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Abstract

Convolutional networks have been extremely successful
for regular data structures such as 2D images and 3D voxel
grids. The transposition to meshes is, however, not straight-
forward due to their irregular structure. We explore how the
dual, face-based representation of triangular meshes can
be leveraged as a data structure for graph convolutional
networks. In the dual mesh, each node (face) has a fixed
number of neighbors, which makes the networks less sus-
ceptible to overfitting on the mesh topology, and also al-
lows the use of input features that are naturally defined over
faces, such as surface normals and face areas. We evaluate
the dual approach on the shape correspondence task on the
Faust human shape dataset and variants of it with differ-
ent mesh topologies. Our experiments show that results of
graph convolutional networks improve when defined over
the dual rather than primal mesh. Moreover, our models
that explicitly leverage the neighborhood regularity of dual
meshes allow improving results further while being more
robust to changes in the mesh topology.

1. Introduction

The success of convolutional neural networks for recog-
nition in 2D images [14, 20, 32] has spurred efforts to trans-
fer these results to the analysis of 3D shape data. One of the
most direct approaches is to extend the 2D convolutions to
3D voxel grids [6, 24, 34]. Voxel grids are, however, in-
efficient in that they are extrinsic and quantize space rather
than the shape itself. While intrinsic representations such as
point clouds and meshes are more attractive to model shapes
since they directly approximate the shape itself, the formu-
lation of deep neural networks on such irregular data struc-
tures is more complex. Point clouds provide a simple order-
less data structure, and neural networks can be constructed
by combining local per-point operations with global permu-
tation invariant operations [19, 27]. In our work, we fo-

Figure 1. Illustration of a triangular primal mesh (left) and its dual
(right). Note that every vertex in the dual has exactly three neigh-
bors, while the number of neighbors is not constant in the primal.

cus on 3D mesh representations, which offer a topological
graph structure on top of the vertex positions, allowing for
a compact and accurate surface characterization.

A variety of approaches have been explored in previous
work to define deep neural networks on irregularly struc-
tured meshes, where the number of neighbors can change
from one vertex to another. Most of these methods treat
meshes as graphs, where the nodes of the graph are the mesh
vertices connected by the edges of the surface triangles. To
process data on such graphs, they apply global spectral op-
erators [4, 5, 8, 16, 18, 21] or local spatial filters [9, 26, 36].
Other methods are formulated by taking into account prop-
erties specific to meshes, such as [12, 22, 25]. We discuss
related work in more detail in Section 2.

We study the use of the dual mesh defined over the faces,
where each vertex represents a face and is connected to the
incident faces, see Figure 1. Using the faces rather than the
vertices to represent the data, it is natural to use input fea-
tures such as the face normal, in combination with the face
center location. Moreover, for watertight triangular meshes,
each vertex has exactly three neighbors in the dual mesh,
which we exploit to define a convolution operator called
DualConvMax on the dual mesh.

We conduct shape correspondence experiments on the
Faust human shape dataset [1]. However, the meshes in the
Faust dataset all share the same topology, which is unde-
sirable as it is not representative of real-world data where
shapes have differently structured meshes. Therefore, we
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Figure 2. Visualizations of texture transfer from a reference shape
to decimated raw Faust scans using primal mesh based method
FeaStNet, its dual variant FeaStNet–Dual and our proposed Dual-
ConvMax. All models were trained on the Faust-Remeshed data.

also consider more challenging evaluation setups for our
approach and to compare to previous work. First, we con-
sider evaluating models trained on Faust on variants of the
meshes which have been decimated to different degrees.
Second, we train and test the models on a re-meshed ver-
sion of Faust [29], in a setup where the mesh structure varies
both in training and testing. In both cases, we also test on
decimated versions of the raw Faust scans.

We find that existing graph convolutional methods im-
prove in the dual domain due to the addition of face-based
features. Our DualConvMax model, which leverages the
regularity of the dual mesh explicitly, further improves per-
formance. Moreover, we find that the dual-based models
transfer considerably better in settings where the train and
test data have different mesh topologies.

