theorems 7, 8, and 9 are summarized in Theorem 1 in the
main paper. We restate Theorem 1 and prove it below:
Theorem. Let ε ∈ (0, 1], α ∈ (0, 1], δ ∈ (0, 1

2 ) and

ηk = max(µk − µ0, µ0 + ε− µk) and hk = max(1,
1

ηk
).

Using µ, µ and Φ given in Lemmas 4 and 6, OCEF achieves
the following guarantees with probability at least 1− δ:

• OCEF is correct and satisfies the conservative constraint
on the recommendation performance (3).

• The duration is in O
( K∑
k=1

hk log
(K log(

Khk
δηk

)

δ

)
min(αµ0, ηk)

)
.



• The cost is in O
( ∑
k:µk<µ0

(µ0−µk)hk
ηk

log
(K log(

Khk
δηk

)

δ

))
.

Proof. With δ ∈ (0, 1
2 ), let θ = log(2)

√
δ
6 . Then Theorems

8 and 9 hold for (δ, θ).

Duration We first show that:

Hk = O

(
hk
ηk

log
(Khk
δηk

))
, (18)

log(Hk) = O

(
log
(Khk
δηk

))
. (19)

Recall from Th. 8 that Hk is defined as:

Hk = 1 +
64

η2
k

log

(2(K + 1) log+
( 256(K+1)

θη2k

)
θ

)
We replace the log+ term from Th. 8 by log

(
Khk
δηk

)
> 0,

because Khk
δ ≥ 3 as soon as K ≥ 2. We thus have

Hk = 1 +O

(
1

η2
k

log

(
K

δ
log
(Khk
δηk

)
︸ ︷︷ ︸

=B

))
, (20)

Using log(x) ≤ x ⇒ x log(x) ≤ x2 for x ≥ 0, and the
fact that log

(
Khk
δηk

)
≥ 0, we have:

B ≤ log

(
Khk
δηk

log
(Khk
δηk

))
≤ 2 log

(Khk
δηk

)
.

Since 1 + 1
η2k
≤ 2hkηk , eq. (18) holds.

We now bound log(Hk):

log(Hk) = O

(
log
(hk
ηk

log
(Khk
δηk

)))
(21)

= O

(
log
(Khk
δηk

log
(Khk
δηk

)))
(22)

= O

(
log
(Khk
δηk

))
(23)

where the last line comes from Khk
δηk

log
(
Khk
δηk

)
≤
(
Khk
δηk

)2
.

Therefore, eq. (19) holds.
Now, let

Γ =
6K + 2

αµ0
+

K∑
k=1

128 log
(

2(K+1) log(2Hk)
θ

)
αµ0ηk

,

so that H0 = max(maxk∈[K]Hk,Γ).
We have:

Γ = O

(
K

αµ0
+

K∑
k=1

hk
αµ0

log
(K log(Hk)

δ

))

= O

( K∑
k=1

hk
αµ0

log
(K log(Hk)

δ

))

= O

( K∑
k=1

hk
αµ0

log
(K log(Khkδηk

)

δ

))
,

where the second equality is because K =
∑K
k=1 1 ≤∑K

k=1 hk, and the last equality uses eq. (19). Combining
this with eq. (18) we have:

H0 = O

( K∑
k=1

hk
min(αµ0, ηk)

log
(K log(Khkδηk

)

δ

))
.

Using eq. (18) again to bound τ = H0 +
∑K
k=1Hk, , we get

the desired bound for duration.

Cost For the cost, we remind the bound given in Th. 9:

Cτ ≤
∑

k:µk<µ0

(µ0 − µk)Hk

= O

( ∑
k:µk<µ0

(µ0 − µk)hk
ηk

log
(K
δ

log
(Khk
δηk

)))
(24)

using (20) and 1 + 1
η2k

= O(hkηk ).

