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Abstract

Randomized value functions offer a promising
approach towards the challenge of efficient ex-
ploration in complex environments with high
dimensional state and action spaces. Unlike
traditional point estimate methods, randomized
value functions maintain a posterior distribu-
tion over action-space values. This prevents
the agent’s behavior policy from prematurely
exploiting early estimates and falling into lo-
cal optima. In this work, we leverage recent
advances in variational Bayesian neural net-
works and combine these with traditional Deep
Q-Networks (DQN) and Deep Deterministic
Policy Gradient (DDPG) to achieve random-
ized value functions for high-dimensional do-
mains. In particular, we augment DQN and
DDPG with multiplicative normalizing flows
in order to track a rich approximate posterior
distribution over the parameters of the value
function. This allows the agent to perform ap-
proximate Thompson sampling in a computa-
tionally efficient manner via stochastic gradient
methods. We demonstrate the benefits of our
approach through an empirical comparison in
high dimensional environments.

Efficient exploration is one of the main obstacles in scal-
ing up modern deep reinforcement learning (RL) algo-
rithms (Bellemare et al., 2016; Osband et al., 2017; Fortu-
nato et al., 2017). The main challenge in efficient explo-
ration is the balance between exploiting current estimates,
and gaining information about poorly understood states
and actions. Despite the wealth of research into prov-
ably efficient exploration strategies, most of these focus
on tabular representations and are typically intractable
in high dimensional environments (Strehl and Littman,
2005; Kearns and Singh, 2002; Brafman and Tennenholtz,

2002). Currently, the most widely used technique, in Deep
RL, involves perturbing the greedy action with some lo-
cal random noise, e.g ε-greedy or Bolzmann exploration
(Sutton and Barto, 1998). This naive perturbation is not di-
rected; it continuously explores actions that are known to
be sub-optimal and may result in sample complexity that
grows exponentially with the number of states (Kearns
and Singh, 2002; Osband et al., 2017).

Optimism in the face of uncertainty is one of the tradi-
tional guiding principles that offers provably efficient
learning algorithms (Strehl and Littman, 2005; Kearns
and Singh, 2002; Brafman and Tennenholtz, 2002; Jaksch
et al., 2010). These algorithms incentivize learning about
the environment by rewarding the discoveries of poorly
understood states and actions with an exploration bonus.
In these approaches, the agent first builds a confidence set
over Markov Decision Processes (MDPs) that contains
the true MDP with high probability. Then, the agent de-
termines the most optimistic and statistically plausible
version of its model and acts optimally with respect to
it. Inspired by this principle, several Deep RL works
prescribe guided exploration strategies, such as pseudo-
counts (Bellemare et al., 2016), variational information
maximization (Houthooft et al., 2016) and model predic-
tion errors (Stadie et al., 2015). All of the aforementioned
methods add an intrinsic reward to the original reward
and then simply train traditional Deep RL algorithms on
the augmented MDP.

An entire body of algorithms for efficient exploration
is inspired by Thompson sampling (Thompson, 1933).
Bayesian dynamic programming was first introduced in
Strens (2000) and has become known more recently as
posterior sampling for reinforcement learning (PSRL)
(Osband et al., 2013). In PSRL, the agent starts with a
prior belief over world models and then proceeds to up-
date its full posterior distribution over models with the
newly observed samples. A model hypothesis is then
sampled from this distribution, and a greedy policy with
respect to the sampled model is followed thereafter. Un-



fortunately, due to their high computational cost, these
methods are only feasible on small MDPs and are of lim-
ited practical use in high dimensional environments.

Osband et al. (2017) developed randomized value func-
tions in order to improve the scalability of PSRL. At
an abstract level, randomized value functions can be in-
terpreted as a model-free version of PSRL. Instead of
maintaining a posterior belief over possible models, the
agent’s belief is expressed over value functions. Simi-
larly to PSRL, a value function is sampled at the start of
each episode and actions are selected greedily thereafter.
Subsequently, actions with highly uncertain values are ex-
plored due to the variance in the sampled value functions.
In order to scale this approach to large MDPs with linear
function approximation, Osband et al. (2016b) introduce
randomized least-square value iteration (RLSVI) which
involves using Bayesian linear regression for learning the
value function.