Qualitative correspondence results when applying the
learned models to the original raw Faust scans confirm the
quantitative results, see Figure 2. In summary, our main
contributions are the following:

• we propose the DualConvMax layer to build convolu-
tional networks over the face-based dual mesh;

• we propose a comparative evaluation of various input
features on the dual and their combinations;

• when train and test topologies differ, we find improved
performance using our dual approaches.

2. Related work
We briefly review related work on deep learning for mesh

data, based on spectral and spatial graph networks, as well
as geometry-aware methods. We refer the reader to [37, 39]
for more extensive overviews of graph neural networks.
Spectral methods. Spectral graph convolutional networks
are based on graph signal processing, for example, by
extending convolutions to graphs using Laplacian Eigen-
decomposition [4]. In order to address the challenges posed
by the high computational cost of this approach, Chebyshev
K-polynomials can be used to define localized and efficient

convolution filters [8]. A simplified variant uses a first-order
approximation of the Chebyshev expansion [18]. Following
this seminal work, several other approaches have been pro-
posed [5, 16, 21]. However, spectral-based methods do not
generalize well across domains with different graph struc-
tures. Consequently, they are primarily helpful in inferring
node properties in situations where the graph during train-
ing and testing is the same [3, 28, 30], and less suitable for
tasks where different graphs are considered during training
and testing such as in 3D shape processing [13, 29].

Spatial methods. Where spectral methods operate glob-
ally, spatial methods compute features by aggregating infor-
mation locally, similar to traditional CNNs. However, this
is not straightforward for mesh data due to their irregular
local structures: (i) the number of neighbors per node may
vary, and (ii) even if the number of neighbors is fixed, there
might not be a consistent ordering among them. To allevi-
ate these challenges, patch-operator based methods [2, 23]
have been proposed where local patches are extracted using
geodesic local polar coordinates and anisotropic heat ker-
nels, respectively. Patch extraction has also been parame-
terized by mixtures of Gaussian kernels associated with lo-
cal polar pseudo-coordinates [26], using dynamically gen-
erated convolutional filter weights conditioned on edge at-
tributes neighboring the vertices [31], or with convolutional
filters based on B-spline bases with learnt control values [9].
FeaStNet [36] learns the mapping between convolutional
filters and neighboring vertices dynamically using features
generated by the network, which is closely related to the
multi-head attention mechanism used in [35].

Geometry-aware methods. A number of methods have
been developed that take the geometrical arrangement of
vertices and faces explicitly into account to define network
layers. SpiralNet [12, 22] enumerates the neighboring ver-
tices following randomly generated spiral patterns around
the central vertex. MeshCNN [13] defines a convolution
operation on edges aggregating information from their in-
cident triangular edges and proposes a task-driven pooling
operation based on the edge-collapse operation [15]. An
attention-based approach was explored in [25], which com-
bines primal and dual graph representations. Their primal
graph connects faces that share an edge, where the dual
graph connects edges that are part of the same face. They
use a pooling operation based on edge contraction on the
mesh. In contrast, we assume in our work that the ver-
tices and edges of an input triangular mesh form the primal
graph, and construct a dual mesh built on the faces. Rather
than using a generic graph-based convolution on the dual
mesh, we can therefore exploit the three-neighbor regularity
to propose a dual mesh-based convolution. Additionally, we
present an evaluation of different features defined on faces
and examine the ability to learn connectivity-independent
representations using different approaches.
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Figure 3. Left: Illustration of the DualConvMax layer that max-pools over different orderings of the local neighborhood. Right: Illustration
of the triangular primal mesh M (in black) and the corresponding dual mesh D (in blue) with vertices {x0, x1, x2, x3}. Note that the central
vertex x0 of D has exactly three neighbors. We also illustrate the input features on the dual mesh that we consider in this work.

3. Method

Convolutional networks carry an inductive bias that
meaningful information can be extracted from a consis-
tent local neighborhood of the input, which is implemented
using a set of fixed-sized trainable filters that are applied
across the complete image. However, it is not obvious how
to define such filters for meshes, due to their irregular local
structure. We address this difficulty by designing convolu-
tion on the dual of watertight triangular meshes, where each
face has exactly three neighbors.

