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Low Level Control of a Quadrotor with
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Abstract—Designing effective low-level robot controllers often
entail platform-specific implementations that require manual
heuristic parameter tuning, significant system knowledge, or long
design times. With the rising number of robotic and mecha-
tronic systems deployed across areas ranging from industrial
automation to intelligent toys, the need for a general approach
to generating low-level controllers is increasing. To address the
challenge of rapidly generating low-level controllers, we argue
for using model-based reinforcement learning (MBRL) trained on
relatively small amounts of automatically generated (i.e., without
system simulation) data. In this paper, we explore the capabilities
of MBRL on a Crazyflie centimeter-scale quadrotor with rapid
dynamics to predict and control at ≤ 50Hz. To our knowledge,
this is the first use of MBRL for controlled hover of a quadrotor
using only on-board sensors, direct motor input signals, and
no initial dynamics knowledge. Our controller leverages rapid
simulation of a neural network forward dynamics model on a
GPU-enabled base station, which then transmits the best current
action to the quadrotor firmware via radio. In our experiments,
the quadrotor achieved hovering capability of up to 6 seconds
with 3 minutes of experimental training data.

Index Terms—Deep Learning in Robotics and Automation,
Aerial Systems: Mechanics and Control

I. INTRODUCTION

THE ideal method for generating a robot controller would
be extremely data efficient, free of requirements on

domain knowledge, and safe to run. Current strategies to derive
low-level controllers are effective across many platforms, but
system identification often requires substantial setup and ex-
periment time while PID tuning requires some domain knowl-
edge and still results in dangerous roll-outs. With the goal to
reduce reliance on expert-based controller design, in this paper
we investigate the question: Is it possible to autonomously
learn competitive low-level controllers for a robot, without
simulation or demonstration, in a limited amount of time?

To answer this question, we turn to model-based reinforce-
ment learning (MBRL) – a compelling approach to synthesize
controllers even for systems without analytic dynamics models
and with high cost per experiment [1]. MBRL has been shown
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Fig. 1: The model predictive control loop used to stabilize
the Crazyflie. Using deep model-based reinforcement learning,
the quadrotor reaches stable hovering with only 10,000 trained
datapoints – equivalent to 3 minutes of flight.

to operate in a data-efficient manner to control robotic systems
by iteratively learning a dynamics model and subsequently
leveraging it to design controllers [2]. Our contribution builds
on simulated results of MBRL [3]. We employ the quadrotor as
a testing platform to broadly investigate controller generation
on a highly nonlinear, challenging system, not to directly com-
pare performance versus existing controllers. This paper is the
first demonstration of controlling a quadrotor with direct motor
assignments sent from a MBRL derived controller learning
only via experience. Our work differs from recent progress in
MBRL with quadrotors by exclusively using experimental data
and focusing on low level control, while related applications of
learning with quadrotors employ low-level control generated in
simulation [4] or use a dynamics model learned via experience
to command on-board controllers [5]. Our MBRL solution,
outlined in Figure 1, employs neural networks (NN) to learn a
forwards dynamics model coupled with a ‘random shooter’
MPC, which can be efficiently parallelized on a graphic
processing unit (GPU) to execute low-level, real-time control.

Using MBRL, we demonstrate controlled hover of a
Crazyflie via on-board sensor measurements and application
of pulse width modulation (PWM) motor voltage signals. Our
method for quickly learning controllers from real-world data is
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not yet an alternative to traditional controllers such as PID, but
it opens important avenues of research. The general mapping
of the forward dynamics model, in theory, allows the model to
be used for control tasks beyond attitude control. Additionally,
we highlight the capability of leveraging the predictive models
learned on extremely little data for working at frequencies
≤50 Hz, while a hand tuned PID controller at this frequency
failed to hover the Crazyflie. With the benefits outlined,
the current MBRL approach has limitations in performance
and applicability to our goal of use with other robots. The
performance in this paper has notable room for improvement
by mitigating drift. Future applications are limited by our
approach’s requirement of a high power external GPU – a
prohibitively large computational footprint when compared to
standard low-level controllers – and by the method’s potential
for collisions when learning.