In the present work, we are interested in using randomized
value functions with deep neural networks as a function
approximator. To address the issues with computational
and statistical efficiency, we leverage recent advances in
variational Bayesian neural networks. Specifically, we
use normalizing multiplicative flows (MNF) (Louizos and
Welling, 2017) in order to account for the uncertainty of
estimates for efficient exploration. MNF is a recently
introduced family of approximate posteriors for Bayesian
neural networks that allows for arbitrary dependencies
between neural network parameters.

Our main contribution is to introduce MNFs into stan-
dard value-based Deep RL algorithms, yielding a well-
principled and powerful method for efficient exploration.
We validate this approach experimentally by comparing
against recent Deep RL baselines on several challenging
exploration domains, including the Arcade Learning En-
vironment (ALE) (Bellemare et al., 2013). We thus show
that the richness of the approximate posterior in MNF
enables more efficient exploration in deep reinforcement
learning.

1 Reinforcement Learning Background

In reinforcement learning, an agent interacts with its envi-
ronment which is modelled as a discounted Markov De-
cision Process (S,A, γ, P, r) with state space S, action
space A, discount factor γ ∈ [0, 1), transition probabil-
ities P : S × A → (S → [0, 1]) mapping state-action
pairs to distributions over next states, and reward func-
tion r : (S × A) → R (Sutton and Barto, 1998). We
denote by π(a | s) the probability of choosing an action
a in the state s under the policy π : S → (A → [0, 1]).
The action-value function for policy π, denoted Qπ :

S ×A → R, represents the expected sum of discounted
rewards along the trajectories induced by the MDP and
π: Qπ(s, a) = E [

∑∞
t=0 γ

trt | (s0, a0) = (s, a), π]. The
expectation is over the distribution of admissible tra-
jectories (s0, a0, s1, a1, . . .) obtained by executing the
policy π starting from s0 = s and a0 = a. The
action-value function of the optimal policy is Q?(s, a) =
argmaxπ Q

π(s, a) and it satisfies the Bellman optimality
equation:

Q?(s, a) = r(s, a) + γ
∑
s′∈S

p(s′ | s, a)max
a∈A

Q?(s′, a)

(1)

Fitted Q iteration (FQI) (Gordon, 1999; Riedmiller,
2005) assumes that the entire learning dataset of agent
interactions is available from the start. If D represents
the dataset consisting of (s, a, r, s′), and w represents the
weights of the function approximator, then the problem
can be formulated as a supervised learning regression
problem by minimizing the following:

L(w) =
1

|D|
∑

(s,a,r,s′)∈D

[
(y −Q(s, a;w))

2
]
, (2)

where y = r + γmaxa∈AQ(s′, a;w).

Deep Q-Networks (DQN) (Mnih et al., 2015) incorpo-
rate a deep neural network, parameterized by w, as a
function approximator for the action-value function of
the optimal policy. The neural network parameters are
estimated by minimizing the squared temporal difference
residual:

L(w) = ED
[
(y −Q(s, a;w))

2
]
, (3)

where y = r + γmaxa∈AQ(s′, a;w−) and ED denotes
the expectation over transitions (s, a, r = r(s, a), s′ ∼
p(s′ | s, a)) sampled uniformly from a replay buffer D of
recent observed transitions. Here w− denotes the param-
eters of a target network which is updated (w− ← w)
regularly and held fixed between individual updates of w.
The action-value function defines the policy implicitly by
π(s) = argmaxa∈AQ(s, a).

Double DQN (DDQN) (van Hasselt et al., 2016) im-
proves DQN by removing its over-estimation bias by
simply replacing y in equation 3 with the following:

y = r + γQ(s′, a;w−), a = argmax
a′∈A

Q(s′, a′;w).

Deep Deterministic Policy Gradients (DDPG) (Lilli-
crap et al., 2015) is an off-policy actor-critic (Sutton et al.,
2000) algorithm that uses the deterministic policy gradi-
ent to operate over continuous action spaces. Similar to



DQN, the critic estimates the value function by minimiz-
ing the same loss as in equation 3 but by replacing the
target y with the following:

y = r + γQ(s′, π(s′;ψ);w−), (4)

where π(.;ψ) is the parameterized actor or policy. The
actor is trained to maximize the critic’s estimated value
function by back-propagating through both networks. The
exploration policy in DDPG is attained by adding noise,
π(s;ψ) + ε, where ε ∼ OU(0, σ2) and OU denotes the
Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein,
1930).