A primal mesh M is defined by NV vertices and NF

faces. The dual D of M is defined as a mesh where each
vertex is centered on a face of M. These vertices in the
dual D are connected by an edge if their corresponding two
faces in the primal meshM are adjacent. For a watertight
triangular mesh M, each vertex in the dual D has exactly
three neighbors by construction, while in the primal vertices
can have different numbers of neighbors. In cases where
the meshM is not watertight, we can use zero-padding to
ensure that every vertex in D has three neighbors or if the
mesh is non-manifold, we remove the particular vertices.
We note that in general, this approach can be extended to
any N -edged polygonal mesh, where the face-based dual
mesh will form a regular N -neighbor structure.

Below, we describe the two main building blocks of our
networks: a dual convolutional layer tailored explicitly to
the fixed 3-neighborhood and a dual to primal feature trans-
fer layer. Finally, we describe the different input features
defined over faces that we consider in our experiments.

3.1. Dual convolution

Given a face in M, represented by x0 in Figure 3, we
wish to define the convolution as the dot product of the
weights with the features of the neighbors, similar to a
convolutional layer over regular pixel grids. Although the
neighbors of a face can be assigned a unique clockwise ori-
entation defined w.r.t. the central face normal, their order
(i.e . which neighbor comes first) is not unique. To resolve
the ordering ambiguity for the neighboring faces, we use

a strategy analogous to angular max-pooling [23]. Let CI

and CO denote the number of input and output feature chan-
nels, respectively. The central node’s feature x0 is always
multiplied with the same weights U ∈ IRCO×CI . Weights
W ∈ IRCO×3CI are applied to the local neighbors using
their three possible orderings, followed by a coordinate-
wise max-pooling across the orders:

y0 = Ux0 +max{Wx1,2,3,Wx2,3,1,Wx3,1,2}, (1)

where y0 ∈ IRCO is the output feature, x1,2,3 ∈ IR3CI de-
notes the concatenation of the neighbors’ features x1, x2

and x3 in this order. We refer to this layer as DualCon-
vMax. See Figure 3 for an illustration.

3.2. Dual to primal feature transfer

To handle cases where the prediction targets and/or the
ground-truth for training are defined only on the vertices of
the primal mesh, we define a Dual2Primal layer to transfer
the features from the dual back to the original mesh. The
features transferred to the primal mesh can then be used to
measure the training loss or make predictions for evaluation.

Given a meshM, we construct a vertex-face adjacency
matrix A ∈ IRNV ×NF , and derive the vertex-degree matrix
D = diag(A1NF

), where 1NF
is a vector of ones of size

NF . The diagonal of D contains for each vertex in the pri-
mal mesh the number of faces to which it belongs. The out-
put features FDual of the dual neural network are converted
into features FPrimal on the primal mesh by averaging for
each vertex the features of all faces incident to that vertex:

FPrimal = D−1AFDual. (2)

We then apply the loss defined on the primal mesh and back-
propagate the gradients through the dual network.

It is interesting to consider alternative dual-to-primal
conversion schemes, e.g . based on the local geometry or
attention mechanisms, but we leave this for future work.

3.3. Input features from dual mesh

Using faces rather than vertices as inputs for our deep
network allows the use of features that are naturally defined



over faces but not over vertices. In our experiments, we
explore the effectiveness of the following input features de-
fined over faces: (i) XYZ: the coordinates of the center of
mass of the face. (ii) Normal: the unit vector in the di-
rection of the face normal. (iii) Dihedral: the angles (in
radians) between the face and its neighbors. (iv) Area: the
surface area of the face. (v) DistCM: the Euclidean distance
between the center of mass of the full mesh and the face.
We illustrate these features in Figure 3. They offer differ-
ent degrees of invariance; ranging from XYZ that does not
offer any invariance, to dihedral angles which are invariant
to translation, rotation, and scaling of the 3D shape. We
note that the dihedral angles are defined per adjacent face,
so we use them by setting x0 = 0 and xi = Dihedral0,i in
Equation 1. The remaining features are defined per face, we
can directly use them as inputs proper to each face. We also
consider combinations of these features by concatenating
them into a larger input feature.