The resulting system achieves repeated stable hover of up
to 6 seconds, with failures due to drift of unobserved states,
within 3 minutes of fully-autonomous training data. These
results demonstrate the ability of MBRL to control robotic
systems in the absence of a priori knowledge of dynamics, pre-
configured internal controllers for stability or actuator response
smoothing, and expert demonstration.

II. RELATED WORK

A. Attitude and Hover Control of Quadrotors

Classical controllers (e.g., PID, LQR, iLQR) in conjunc-
tion with analytic models for the rigid body dynamics of a
quadrotor are often sufficient to control vehicle attitude [6].
In addition, linearized models are sufficient to simultaneously
control for global trajectory attitude setpoints using well-tuned
nested PID controllers [7]. Standard control approaches show
impressive acrobatic performance with quadrotors, but we note
that we are not interested in comparing our approach to finely-
tuned performance; the goal of using MBRL in this context is
to highlight a solution that automatically generates a functional
controller in less or equal time than initial PID hand-tuning,
with no foundation of dynamics knowledge.

Research focusing on developing novel low-level attitude
controllers shows functionality in extreme nonlinear cases,
such as for quadrotors with a missing propeller [8], with
multiple damaged propellers [9], or with the capability to
dynamically tilt its propellers [10]. Optimal control schemes
have demonstrated results on standard quadrotors with extreme
precision and robustness [11].

Our work differs by specifically demonstrating the possi-
bility of attitude control via real-time external MPC. Unlike
other work on real-time MPC for quadrotors which focus
on trajectory control [12], [13], ours uses a dynamics model
derived fully from in-flight data that takes motors signals as
direct inputs. Effectively, our model encompasses only the
actual dynamics of the system, while other implementations
learn the dynamics conditioned on previously existing internal
controllers. The general nature of our model from sensors to
actuators demonstrates the potential for use on robots with no
previous controller — we only use the quadrotor as the basis

for comparison and do not expect it to be the limits of the
MBRL system’s functionality.

B. Learning for Quadrotors

Although learning-based approaches have been widely ap-
plied for trajectory control of quadrotors, implementations
typically rely on sending controller outputs as setpoints to sta-
ble on-board attitude and thrust controllers. Iterative learning
control (ILC) approaches [14], [15] have demonstrated robust
control of quadrotor flight trajectories but require these on-
board controllers for attitude setpoints. Learning-based model
predictive control implementations, which successfully track
trajectories, also wrap their control around on-board attitude
controllers by directly sending Euler angle or thrust com-
mands [16], [17]. Gaussian process-based automatic tuning of
position controller gains has been demonstrated [18], but only
in parallel with on-board controllers tuned separately.

Model-free reinforcement learning has been shown to gen-
erate control policies for quadrotors that out-performs linear
MPC [4]. Although similarly motivated by a desire to generate
a control policy acting directly on actuator inputs, the work
used an external vision system for state error correction,
operated with an internal motor speed controller enabled
(i.e., thrusts were commanded and not motor voltages), and
generated a large fraction of its data in simulation.

Researchers of system identification for quadrotors also
apply machine learning techniques. Bansal et al. used NN
models of the Crazyflie’s dynamics to plan trajectories [5]. Our
implementation differs by directly predicting change in attitude
with on-board IMU measurements and motor voltages, rather
than predicting with global, motion-capture state measure-
ments and thrust targets for the internal PIDs. Using Bayesian
Optimization to learn a linearized quadrotor dynamics model
demonstrated capabilities for tuning of an optimal control
scheme [19]. While this approach is data-efficient and is shown
to outperform analytic models, the model learned is task-
dependent. Our MBRL approach is task agnostic by only
requiring a change in objective function and no new dynamics
data for a new function.