2 Variational inference for Bayesian
neural networks

In order to explore more efficiently, our approach captures
the uncertainty of the value estimates by using Bayesian
inference. Instead of maintaining a point estimate of the
deep Q-network parameters, we infer a posterior distribu-
tion. However, due to the nonlinear aspect of neural net-
works, obtaining the posterior distributions is not tractable
and approximations have to be introduced. Thus, in this
work, we use the variational inference procedure (Hinton
and van Camp, 1993) and the so-called reparametrization
trick for neural networks (Kingma and Welling, 2013;
Rezende et al., 2014).

Variational Inference. Let D be a dataset consisting of
input output pairs {(x1, y1), . . . (xn, yn)}. A neural net-
work parameterized by weights w models the conditional
probability p(y |x,w) of an output y given an input x.
Let p(w) and qφ(w) be respectively the prior and approxi-
mate posterior over weights w. Variational Inference (VI)
consists of maximizing the following Evidence Lower
Bound (ELBO) with respect to the variational posterior
parameters φ:

L(φ) = Eqφ(w) [log p(y |x,w)]−KL(qφ(w)||p(w)).
(5)

where Eqφ(w) denotes expectation over parametersw sam-
pled from qφ(w). We note that the ELBO is a lower bound
on the marginal log-likelihood of the dataset D.

Mean Field Approximation. Blundell et al. (2015)
assumes a mean field with independent Gaussian dis-
tributions for each weight: Let w ∈ RDin×Dout be
the weight matrix of a fully connected layer, qφ(w) =∏Din
i=1

∏Dout
j=1 qφ(wi,j) and qφ(wi,j) = N (µi,j , σ

2
i,j)

where φ = (µ, σ) are learned parameters. The uni-modal
and the fully factorized Gaussian are both limiting as-
sumptions for high dimensional weights. They are not
flexible enough to capture the true posterior distribution
which is much more complex. Thus, the accuracy of

the model’s uncertainty estimates are potentially compro-
mised.

Multiplicative Normalizing Flows (MNF). Louizos and
Welling (2017) use multiplicative noise to define a more
expressive approximate posterior. Multiplicative noise
is often used as stochastic regularization in training a
deterministic neural network, such as Gaussian Dropout
(Srivastava et al., 2014). The technique was later rein-
terpreted as an algorithm for approximate inference in
Bayesian neural networks (Kingma et al., 2015). The
approximate posterior is as follows:

z ∼ qφ(z); w ∼ qφ(w | z) =
Din∏
i=1

Dout∏
j=1

N (ziµi,j , σ
2
i,j).

(6)
The approximate posterior is considered an infinite mix-
ture q(w) =

∫
q(w | z)q(z)dz, where z ∈ RDin plays the

role of an auxiliary latent variable (Salimans et al. (2015);
Ranganath et al. (2016)). The vector z is of much lower
dimension (Din) than w (Din ×Dout). To make the pos-
terior approximation richer and allow arbitrarily complex
dependencies between the components of the weight ma-
trix, the mixing density q(z) is modeled via normalizing
flows (Rezende and Mohamed, 2015). This comes at an
additional computational cost that scales linearly in the
number of parameters.

Normalizing flows is a class of invertible deterministic
transformations for which the determinant of the Jaco-
bian can be computed efficiently. A rich density function
q(zK) can be obtained by applying a invertible trans-
formation fk on an initial random variable z0, K times,
successively. Consider a simple distribution, factorized
Gaussian, q(z0) =

∏Din
j=1N (µz0,j , σ

2
z0,j ), the computa-

tion is then as follows:

zK = NF(z0) = fK ◦ . . . ◦ f1(z0); (7)

log q(zK) = log q(z0)−
K∑
k=1

log

∣∣∣∣det
∂fk
∂zk−1

∣∣∣∣ . (8)

In multiplicative normalizing flows (MNF) (Louizos and
Welling, 2017), zk acts multiplicatively on the mean to
the weights w as shown in equation 6. We denote φ as
the learnable posterior parameters which are composed of
µz0 , σz0 , µw, σw and Normalizing flow (NF) parameters.