4. Experimental evaluation
We first describe our experimental setup in Section 4.1.

We then present our experimental results when training
our models on the Faust-Synthetic and Faust-Remeshed
datasets in sections 4.2 and 4.3 respectively.

4.1. Experimental setup

We closely follow the experimental setup of previous
work [9, 26, 36], and perform evaluations on the Faust hu-
man shape dataset [1]. It consists of 100 watertight trian-
gular meshes with ten subjects, each striking ten different
poses; the first 80 meshes are used for training and the last
20 meshes for testing. The meshes in this dataset are ob-
tained by fitting a fixed template mesh with 6,890 vertices
and 13,776 faces to raw scan data. We refer to this dataset
as Faust-Synthetic in the evaluations. All meshes have the
same underlying connectivity, and the ground-truth is de-
fined by a one-to-one correspondence of the vertices.

To allow for more challenging evaluations with varying
mesh topologies, we consider three other versions of the
Faust dataset, see Figure 4:

• Faust-Decimated: We use quadric edge collapse [11]
to reduce the resolution of the meshes in Faust-
Synthetic by up to 50%. While mesh decimation is
a fairly straightforward way to assess robustness to
changes in the mesh structure, we note that it changes
some parts of the mesh more drastically than others.

• Faust-Remeshed: We consider the re-meshed version
of the dataset from [29] as a more realistic and chal-
lenging testbed. It was obtained by re-meshing every
shape in the Faust-Synthetic dataset independently us-
ing the LRVD method [38]. Each mesh in the result-
ing dataset consists of around 5,000 vertices and has

Faust-Synthetic Faust-Decimated (50%)

Faust-Remeshed Faust-Scan
Figure 4. Visualization of a mesh from the template-fitted Faust
dataset, decimated by 50%, re-meshed version and original scan.

a unique mesh topology. While offering an interest-
ing testbed, the re-meshed data does not come with
dense one-to-one vertex ground-truth correspondence.
A partial ground-truth is however available for roughly
3,500 vertices.

• Faust-Scan: We consider the raw scan data that un-
derlies the dataset. It contains 200 high-resolution
meshes, with the same 10 people striking 20 different
poses. The average number of vertices in each scan is
around 172,000, which we reduce using quadric edge
collapse decimation [11] to bring closer to the refer-
ence template with 6,890 vertices. We note that this
dataset is very challenging as it does not contain water-
tight meshes and all meshes have different topologies.
There is no ground-truth available, so we only perform
a qualitative evaluation on this version of the dataset.

Network architectures and training. Figure 5 describes
the dual mesh-based architecture that we use in our exper-
iments, where NV and NF are the number of vertices and
faces in the original primal mesh respectively, NT the num-
ber of target labels and NI the number of input features.
We use “Linear(K)” to indicate fully connected layers, and
“DualConvMax(K)” to indicate graph-convolutional layers
(defined in Section 3.1), producing each K output feature
channels. “(N , K)” denotes feature maps of size N and di-
mension K. We apply the Exponential Linear Unit (ELU)
non-linearity [7] after every DualConvMax layer and every
linear layer, except for the last one. We also indicate the
rate for the Dropout layer [33].

Similar to previous work [9, 26, 36], we formulate the
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Figure 5. Architecture for our dual mesh networks. For FeaStNet–Dual we replace DualConvMax with FeaStConv.

shape correspondence task as a vertex labeling problem,
where the labels are the set of vertices in a given reference
shape. We implement our method using the PyTorch Ge-
ometric framework [10], and train models using the Adam
optimizer [17] to minimize the cross-entropy classification
loss. Additional details on the training can be found in the
supplementary material.