C. Model-based Reinforcement Learning

Functionality of MBRL is evident in simulation for multiple
tasks in low data regimes, including quadrupeds [20] and
manipulation tasks [21]. Low-level MBRL control (i.e., with
direct motor input signals) of an RC car has been demonstrated
experimentally, but the system is of lower dimensionality
and has static stability [22]. Relatively low-level control (i.e.,
mostly thrust commands only passed through an internal
governor before conversion to motor signals) of an autonomous
helicopter has been demonstrated, but required a ground-based
vision system for error correction in state estimates as well as
expert demonstration for model training [22].

Properly optimized NNs trained on experimental data show
test error below common analytic dynamics models for flying
vehicles, but the models did not include direct actuator signals
and did not include experimental validation through controller
implementation [23]. A model predictive path integral (MPPI)
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Fig. 2: The ROS computer passes control signals and state
data between the MPC node and the Crazyflie ROS server.
The Crazyflie ROS server packages Tx PWM values to send
and unpacks Rx compressed log data from the robot.

controller using a learned NN demonstrated data-efficient
trajectory control of a quadrotor, but results were only shown
in simulation and required the network to be initialized with 30
minutes of demonstration data with on-board controllers [2].

MBRL with trajectory sampling for control outperforms,
in terms of samples needed for convergence, the asymptotic
performance of recent model free algorithms in low dimen-
sional tasks [3]. Our work builds on strategies presented,
with most influence derived from “probabilistic” NNs, to
demonstrate functionality in an experimental setting — i.e.,
in the presence of real-world higher order effects, variability,
and time constraints.

NN-based dynamics models with MPC have functioned for
experimental control of an under-actuated hexapod [24]. The
hexapod platform does not have the same requirements on
frequency or control error due to its static stability, and incor-
porates a GPS unit for relatively low-noise state measurements.
Our work has a similar architecture, but has improvements in
the network model and model predictive controller to allow
substantially higher control frequencies with noisy state data.
By demonstrating functionality without global positioning
data, the procedure can be extended to more robot platforms
where only internal state and actuator commands are available
to create a dynamics model and control policy.

III. EXPERIMENTAL SETUP

In this paper, we use as experimental hardware platform
the open-source Crazyflie 2.0 quadrotor [25]. The Crazyflie is
27 g and 9 cm2, so the rapid system dynamics create a need
for a robust controller; by default, the internal PID controller
used for attitude control runs at 500 Hz, with Euler angle
state estimation updates at 1 kHz. This section specifies the
ROS base-station and the firmware modifications required for
external stability control of the Crazyflie.

Input	layer Output	
layer

… …
Fig. 3: The NN dynamics model predicts the mean and
variance of the change in state given the past 4 state-action
pairs. We use 2 hidden layers of width 250 neurons.

All components we used are based on publicly available and
open source projects. We used the Crazyflie ROS interface
supported here: github.com/whoenig/crazyflie ros [26]. This
interface allows for easy modification of the radio communi-
cation and employment of the learning framework. Our ROS
structure is simple, with a Crazyflie subscribing to PWM
values generated by a controller node, which processes radio
packets sent from the quadrotor in order to pass state variables
to the model predictive controller (as shown in Figure 2). The
Crazyradio PA USB radio is used to send commands from the
ROS server; software settings in the included client increase
the maximum data transmission bitrate up to 2 Mbps and a
Crazyflie firmware modification improves the maximum traffic
rate from 100 Hz to 400 Hz.

In packaged radio transmissions from the ROS server we
define actions directly as the pulse-width modulation (PWM)
signals sent to the motors. To assign these PWM values
directly to the motors we bypass the controller updates in
the standard Crazyflie firmware by changing the motor power
distribution whenever a CRTP Commander packet is received
(see Figure 2). The Crazyflie ROS package sends empty
ping packets to the Crazyflie to ask for logging data in
the returning acknowledgment packet; without decreasing the
logging payload and rate we could not simultaneously trans-
mit PWM commands at the desired frequency due to radio
communication constraints. We created a new internal logging
block of compressed IMU data and Euler angle measurements
to decrease the required bitrate for logging state information,
trading state measurement precision for update frequency.
Action commands and logged state data are communicated
asynchronously; the ROS server control loop has a frequency
set by the ROS rate command, while state data is logged based
on a separate ROS topic frequency. To verify control frequency
and reconstruct state action pairs during autonomous rollouts
we use a round-trip packet ID system.