Unfortunately, the KL divergence term in the ELBO de-
fined in equation 20 becomes generally intractable as the
posterior q(w) is an infinite mixture. This is addressed by
introducing an auxiliary posterior distribution rθ(z |w)
parameterized by θ and using it to further lower bound the
KL divergence term of equation 20. Formally, rθ(z |w)



is parameterized by inverse normalizing flows as follows:

z0 ∼ r(z0 |w) =
Din∏
i=1

N (µ̃i(w), σ̃i(w)), (9)

where µ̃i(w) and σ̃i(w) can be functions of w

z0 = NF−1(zK) = g−11 ◦ . . . ◦ g
−1
K (zK);

(10)

log r(zk |w) = log r(z0 |w) +
K∑
k=1

log

∣∣∣∣det
∂g−1k
∂zk

∣∣∣∣ ,
(11)

and where we parameterize g−11 , . . . , g−1K as another nor-
malizing flow. The parameters θ are the learnable aux-
iliary network parameters which are composed of the
parameters of µ̃ and σ̃ and the parameters of the inverse
normalizing flows NF−1. Finally, we obtain the lower
bound that MNF should optimize by replacing the KL
divergence term with the lower bound in terms of the
distribution rθ:

L(φ, θ) = Eqφ(w,zK)[log p(y |x,w)− (12)

(KL(qφ(w | zK)||p(w))− log rθ(zK |w) + log qφ(zK))︸ ︷︷ ︸
regularization_cost(w,zk,φ,θ)

].

We can now parameterize the random sampling from
qφ(w, zK) in terms of noise variables εw and εz , and
deterministic function h by w, zK = h(φ, εw, εz) as de-
scribed by the following sampling procedure:

εz ∼ q(εz) = N (0, IDin),

z0 = µz0 + σz0 � εz,
zK = NF(z0),
εw ∼ q(εw) = N (0, IDin×Dout),

w = (zK1>Dout)� µw + σw � εw, (13)

where � is elementwise multiplication, IDin and
IDin×Dout are identity matrices and 1Dout is a Dout di-
mensional vector whose entries are all equal to one. The
lower bound L(φ, θ) in equation 12 can be written as:

L(φ, θ) = Eεz,εw [log p(y |x, h(φ, εw, εz))−
regularization_cost(h(φ, εw, εz), θ)] (14)

Thus, we can have a Monte Carlo sample of the gradient
of L(φ, θ) with respect to φ and θ. This parameterization
allows us to handle the approximate parameter posterior
as a straightforward optimization problem.

Choice of normalizing flows. In practice, we use masked
RealNVP (Dinh et al., 2016) for the normalizing flows.

In particular, we use the numerically stable updates de-
scribed in Inverse Autoregressive Flow (Kingma et al.,
2016):

m = Bern(0.5), h = tanh(a(m� zk)),
µ = b(h), σ = sigmoid(c(h)),

zk+1 = fk(zk) (15)
= m� zk+
(1−m)� (zk � σ + (1− σ)� µ),

log

∣∣∣∣∂fk∂zk

∣∣∣∣ = (1−m)> log σ, (16)

where a(.), b(.) and c(.) are linear transformations. For
the auxiliary posterior distribution r(z0 |w) defined in
equation 9, we parameterize the mean and the standard de-
viation µ̃ σ̃ as in the original paper (Louizos and Welling,
2017).

3 Multiplicative Normalizing Flows for
Randomized Value Functions

We now turn to our novel proposed approach that incorpo-
rates the techniques we previously introduced to modify
both DQN and DDPG in a similar fashion. In particular,
we introduce a new parametrization of the value functions
(optimal value function in DQN and the critic in DDPG)
and change their corresponding losses.

We model the distribution of target return y (y is
equal to r + γmaxa∈AQ(s′, a;w−) for DQN and to
r + γQ(s′, π(s′;ψ);w−) for DDPG) as a Gaussian
distribution with parameterized mean Q(s, a;w) 1 and
constant standard deviation τ : y ∼ p(y | s, a) =
N (Q(s, a;w), τ2).