The receptive field of the primal and dual architectures
grows at the same rate when adding layers, because in both
cases new elements (vertices or faces) are within one edge
distance. Our networks rely on fairly local information, us-
ing three DualConvMax layers, and one Dual2Primal layer.
Evaluation metrics. Following previous work [9, 26, 36],
we report the accuracy, i.e . the fraction of vertices for which
the exact correspondence has been correctly predicted. In
addition, we report the mean geodesic error, i.e . the average
of the geodesic distance between the ground-truth and the
prediction, normalized by the geodesic diameter and mul-
tiplied by 100. We believe the mean geodesic error metric
is more informative than the accuracy as a single-number
comparison for the correspondence task. Rather than just
counting the number of imperfect correspondences, it con-
siders how large these errors are. In particular, some meth-
ods may have a lower accuracy than others, but make fewer
mistakes with large geodesic errors, leading to a smaller av-
erage geodesic error.

4.2. Results with training on Faust-Synthetic

The shape correspondence task on the Faust dataset is
defined on the mesh vertices. In our first experiment, we
validate the use of the dual mesh to establish shape corre-
spondence and the effectiveness of networks built on our
DualConvMax and Dual2Primal operators. For this pur-
pose, we use the XYZ position of the face centers as input
and compare results to those obtained with FeaStNet [36]
on the primal mesh. Since FeaStNet is a generic graph
convolution method, it can be readily applied to the dual
mesh. We refer to the results obtained using this approach
as FeaStNet–Dual. This allows us to separate the effects of
using the primal vs . dual mesh from the use of our Dual-
ConvMax layers.
Correspondences on Faust-Synthetic. We present the re-
sults in Table 1. Comparing FeaStNet and FeaStNet–Dual,

Mesh Method Input Geo. Err. Accuracy

Primal FeaStNet [36] XYZ 1.39 88.1%

Dual
FeaStNet–Dual XYZ 0.18 92.7%

DualConvMax XYZ 0.26 95.5%

Table 1. Mean geodesic error and correspondence accuracy. Com-
paring primal and dual methods on the Faust-Synthetic dataset.
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Figure 6. Mean geodesic error and accuracy for Faust-Decimated
test meshes with XYZ. All methods are trained on the original full
resolution Faust-Synthetic meshes.

we observe that the Dual2Primal layer successfully trans-
fers features learned over the faces to the primal vertices.
Moreover, using the dual mesh improves performance: the
mean normalized geodesic error drops from 1.39 to 0.18,
and the accuracy increases from 88.1% to 92.7%. Next, we
observe that our DualConvMax performs better than FeaSt-
Net while obtaining the highest overall accuracy (95.5%).
Note that both dual-based approaches are better than FeaSt-
Net in terms of accuracy and obtain much lower mean
geodesic errors.

Based on these encouraging results, we now turn to
evaluations in more challenging conditions. The Faust-
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Figure 7. Visualizations of geodesic correspondence errors for a full resolution Faust-Synthetic test mesh (top row), and the same mesh
decimated by 50% (bottom row) of the Faust-Decimated dataset. Models are trained on the full resolution Faust-Synthetic meshes.

Synthetic dataset is unrealistic in that all meshes share one
identical mesh structure connectivity. Therefore, it is pos-
sible that deep networks that are trained on them learn to
exploit this property to solve the correspondence problem
on this dataset without being able to generalize to shapes
with other mesh topologies. To assess to what extent this
happens, in the experiments below, we train the networks
on Faust-Synthetic and test the resilience to connectivity
changes on Faust-Decimated.
Transfer from Faust-Synthetic to decimated meshes.
We compare our approach with the previous state-of-the-
art methods in Figure 6. We observe that the networks that
use the dual mesh are more robust to connectivity changes
than MoNet, SplineCNN, and FeaStNet, which are based
on the primal mesh. Our DualConvMax improves the accu-
racy by 2.8% as compared to FeaStNet applied to the dual
(FeaStNet–Dual) in the case without connectivity changes,
and leads to substantially better accuracy of 63.9% com-
pared to the 44.2% when meshes are decimated by 50%. We
note that the methods on the primal mesh all achieve poor
mean geodesic errors on the decimated meshes. Consider-
ing the results obtained with FeaStNet–Dual, we note that
the improved performance of DualConvMax w.r.t. previous
methods (MoNet, SplineCNN, and FeaStNet) is both due to
the use of the dual mesh structure and to the DualConvMax
operator that we specifically designed for the dual mesh.