IV. LEARNING FORWARD DYNAMICS

The foundation of a controller in MBRL is a reliable
forward dynamics model for predictions. In this paper, we
refer to the current state and action as st and at, which evolve
according to the dynamics f(st, at). Generating a dynamics
model for the robot often consists of training a NN to fit a
parametric function fθ to predict the next state of the robot as
a discrete change in state st+1 = st + fθ(st, at). In training,
using a probabilistic loss function with a penalty term on the

https://github.com/whoenig/crazyflie_ros
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variance of estimates, as shown in Equation (1), better clusters
predictions for more stable predictions across multiple time-
steps [3]. The probabilistic loss fits a Gaussian distribution to
each output of the network, represented in total by a mean
vector µθ and a covariance matrix Σθ

l =

N∑
n=1

[µθ(sn, an)− sn+1]TΣ−1
θ (sn, an)[µθ(sn, an)− sn+1]

+ log det Σθ(sn, an) . (1)

The probabilistic loss function assists model convergence and
the variance penalty helps maintain stable predictions on
longer time horizons. Our networks implemented in Pytorch
train with the Adam optimizer [27] for 60 epochs with a learn-
ing rate of .0005 and a batch size of 32. Figure 3 summarizes
the network design. All layers except for the output layer use
the Swish activation function [28] with parameter β = 1. The
network structure was cross validated offline for prediction
accuracy verses potential control frequency. Initial validation
of training parameters was done on early experiments, and
the final values are held constant for each rollout in the
experiments reported in Section VI. The validation set is a
random subset of measured (st, at, st+1) tuples in the pruned
data.

Additional dynamics model accuracy could be gained with
systematic model verification between rollouts, but experi-
mental variation in the current setup would limit empirical
insight and a lower model loss does not guarantee improved
flight time. Our initial experiments indicate improved flight
performance with forward dynamics models minimizing the
mean and variance of state predictions versus models mini-
mizing mean squared prediction error, but more experiments
are needed to state clear relationships between more model
parameters and flight performance.

Training a probabilistic NN to approximate the dynamics
model requires pruning of logged data (e.g. dropped packets)
and scaling of variables to assist model convergence. Our
state st is the vector of Euler angles (yaw, pitch, and roll),
linear accelerations, and angular accelerations, reading

st =
[
ω̇x, ω̇y, ω̇z, φ, θ, ψ, ẍ, ÿ, z̈

]T
. (2)

The Euler angles are from the an internal complementary
filter, while the linear and angular accelerations are measured
directly from the on-board MPU-9250 9-axis IMU. In practice,
for predicting across longer time horizons, modeling accelera-
tion values as a global next state rather than a change in state
increased the length of time horizon in composed predictions
before the models diverged. While the change in Euler angle
predictions are stable, the change in raw accelerations vary
widely with sensor noise and cause non-physical dynamics
predictions, so all the linear and angular accelerations are
trained to fit the global next state.

We combine the state data with the four PWM values,
at = [m1,m2,m3,m4]T , to get the system information at
time t. The NNs are cross-validated to confirm using all state
data (i.e., including the relatively noisy raw measurements)
improves prediction accuracy in the change in state.