E.5 Proof of Theorem 2
We restate Theorem 2 which summarizes the guarantees for
the audit of the probabilistic envy-freeness criterion with
AUDIT, and we prove it below:

Theorem. Let ε, γ, λ ∈ (0, 1], δ ∈ (0, 1
2 ). Let M̃ =⌈

log(3/δ)
λ

⌉
andK =

⌈
log(3M̃/δ)

log(1/(1−γ))

⌉
. With probability at least

1− δ,

• AUDIT satisfies the conservative constraint (3) for all M̃
audited users,

• the bounds on duration and cost from Th. 1 (using δ
3M̃

instead of δ) are simultaneously valid,
• if AUDIT outputs (ε, γ, λ)-envy-free, then the rec-

ommender system is (ε, γ, λ)-envy-free, and if it outputs
not-envy-free, then ∃(m,n), um(πm) < um(πn).

Proof. The first point is a consequence of Theorem 7 and the
second point is a consequence of Theorems 8 and 9. Since
we apply OCEF to each target user with confidence δ

3M̃
, by

the union bound the confidence intervals are simultaneously
valid for all M̃ target users with probability 1− δ

3 . Therefore,
with probability at least 1− δ

3 , the conservative constraint is
satisfied for all M̃ users and the bounds on cost and duration
hold simultaneously for all M̃ users.

We now prove the third bullet point in two steps.

Step 1 We show that the value of K = log(3M̃/δ)
log(1/(1−γ)) is

chosen to guarantee the following result: with probability
1 − δ

3M̃
, if for a user we have µ0 + ε ≥ max

k∈[K]
µk, then the

user is not (ε, γ)-envious.
First, we apply the theorem on random subset selection

from (Schölkopf and Smola (2002), Theorem 6.33), which
guarantees that with probability 1− (1− γ)K , the arm with
maximal reward among the K arms is in the (1− γ)-quantile
range of all possible M arms. Solving for (1− γ)K = δ

3M̃
,



we get that whenK =
⌈

log(3M̃/δ)
log(1/(1−γ))

⌉
, the arm with maximal

reward among the K is in the (1 − γ) quantile range with
probability 1− δ

3M̃
. This means that if for a target userm, we

have um(πm)+ε = µ0 +ε ≥ max
k∈[K]

µk, then with probability

1− δ
3M̃

, we also have:

Pn∼UM [um(πm) + ε ≥ um(πn)] ≥ 1− γ,

meaning the user is not (ε, γ)-envious. By a union bound
over the M̃ target users, the property holds simultaneously
for all M̃ target users with probability 1− δ

3 .

Step 2 We now show that the number of users to audit
M̃ =

⌈
log(3/δ)

λ

⌉
is chosen to guarantee that if none of the

M̃ sampled users are (ε, γ)-envious, then this holds true for
an (1− λ) fraction of the whole population with probability
1− δ

3 .

Let δ′ = δ
3 . Denoting q the probability that a user is not

(ε, γ)-envious, we want to guarantee that q ≥ 1 − λ with
probability at least 1 − δ′, using M̃ Bernoulli trials where
p := 1− q is the probability of success.

Let B̄(M̃, k, δ′) denote the largest p′ such that the prob-
ability of observing k or more successes is at least 1 − δ′
(i.e., B̄(M̃, k, δ′) is the binomial tail inversion). By defi-
nition, we have p ≤ B̄(M̃, 0, δ′). Using the property that
B̄(M̃, 0, δ′) ≤ log(1/δ′)

M̃
(see e.g., (Langford 2005)), we can

guarantee that p ≤ λ as soon as log(1/δ′)

M̃
≤ λ. Solving for M̃ ,

we obtain that M̃ =
⌈

log(1/δ′)
λ

⌉
=
⌈

log(3/δ)
λ

⌉
is sufficient to

guarantee p ≤ λ, or equivalenly q ≥ 1− λ with probability
1− δ

3 .

We combining Step 1 and 2 by a union bound: if for M̃
users and K arms, we have µ0 + ε ≥ max

k∈[K]
µk, then with

probability 1− 2δ
3 , an (1− λ) fraction of the whole popula-

tion is not (ε, γ)-envious – or equivalently, the recommender
system is (ε, γ, λ)-envy-free. Since OCEF is correct with
probability 1 − δ

3 when outputting that µ0 + ε ≥ max
k∈[K]

µk

(i.e., ε-no-envy), the union bound guarantees with proba-
bility 1− δ that AUDIT is correct when outputting (ε, γ, λ)-
envy-free. Since OCEF is correct with probability≥ 1−δ
when outputting envy, then so is AUDIT when outputting
not-envy-free, which achieves the proof of the third
bullet point.