We qualitatively compare the results of MoNet,
SplineCNN, and FeaStNet on the primal, FeaStNet–Dual
and our DualConvMax in terms of geodesic errors in Fig-
ure 7. We provide an example of a non-decimated test mesh
and its 50% decimated version. We observe marked im-
provements in the results on the decimated mesh by us-

ing the dual rather than primal mesh and further substantial
improvements by using our DualConvMax approach rather
than FeaStNet–Dual. This confirms what was observed in
terms of accuracy and mean geodesic error before. We pro-
vide more qualitative results for this experiment in the sup-
plementary material.
Qualitative results on Faust-Scan. Above we observed
that the approaches based on the dual mesh are more ro-
bust to topological changes induced by mesh decimation.
We now turn to a qualitative evaluation on the Faust-Scan
dataset. In this dataset, the topological changes appear
across the entire shape, where the mesh decimation only has
a local effect and can leave part of the meshes unchanged.
We again train our models on the Faust-Synthetic dataset.
However, since there is no ground-truth correspondence for
this version of the dataset, we only present qualitative re-
sults using texture transfer from the Faust-Synthetic refer-
ence mesh to the test meshes.

We compare MoNet, SplineCNN and FeaStNet on pri-
mal meshes to FeaStNet–Dual and our DualConvMax ap-
proach on dual meshes in Figure 8. These texture trans-
fer results show that the correspondence problem for these
shapes is substantially more challenging than that for the
decimated meshes. The methods based on the primal mesh
fail to recover most correspondences. FeaStNet–Dual re-
covers more correspondences but is overall still very noisy.
With our DualConvMax approach, we improve the transfer
results; see for example the arms. This result suggests that
our DualConvMax approach learns more robust shape rep-
resentations that rely less on the fixed mesh topology of the
training meshes. We provide additional qualitative results
in the supplementary material.
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Figure 8. Visualizations of texture transfer for Faust-Scan test results. All methods have been trained on the Faust-Synthetic dataset.

Input Trans. Rot. Scale Geo. Err. Accuracy

XYZ × × × 1.8 37.3%

Normal X × X 7.1 40.3%

Area X X × 27.1 10.6%

Dihedral X X X 22.6 15.7%

DistCM X X × 18.1 14.7%

XYZ+Normal × × × 1.3 45.8%

Normal+DistCM X × × 2.4 48.3%

Normal+Area+DistCM X × × 2.5 49.2%
Normal+Dihedral X × X 6.3 41.3%

Dihedral+Area+DistCM X X × 13.4 28.9%

Table 2. Mean geodesic errors and correspondence accuracy for
DualConvMax using different input features on Faust-Remeshed.

Domain Method Input Geo. Er. Acc.

Primal
MoNet [26] SHOT 4.1 48.7%
SplineCNN [9] XYZ 7.2 39.7%

FeaStNet [36] XYZ 1.6 47.6%

Dual
FeaStNet–Dual

XYZ 1.7 37.8%

XYZ+Normal 1.5 42.4%

DualConvMax
XYZ 1.8 37.3%

XYZ+Normal 1.3 45.8%

Table 3. Mean geodesic errors and correspondence accuracy on
Faust-Remeshed using state-of-the-art methods on primal/dual
meshes and using our best performing methods/input features.

4.3. Results with training on Faust-Remeshed

In the experiments so far, none of the methods were ex-
posed to structural changes in the meshes during training
on Faust-Synthetic. In this section, we consider to what
extent these methods can be trained to be robust to topolog-
ical changes by training them on the Faust-Remeshed data,
where each shape has a unique mesh structure.
Feature Evaluation. In Table 2 we study the performance
of the different input features described in Section 3.3, as
well as feature combinations, by combining the features

based on their particular invariances and performances.
The face normal and XYZ location of the face center

provide similar accuracy, well above results obtained us-
ing other features. While face normals offer translation
and scale invariance, the geodesic error is higher as com-
pared to XYZ. Combining XYZ and face normals improves
over their individual performances and obtains the smallest
geodesic error, but does not offer any invariance.