While the dynamics for a quadrotor are often represented
as a linear system, for a Micro Air Vehicle (MAV) at high
control frequencies motor step response and thrust asymmetry
heavily impact the change in state, resulting in a heavily
nonlinear dynamics model. The step response of a Crazyflie
motor RPM from PWM 0 to max or from max to 0 is on
the order of 250 ms, so our update time-step of 20 ms is short
enough for motor spin-up to contribute to learned dynamics.
To account for spin-up, we append past system information
to the current state and PWMs to generate an input into the
NN model that includes past time. From the exponential step
response and with a bounded possible PWM value within
peq ± 5000, the motors need approximately 25 ms to reach
the desired rotor speed; when operating at 50 Hz, the time
step between updates is 20 ms, leading us to an appended
states and PWMs history of length 4. This state action history
length was validated as having the lowest test error on our
data-set (lengths 1 to 10 evaluated). This yields the final input
of length 52 to our NN, ξ, with states and actions combined
to ξt =

[
st st−1 st−2 st−3 at at−1 at−2 at−3

]T
.

V. LOW LEVEL MODEL-BASED CONTROL

This section explains how we incorporate our learned for-
ward dynamics model into a functional controller. The dynam-
ics model is used for control by predicting the state evolution
given a certain action, and the MPC provides a framework for
evaluating many action candidates simultaneously. We employ
a ‘random shooter’ MPC, where a set of N randomly generated
actions are simulated over a time horizon T . The best action is
decided by a user designed objective function that takes in the
simulated trajectories X̂(a, st) and returns a best action, a∗,
as visualized in Figure 4. The objective function minimizes
the receding horizon cost of each state from the end of the
prediction window to the current measurement.

The candidate actions, {ai = (ai,1, ai,2, ai,3, ai,4)}Ni=1, are
4-tuples of motor PWM values centered around the stable
hover-point for the Crazyflie. The candidate actions are con-
stant across the prediction time horizon T . For a single sample
ai, each ai,j is chosen from a uniform random variable on the
interval [peq,j − σ, peq,j + σ], where peq,j is the equilibrium
PWM value for motor j. The range of the uniform distribution
is controlled by the tuned parameter σ; this has the effect of
restricting the variety of actions the Crazyflie can take. For the
given range of PWM values for each motor, [peq−σ, peq +σ],
we discretize the candidate PWM values to a step size of
256 to match the future compression into a radio packet. This
discretization of available action choices increases the cover-
age of the candidate action space. The compression of PWM
resolution, while helpful for sampling and communication,
represents an uncharacterized detriment to performance.

Our investigation focuses on controlled hovering, but other
tasks could be commanded with a simple change to the
objective function. The objective we designed for stability
seeks to minimize pitch and roll, while adding additional cost
terms to Euler angle rates. In the cost function, λ effects the
ratio between proportional and derivative gains. Adding cost
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Fig. 4: Predicted states for N = 50 candidate actions with the
chosen “best action” highlighted in red. The predicted state
evolution is expected to diverge from the ground truth for
future t because actions are re-planned at every step.

terms to predicted accelerations did not improve performance
because of the variance of the predictions.

a∗ = arg min
a

T∑
t=1

λ(ψ2
t + θ2t ) + ψ̇2

t + θ̇2t + φ̇2t . (3)

Our MPC operates on a time horizon T = 12 to leverage
the predictive power of our model. Higher control frequencies
can run at a cost of prediction horizon, such as T = 9 at 75 Hz
or T = 6 at 100 Hz. The computational cost is proportional
to the product of model size, number of actions (N ), and
time horizon (T ). At high frequencies the time spanned by
the dynamics model predictions shrinks because of a smaller
dynamics step in prediction and by having less computation for
longer T , limiting performance. At 50 Hz, a time horizon of 12
corresponds to a prediction of 240 ms into the future. Tuning
the parameters of this methodology corresponds to changes in
the likelihood of taking the best action, rather than modifying
actuator responses, and therefore its effect on performance
is less sensitive than changes to PID or standard controller
parameters. At 50 Hz, the predictive power is strong, but the
relatively low control frequencies increases susceptibility to
disturbances in between control updates. A system running
with an Nvidia Titan Xp attains a maximum control frequency
of 230 Hz with N = 5000, T = 1. For testing we use locked
frequencies of 25 Hz and 50 Hz at N = 5000, T = 12.