In this setting, minimizing the loss of DQN or of the
DDPG critic corresponds to a maximum log-likelihood
estimation. Indeed L(w) from equation 2 is such that:

|D|L(w) =
∑

(s,a,r,s′)∈D

[
(y −Q(s, a;w))

2
]

= −2τ2
∑

(s,a,r,s′)∈D

log p(y | s, a), (17)

where we ignore constant terms. Instead of computing
a maximum likelihood estimate of the parameters w of
the value function network, we use a randomized value
function to track an approximate posterior distribution
over network parameters w, using the MNF family to

1We overload our notation w for both the weight matrix of a
single layer and the full set of network parameters.



parameterize this posterior. The weights w are consid-
ered random variables and are obtained by the sampling
procedure described in equation 13. The value function
Q(s, a, εz, εw;φ, θ) is now parameterized in terms of the
approximate posterior (φ, θ) defined in Section 2. Our
approach optimizes the ELBO in equation 12 with respect
to the approximate posterior parameters (φ, θ), which
amounts to minimizing the following loss:

Eεz,εw [
∑

(s,a,r,s′)∈D

(y −Q(s, a, εz, εw;φ, θ))
2
+

2τ2regularization_cost(εz, εw;φ, θ)], (18)

where y = r + γmaxaQ(s, a, 0, 0;φ−, θ−) for DQN,
y = γQ(s, π(s′;ψ), 0, 0;φ−, θ−) for DDPG and where
the noise is disabled for the target network. This loss
is amenable to mini-batch optimization. In a supervised
learning setting, for each mini-batchM⊂ D, we would
take a gradient step to lower the following loss:

Eεz,εw [
1

|M|
∑

(s,a,r,s′)∈M

(y −Q(s, a, εz, εw;φ, θ))
2
+

λ regularization_cost(εz, εw;φ, θ)], (19)

where λ = 2τ2

|D| . This makes the regularization cost uni-
formly distributed among mini-batches at each epoch. In
the RL setting, however, we only keep a moving window
of experiences in the replay buffer. Thus, the size of re-
play buffer |D| is not directly analogous to the size of the
dataset. So we leave λ as a hyper-parameter to tune.

The expectation in equation 19 is with respect to the dis-
tribution of noise variables εz and εw of the online value
function. An unbiased estimate of the loss is thus ob-
tained by simply sampling the two noise variables. The
current noise samples are held fixed across the mini-batch.
The learnable parameters (φ, θ) are then updated by per-
forming a gradient descent on the mini-batch loss. In the
case of DDPG, in addition to the critic parameters, we
update the actor policy parameters ψ using the following
sampled policy gradient:

1

|M|
∑
s∈M

∇aQ(s, a, εz, εw;φ, θ)|a=π(s;ψ)∇ψπ(s;ψ)

After the update, we generate new noise samples and we
select actions greedily with respect to the corresponding
value function.

We call the new adaptations of DQN and DDPG, MNF-
DQN and MNF-DDPG, respectively. Detailed algorithms
are provided as Algorithm 1 and Algorithm 2 (MNF-
DDPG could be find in appendix).

Algorithm 1 MNF-DQN

1: Input: m mini-batch size; D empty replay buffer; K
update frequency, U target update frequency

2: for episode e ∈ 1, ...,M do
3: Set s← s0
4: Sample noise variables εw and εz from standard

normal distribution.
5: for t ∈ 1, . . . do
6: Select an action at ←

argmaxa∈AQ(s, a, εz, εw;φ, θ)
7: Observe next state st+1 and reward rt after

taking action at
8: Store transition (st, at, rt, st+1) in the replay

buffer D
9: if t mod K == 0 then

10: Sample a mini-batch of m transitions
((sj , aj , rj , s

′
j) ∼ D)mj=1

11: for j = 1, . . . ,m do
12: if s′j is terminal state then yj = rj
13: else
14: yj = rj + γQ(s, a, 0, 0;φ−, θ−)
15: end if
16: end for
17: Re-sample noise variables εw and εz and

perform gradient step with respect to (φ, θ):
18: 1

m

∑
j=1,...m (yj −Q(sj , aj , εz, εw;φ, θ))

2
+

λregularization_cost(εz, εw;φ, θ)
19: Re-sample noise variables εw and εz
20: end if
21: if t mod U == 0 then
22: Set θ−, φ− ← θ, φ
23: end if
24: Set s← st+1

25: end for
26: end for

4 Related work

There have been several recent works that incorporate
Bayesian parameter updates with deep reinforcement
learning for efficient exploration.

Osband et al. (2016a) propose BootstrappedDQN which
consists of a simple non-parametric bootstrap with ran-
dom initialization to approximate a distribution over value
functions. BootstrappedDQN consists of a network with
multiple Q-heads. At the start of each episode, the agent
samples a head, which it follows for the duration of the
episode. BootstrappedDQN is a non-parametric approach
to uncertainty estimation. In contrast, MNF-DQN uses a
parametric approach, based on variational inference, to
quantify the uncertainty estimates.