Among the features which provide translation invari-
ance, we combine Normal and DistCM, which encodes
the plane in which the face lies. This translation-
invariant feature combination yields similar accuracy as the
XYZ+Normal combination but yields higher geodesic er-
rors. To further add translation-invariant face information,
we add the area feature. This achieves the best performance
in terms of accuracy, but yields a minor deterioration in
mean geodesic error. Similarly, we test the combinations
Normal+Dihedral and Dihedral+Area+DistCM. Both com-
binations offer an advantage of translation invariance, plus
scale invariance in the former and rotation in the latter, but
lead to reduced accuracy and higher geodesic error using
the DualConvMax architecture. We retain the XYZ feature
and the XYZ+Normal feature combination, with the best
geodesic error, for the remainder of the experiments.
Comparison to previous work. In Table 3, we com-
pare our DualConvMax model with previous state-of-the-
art models. Among the primal methods, MoNet uses SHOT
local shape descriptor features as input, while other models
use raw XYZ features. For the dual methods, we test XYZ
features as well as their combination with face normals.

Overall, the accuracy and geodesic errors measures on
the Faust-Remeshed data are substantially worse than those
measured on the Faust-Synthetic data, c.f . Table 1. This un-
derlines the increased level of difficulty of the task on more
realistic data. Among the primal methods, MoNet obtains
the highest accuracy (48.7%), while FeaStNet combines a
somewhat lower accuracy (47.6%) with substantially lower
mean geodesic error (1.6 vs . 4.1). Among the dual meth-
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Figure 9. Visualizations of texture transfer on Faust-Scan meshes for models trained on the Faust-Remeshed dataset.

ods, DualConvMax with XYZ+Normal features performs
best with the best overall mean geodesic error of 1.3 and
accuracy (45.8%) that is comparable but somewhat worse
than that of the primal MoNet and FeaStNet. We provide
qualitative evaluations in the supplementary.
Qualitative evaluation on Faust-Scan. Finally, we eval-
uate all methods trained on the Faust-Remeshed data and
visualize texture transfer to the Faust-Scan meshes in Fig-
ure 9. We observe that training on re-meshed versions of the
shapes helps to make primal methods MoNet and FeaStNet
more robust to topological changes, c.f . Figure 8. How-
ever, we observe that SplineCNN does not generalize well
to topologically different meshes, even after training on the
re-meshed data. While being more robust to topological
changes, the dual-based methods also benefit from training
on meshes with varying topology in the Faust-Remeshed
dataset. When training on Faust-Remeshed, the texture
transfer results of dual-based methods are again superior
compared to the primal methods, with DualConvMax yield-
ing the most accurate results overall. For additional qualita-
tive results see Figure 2.

5. Conclusion

We explored the use of the dual mesh to learn shape rep-
resentations for 3D mesh data as an alternative to the more
commonly used primal mesh. Performing convolution op-
erations in the dual domain presents the advantage of the
neighborhood size being fixed. In addition, it allows access
to input features defined naturally on faces, such as normals

and face areas. We focused our experimental study on the
task of real human shape dense correspondence using the
Faust human shape dataset. We introduced a convolutional
operator for the dual mesh and benchmarked it using multi-
ple input features based on the dual mesh.

In our experiments, we compared our dual mesh ap-
proach to existing methods based on the primal mesh and
also applied FeaStNet on the dual mesh. We assess the ro-
bustness of different models to topological changes through
experiments where we train on one version of the dataset
and test on another version of the dataset with different
mesh topologies. We find that primal methods trained on
the Faust-Synthetic dataset, with constant mesh topology
across shapes, are brittle and generalize poorly to meshes
with different topologies. This can be remedied to some
extent by training on meshes with varying topology, as we
did using the Faust-Remeshed dataset. Our results show
the robustness of our convolutional operator applied on the
dual mesh by achieving the best performances when testing
structurally different meshes, whether they are trained on
fixed or variable mesh structures.