VI. EXPERIMENTAL EVALUATION

We now describe the setting used in our experiments, the
learning process of the system, and the performance summary
of the control algorithm. Videos of the flying quadrotor, and
full code for controlling the Crazyflie and reproducing the
experiments, are available online at https://sites.google.com/
berkeley.edu/mbrl-quadrotor/

A. Experimental Setting

The performance of our controller is measured by the
average flight length over each roll-out. Failure is often due
to drift induced collisions, or, as in many earlier roll-outs,
when flights reach a pitch or roll angle over 40◦. In both
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Fig. 5: Mean and standard deviation of the 10 flights during
each rollout learning at 25 Hz and 50 Hz. The 50 Hz shows a
slight edge on final performance, but a much quicker learning
ability per flight by having more action changes during control.

cases, an emergency stop command is sent to the motors
to minimize damage. Additionally, the simple on-board state
estimator shows heavy inconsistencies on the Euler angles
following a rapid throttle ramping, which is a potential limiting
factor on the length of controlled flight. Notably, a quadrotor
with internal PIDs enabled will still fail regularly due to
drift on the same time frame as our controller; it is only
with external inputs that the internal controllers will obtain
substantially longer flights. The drift showcases the challenge
of using attitude controllers to mitigate an offset in velocity.

B. Learning Process

The learning process follows the RL framework of collecting
data and iteratively updating the policy. We trained an initial
model f0 on 124 and 394 points of dynamics data at 25 Hz
and 50 Hz, respectively, from the Crazyflie being flown by a
random action controller. Starting with this initial model as the
MPC plant, the Crazyflie undertakes a series of autonomous
flights from the ground with a 250 ms ramp up, open-loop
takeoff followed by on-policy control while logging data via
radio. Each roll-out is a series of 10 flights, which causes
large variances in flight time. The initial roll-outs have less
control authority and inherently explore more extreme attitude
orientations (often during crashes), which is valuable to future
iterations that wish to recover from higher pitch and/or roll.
The random and first three controlled roll-outs at 50 Hz are
plotted in Figure 6 to show the rapid improvement of perfor-
mance with little training data.

The full learning curves are shown in Figure 5. At both
25 Hz and 50 Hz the rate of flight improvement reaches its
maximum once there is 1,000 trainable points for the dynamics
model, which takes longer to collect at the lower control
frequency. The improvement is after roll-out 1 at 50Hz and
roll-out 5 at 25Hz. The longest individual flights at both control
frequencies is over 5 s. The final models at 25 Hz and 50 Hz
are trained on 2,608 and 9,655 points respectively, but peak
performance is earlier due to dynamics model convergence and
hardware lifetime limitations.

https://sites.google.com/berkeley.edu/mbrl-quadrotor/
https://sites.google.com/berkeley.edu/mbrl-quadrotor/
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C. Performance Summary

This controller demonstrates the ability to hover, following
a “clean” open-loop takeoff, for multiple seconds (an example
is shown in Figure 8). At both 25 Hz and 50 Hz, once reaching
maximum performance in the 12 roll-outs, about 30% of flights
fail to drift. The failures due to drift indicate the full potential
of the MBRL solution to low-level quadrotor control. An
example of a test flight segment is shown in Figure 7, where
the control response to pitch and roll error is visible.

The basis of comparison, typical quadrotor controllers,
achieve better performance, but with higher control frequencies
and engineering design iterations leveraging system dynamics
knowledge. With the continued improvement of computa-
tional power, the performance of this method should be re-
characterized as potential control frequencies approach that of
PID controllers. Beyond comparison to PID controllers with
low computational footprints, the results warrant exploration
of MBRL for new dynamical systems with or when varying
goals need to be built into low level control. In less than
10 minutes of clock time, and only 3 minutes of training
data, we present comparable, but limited, performance that is
encouraging for future abilities to match and surpass basic

controllers. Moving the balance of this work further towards
domain specific control would likely improve performance,
but the broad potential for applications to more and different
robotic platforms compels exciting future use of MBRL.