Azizzadenesheli et al. (2018) extend randomized least-
square value iteration by Osband et al. (2016b) (which
was restricted to linear approximator) to deep neural net-
works. In particular, they consider only the last layer as
stochastic and keep the remaining layers deterministic.
As the last layer is linear, they propose a Bayesian lin-
ear regression to update the posterior distribution of its
weights in closed form. In contrast, our method is capable
of performing an approximate Bayesian update on the
full network parameters. Variational inference could be
applied for all layers using stochastic gradient descent on
the approximate posterior parameters.

The closest work to ours is BBQ-Networks by Lipton
et al. (2016). Their algorithm, called Bayes-by-Backprop
Q-Network (BBQN), uses variational inference to quan-
tify uncertainty. It uses independent factorized Gaussians
as an approximate posterior (Blundell et al., 2015). In
our work, we argue that to achieve efficient exploration,
we need to capture the true uncertainty of the value func-
tion. The latter depends importantly on the flexibility of
the approximate posterior distribution. We also note that
BBQN was proposed for Task-Oriented Dialogue Sys-
tems and was not evaluated on standard RL benchmarks.
Furthermore, BBQN can be seen simply as a sub-case
of MNF-DQN. In fact, the two algorithms are equivalent
when we set the auxiliary variable z in MNF-DQN to be
equal to one.

Our work is also related to methods that inject noise in
the parameter space for exploration. For such methods,
at the beginning of each episode, the parameters of the
current policy are perturbed with some noise. This results
in a policy that is perturbed but still consistent for indi-
vidual states within an episode. This is sometimes called
state-dependent exploration (Sehnke et al., 2010) as the
same action will be taken every time the same state is
sampled in the episode. Recently, Fortunato et al. (2017)
proposed to add parametric noise to the parameters of a
neural network and show that its aids exploration. The
parameters of the noise are learned with gradient descent
along with the remaining network weights. Concurrently,
Plappert et al. (2017) proposed a similar approach but
they rely on heuristics to adapt the noise scale instead of
learning it as in Fortunato et al. (2017).

Osband et al. (2018) recently discuss limitations of some
popular approaches for exploration in Deep RL. In partic-
ular, approaches such as NoisyDQN, BBQ-Networks and
even our proposed method MNF-DQN treat each Bellman
error as an independent draw from the posterior. This fact,
according to Osband et al. (2018), prevents these methods
from propagating uncertainty in the correct way. On the
other hand, BootstrapedDQN would be able to propagate
a temporally-consistent sample of Q-values, since each

head is trained only on its own target value. However, we
argue that MNF-DQN is still a principled approach: We
can view DQN from the value iteration perspective. DQN
considers a target network Q̃ and tries to minimize the
mean-squared Bellman error (MSBE) ||Q−T Q̃||2 where
T is the optimality Bellman operator. For a given target
network, DQN tries to solve the latter regression problem
by performing multiple stochastic gradient steps. This can
be viewed as one-step of value iteration that tries to fit Q
to T Q̃. Maintaining only a point estimate of Q does not
capture the prediction uncertainty and leads to decisions
that do not reflect our understanding of the environment.
Therefore, instead of having a point estimate of Q, we
turn the mean-squared Bellman error minimization into
bayesian regression and maintain a posterior distribution
over Q. This aims at capturing the parametric uncertainty
due to limited data and prevents overfitting. When (s, a)
are poorly understood, the distribution of Q(s, a) might
have large variance. When we draw a sample from this
distribution, there is a chance that we attribute a high
value to (s, a) due to the variance which in turn enables
exploration. As long as we collect more data, the variance
should decrease, which enable exploitation.

5 Experiments

We evaluate the performance of MNF-DQN on two toy
domains (N-chain and Mountain Car), as well as on sev-
eral Atari games (Bellemare et al., 2013). Moreover, we
compare MNF-DDPG on continuous control tasks from
OpenAI Gym (Brockman et al., 2016). We compare the
performance of our agents to several recent state-of-the-
art deep exploration methods.

5.1 Discrete Action Environments

5.1.1 Toy Tasks

n-Chain As a sanity check, we evaluate MNF-DQN
on the well-known n-chain environment introduced in
Osband et al. (2016a). The environment consists of N
states. The agent always starts at the second state s2 and
has two possible actions: move right and move left. A
small reward r = 0.001 is received in the first state s1,
a large reward r = 1 in the final state sN , otherwise the
reward is zero.