Although we focused on shape correspondence in the
current paper, it is interesting to explore in future work the
use of the dual mesh to define deep networks for other tasks
such as shape matching, classification, and semantic seg-
mentation of meshes.
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1. Network architectures and training

We trained models for MoNet [3], SplineCNN [1] and
FeaStNet [5] using the PyTorch Geometric framework [2]
for the different evaluation setups. We use the same base
architecture for primal and dual based methods as given in
Figure 5 of the main paper, where we replace the DualCon-
vMax blocks with the corresponding convolutional blocks.
We use SHOT descriptors [4] as input features for MoNet,
and XYZ for SplineCNN and FeaStNet. While our Dual-
ConvMax operator has three weights per filter by construc-
tion, due to the regularity of the dual mesh, for the other
methods the number of weights is a hyper-parameter. In our
experiments, we use the same number of weights per filter
as in the original papers, i.e . 8 for MoNet, FeaStNet(–Dual)
and 5 for SplineCNN.

Table 1 shows the average execution time of a forward
pass for a mesh of the re-meshed Faust dataset for the differ-
ent models used in our experiments on a Tesla P100 GPU,
as well as the number of parameters of these models. All
methods have a comparable number of parameters and ex-
ecution times except SplineCNN. The latter takes roughly
twice longer to complete a forward pass, and possesses
roughly twice as many parameters as the other methods. For
MoNet, the forward pass time does not include the compu-
tation of the SHOT descriptors, which are used as input to
the model, and take an additional 400 ms to compute per
mesh on CPU.

2. Additional Visualizations

Transfer from Faust-Synthetic to decimated meshes. In
Figure 1, we provide visualizations comparing the results of
different methods trained on full resolution Faust-Synthetic
meshes and tested on a full resolution test mesh and its 50%
decimated version. This figure complements Figure 7 of the
main paper.
Qualitative results on Faust-Scan. We compare the re-

Domain Method Time (ms) #Prms.

Primal
MoNet 8.9± 0.25 1.4M
SplineCNN 17.8± 0.15 3.1M
FeaStNet 10.6± 0.17 1.4M

Dual
FeaStConv–Dual 10.4± 0.14 1.4M
DualConvMax 8.6± 0.57 1.3M

Table 1. Comparison of the number of parameters and average ex-
ecution time of the forward-pass per mesh for Faust-Remeshed.

sults for methods trained on Faust-Synthetic and tested on
Faust-Scan in Figure 2. This figure complements Figure 8
of the main paper.
Qualitative results on Faust-Remeshed. In Figure 3, we
visualize the texture transfer from the Faust-Remeshed ref-
erence shape to Faust-Remeshed test shapes and correspon-
dence errors for these methods. We represent the vertices
for which the ground-truth is missing as blue in the display.
This figure corresponds to the evaluation in Table 3 of the
main paper.
Limitations. Failures of the dual-based models tend to ap-
pear on test poses in Faust-Scan that are very different from
the, mostly upright, training poses in Faust-Remeshed. We
show two such instances in Figure 4. These bent poses is
particularly problematic for the correspondences on the up-
per body. This figure complements the results shown in fig-
ures 2 and 9 of the main paper.
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Figure 1. Visualizations of texture transfer and geodesic correspondence errors for a full resolution Faust-Synthetic test mesh (top two
rows), and the same mesh decimated by 50% (bottom two rows) of the Faust-Decimated dataset. Models are trained on the full resolution
Faust-Synthetic meshes.
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Figure 3. Visualizations of texture transfer for Faust-Remeshed test results trained on Faust-Remeshed dataset using the state-of-the-art
methods and our method. The vertices for which the ground-truth is missing are colored blue in the error meshes.
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Figure 4. Visualization of failure cases on Faust-Scan of models trained on the Faust-Remeshed dataset using XYZ+Normal as input.