VII. DISCUSSION AND LIMITATIONS

The system has multiple factors contributing to short length
and high variance of flights. First, the PWM equilibrium
values of the motors shift by over 10% following a collision,
causing the true dynamics model to shift over time. This
problem is partially mitigated by replacing the components
of the Crazyflie, but any change of hardware causes dynamics
model mismatch and the challenge persists. Additionally, the
internal state estimator does not track extreme changes in Euler
angles accurately. We believe that overcoming the system-level
and dynamical limitations of controlling the Crazyflie in this
manner showcases the expressive power of MBRL.

Improvements to the peak performance will come by iden-
tifying causes of the performance plateau. Elements to in-
vestigate include the data-limited slow down in improvement
of the dynamics model accuracy, the different collected data
distributions at each roll-out, the stochasticity of NN training,
and the stochasticity at running time with MPC.

Beyond improving performance, computational burden and
safety hinder the applicability of MBRL with MPC to more
systems. The current method requires a GPU-enabled base-
station, but the computational efficiency could be improved
with intelligent action sampling methods or by combining
model free techniques, such as learning a deterministic action
policy based on the learned dynamics model. We are exploring
methods to generate NN control policies, such as an imitative-
MPC network or a model-free variant, on the dynamics model
that could reduce computation by over 1000x by only evalu-
ating a NN once per state measurement. In order to enhance
safety, we are interested in defining safety constraints within
the model predictive controller, rather than just a safety kill-
switch in firmware, opening the door to fully autonomous
learned control from start to finish.
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Fig. 8: A full flight of Euler angle state data with frames of the corresponding video. This flight would have continued longer
if not for drifting into the wall. The relation between physical orientation and pitch and roll is visible in the frames. The full
video is online on the accompanying website.

VIII. CONCLUSIONS AND FUTURE WORK

This work is an exploration of the capabilities of model-
based reinforcement learning for low-level control of an a
priori unknown dynamic system. The results, with the added
challenges of the static instability and fast dynamics of the
Crazyflie, show the capabilities and future potential of MBRL.
We detail the firmware modifications, system design, and
model learning considerations required to enable the use of a
MBRL-based MPC system for quadrotor control over radio.
We removed all robot-specific transforms and higher level
commands to only design the controller on top of a learned
dynamics model to accomplish a simple task. The controller
shows the capability to hover for multiple seconds at a time
with less than 3 minutes of collected data – approximately
half of the full battery life flight time of a Crazyflie. With
learned flight in only minutes of testing, this brand of system-
agnostic MBRL is an exciting solution not only due to its
generalizability, but also due to its learning speed.

In parallel with addressing the limitations outlined in Sec-
tion VII, the quadrotor results warrant investigation into low
level control of other robots. The emergent area of micro-
robotics combines the issues of under-characterized dynamics,
weak or non-existent controllers, “fast” dynamics and therefore
instabilities, and high cost-to-test [29], [30], so it is a strong
candidate for MBRL experiments.
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IX. APPENDIX

A. Battery Voltage Context

The Crazyflie has a short battery voltage of about 7 minutes
of flight time and operation depends heavily on battery voltage,
with it becoming uncontrollable on low voltages when operat-
ing on our controllers or the built in nested PID controllers. In
this experiment, we study the influence of the battery voltage
to the dynamics of the Crazyflie, to understand if there is a
time-varying drift that need to be compensated. We investigate
this hypothesis by logging battery voltage and adding it to the
state passed to the neural network during model training to
improve prediction accuracy.