We compare the exploration behavior of MNF-DQN,
NoisyDQN (Fortunato et al., 2017), BBQN (Lipton et al.,
2016) and ε-greedy DQN on varying chain lengths. We
train each agent with ten different random seeds for each
chain length. After each episode, agents are evaluated on
a single roll-out with all of their randomness disabled (ε
is set to zero for DQN, noise variables are set to zero for



MNF-DQN, BBQN, NoisyDQN). The problem is consid-
ered solved when the agent completes the task optimally
for one hundred consecutive episodes. While the task is
admittedly a simple one, it still requires adequate explo-
ration in order to be solved. This is especially true with
large chain lengths, as it is easy to discover the small re-
ward and fall into premature exploitation. Figure 1 shows
that MNF-DQN has very consistent performance across
different chain lengths. MNF-DQN clearly outperforms
ε-greedy DQN which most of the time fails to solve the
problem when n ≥ 10. BBQN performs well but slightly
worse than MNF-DQN for very large chain length. MNF-
DQN also outperforms NoisyDQN, which on average
needs a larger number of episodes to solve the task.

Mountain Car (Moore, 1990) is a classic RL contin-
uous state task where the agent (car) is initially stuck in
a valley and the goal is to drive up the mountain on the
right. The only way to succeed is to drive back and forth
to build up momentum. We use the implementation pro-
vided by OpenAI gym (Brockman et al., 2016), where the
agent gets −1.0 reward at every time-step and get +1.0
reward when it reaches up the mountain, at which point
the episode ends. The maximum length of an episode is
set to 1000 time-steps.

We evaluate the performance of the agent every 10
episodes by using no noise over 5 runs with different
random seeds. As can be seen in Figure 2, MNF-DQN
learns much faster and performs better when compared to
the other exploration strategies.

5.1.2 Arcade Learning Environment

Next, we consider a set of Atari games (Bellemare et al.,
2013) as a benchmark for high dimensional state-spaces.
We compare MNF-DQN to standard DQN with ε-greedy
exploration, BBQN and NoisyDQN. We use the same
network architecture for all agents, i.e three convolutional
layers and two fully connected layers. For DQN, we
linearly anneal ε from 1.0 to 0.1 over the first 1 million
time-steps. For NoisyDQN, the fully connected layers are
parameterized as noisy layers and use factorized Gaussian
noise as explained in Fortunato et al. (2017). For MNF-
DQN and BBQ, in order to reduce computational over-
head, we choose to consider only the parameters of the
fully connected layers as stochastic variables and perform
variational inference on them. We consider the parame-
ters of the convolutional layers as deterministic variables
and optimize them using maximum log-likelihood. For
MNF-DQN, the normalizing flows are of length two for
qφ and rθ, with 50 hidden units for each step of the flow.
To have a fair comparison across all algorithms, we fill
the replay buffer with actions selected at random for the
first 50 thousand time-steps.

We use the standard hyper-parameters of DQN for all
agents. MNF-DQN and BBQN have an extra hyper-
parameter λ, the trade-off parameter between the log
likelihood cost and the regularization cost. To tune
λ, we run MNF-DQN and BBQN for λ = α

|D| where
α ∈ {10−6, 10−5, 10−4, 10−3, 10−2}. As explained ear-
lier, |D| is not good proxy for dataset size but it gives a
good value range. We still tune the hyperparameter α. We
train each agent for 40 millions frames. We evaluate each
agent on the return collected by the exploratory policy
during training steps. Each agent is trained for 5 different
random seeds. We plot in Figure 3 the median return as
well as the interquartile range.

From Figure 3 we see that across all games our approach
provides competitive and consistent results. Moreover,
the naive epsilon-greedy approach (DDQN) performs sig-
nificantly worse than the exploration-based methods in
most cases. MNF-DQN provides a boost in performance
over the baselines in Gravitar, which is considered a hard
exploration and sparse reward game (Bellemare et al.,
2016). BBQN fails completely for this game. In all the
other hard exploration games (Amidar, Alien, Bank Heist,
and Qbert), the difference between MNF-DQN and the
best performing baseline is minimal (within the margin
of error).