When operating the Crazyflie at control frequencies of
greater than 100 Hz, the state dynamics become clearly biased
at battery voltages less than 3,650 mV. The biases are present
at lower frequencies, but less pronounced. The biased state
dynamics can be seen in Figure 9, but the predictions do
not improve when passing the battery voltage into the neural
network dynamics model at any battery level. The RMS error
delta between a model trained with and without battery voltage
is less than 1%, indicating that the battery voltage is nearly
completely captured in other variables passed to the network.

A potential explanation for the lack of model improvement
with logged battery voltage is that the current battery reading
is latent in other variables past into the network, and the
natural charge based variations in data are not dominant. The
logged data shows a clear inverse relationship between battery
voltage and current Crazyflie thrust, shown in Figure 11. The
impedance of the motors changes depending on the rotor speed
and drive. This battery and thrust relationship is less likely
to be apparent on quadrotors with separate motor voltage
controllers, where the impedance of the motors changing with
revolutions per minute would be compensated for.

B. Crazyflie Lifespan

Extended periods of testing on individuals quadrotors
demonstrated a finite lifetime. After many flights, performance
would dip inexplicably. This is due to a combination of
motor damage and or sensor decay. Motor damage causes
a measureable change in the equilibrium PWMs for a given
quadrotor. Figure 10 shows the change in the noise on the
gyroscope before takeoff for all of the flights taken by the
quadcopter used to collect data for this publication. The left
two sections includes the data included in VI, but the data
taken at a control frequency of 75 Hz was abandoned due to

Fig. 9: Demonstration of the effect of battery voltage on state predictions. The top row is the ground truth one step pitch
changes, the middle is the predictions through a model trained with battery voltage included in the state, and the bottom is
predictions without battery voltage included in the state. Both of the predictions show tighter grouping from the variance term
on the probabilistic loss function, but there is an extremely low difference between the predictions with and the predictions
without battery. The lack of difference in predictions indicates the battery voltage is latent to other variables passed into the
network.
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Fig. 10: The sensor noise on the 3 angular accelerations measured by the gyroscope of the MPU9250 of the Crazyflie before
the robot takes off. The black vertical lines separate the rollouts at 25 Hz, 50 Hz and 75 Hz from left to right. The vertical
lines indicate changes in hardware and collisions that would change the dynamics or state of the robot. The sensors clearly are
subject to increasing noise over lifespan.

Fig. 11: The logged battery voltage and mean PWM of the
4 motors across a flight. There is a clear inverse relationship
between the logged battery voltage and the current thrust.

inconsistent performance. Some initial flights at 75 Hz were
extremely promising, but after a series of collisions via drift
the quadrotor would not take off cleanly. Future work should
investigate methods of mitigating the effect of sensor drift,
potentially by conditioning the dynamics model on a sensor
noise measurement or enforcing more safety constraints on
flight.

C. Frequency Dependent Learning

There is a trend between learned performance at both
frequencies and the number of trained points for the model,
as shown in Figure 12. The continuing upward trend between

logarithmic points and flight time indicates further data col-
lection could enhance flight performance, but is unrealistic
without further progress on safe learning with the Crazyflie.
Potential future applications could leverage a combination of
our results with bootstrapping data to continue to improve
performance without the difficulties of logging large amoutns
of experimental data on an individual robot.

Fig. 12: Mean flight time of each rollout plotted verses the
logarithm of the number of available points at train time for
each model. The higher control frequency allows the controller
to learn faster on wall time, but the plot indicates that there
is not a notable difference between control ability when the
number of trained points are equal. There is a continuing
upward trend of flight time verses training points, but it is
difficult to obtain more data in experiment.


	Introduction
	Related Work
	Attitude and Hover Control of Quadrotors
	Learning for Quadrotors
	Model-based Reinforcement Learning

	Experimental Setup
	Learning Forward Dynamics
	Low Level Model-Based Control
	Experimental Evaluation
	Experimental Setting
	Learning Process
	Performance Summary

	Discussion and Limitations
	Conclusions and Future Work
	References
	Appendix
	Battery Voltage Context
	Crazyflie Lifespan
	Frequency Dependent Learning