Note that MNF-DQN, as well as the baseline algorithms,
fail to solve extremely challenging games such as Mon-
tezuma’s Revenge. Note also that methods from the lit-
erature that achieved some degree of success on Mon-
tezuma’s Revenge either include prior information about
the game (Le et al., 2018; Aytar et al., 2018) or are com-
bined with heuristics on the intrinsic reward (Bellemare
et al., 2016). The first category of methods use human
demonstrations to drive the exploration, and the latter
require maintaining a separate density model over the
state-action space.

So far, we considered only parameterized noise base-
lines. Now, we compare MNF-DQN to Bootstrapped
DQN (Osband et al., 2016a). Results are given in Fig-
ure 4. MNF-DQN often outperforms Bootstrapped DQN
(Out of 13 games, MNF-DQN clearly outperforms Boot-
strapped DQN on 6 of them, yields similar performance
on 4, and under-performs it only on 3). Moreover, we
investigate the randomized prior function introduced by
Osband et al. (2018) which consists in adding a random-
ized un-trainable prior network to each Q-head. We find
that the Bootstrapped DQN with randomized prior does
not improve performance over Bootstrapped DQN.
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Figure 1: Median number of episodes (max 2000) required to solve the n-chain problem for (figure from left to right)
MNF-DQN, BBQN, NoisyDQN and ε-greedy DQN. The median is obtained over 10 runs with different seeds. We see
that MNF-DQN consistently performs best across different chain lengths.

Figure 2: Average return per episode over 5 runs in
MountainCar.

5.2 Continuous Action Environments

In this section, we benchmark MNF-DDPG on the contin-
uous control tasks from OpenAI Gym (Brockman et al.,
2016). We compare our algorithm to the standard DDPG
with OU-noise with σ = 0.2 (OU-noise DDPG), DDPG
with BBQN based critic (BBQN-DDPG) and with Noisy
network based critic (Noisy-DDPG). The actor is deter-
ministic in all the agents and only the critic has stochas-
ticity. We use the same setup as Plappert et al. (2017),
where both actor and critic use 2 hidden layers with 64
units and a ReLU non-linearity. More details about the
architecture can be found in Appendix C.

For MNF-DDPG, the normalizing flows are of
length one for qφ and rθ, with 16 hidden units
for each step of the flow. We tune the hyper-
parameter λ in manner similar to what we de-
scribed in Sec 5.1.2, trying out λ = α

|D| where α ∈
{1e−6, 4e−6, 8e−6, 1e−5, . . . , 8e−2, 1e−1, 4e−1, 8e−1}.
We evaluate the algorithms on 3 different control tasks,
where each agent is trained for 1 million time-steps. Each
epoch consists of 10,000 time-steps and after every epoch
the agent is evaluated with all their randomness disabled
for 20 episodes. Each agent is trained for 5 different
random seeds and the results are averaged.

Results are shown Figure 5. The MNF-DDPG agent per-

forms better than all the other baselines in the HalfChee-
tah environment. In the other environments there is not
much difference between the different exploration meth-
ods. This finding is consistent with the results from Plap-
pert et al. (2017), where they also conclude that the other
environments do not require a lot of exploration due to
their well-structured reward function.

6 Conclusion
Through the combination of multiplicative normalizing
flows and modern value-based deep reinforcement learn-
ing methods, we show that a powerful approximate pos-
terior can be efficiently utilized for better exploration.
Moreover, the improved sample efficiency comes only at
a computational cost that is linear in the number of model
parameters. Finally, we find that on several common
Deep RL benchmarks, the MNF approximation outper-
forms state-of-the-art exploration baselines.



Figure 3: Comparison of the training curves of MNF-DQN agent versus the NoisyDQN, BBQN and DQN + ε-greedy
baselines for various Atari games.

Figure 4: Comparison of the training curves of MNF-DQN agent versus the Bootstrapped DQN for various Atari
games.

Figure 5: Average return per episode for continuous control environments plotted over epochs over 5 runs.
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A Derivation of the lower bound

We have the following ELBO and we would like to lower bound the KL term using the auxiliary posterior distribution
rθ(z | ω)

L(φ) = Eqφ(w) [log p(y |x,w)]−KL(qφ(w)||p(w)). (20)

As the KL divergence is always non-negative, we have:

KL(qφ(w)||p(w)) ≤ KL(qφ(w)||p(w)) + Eqφ(ω) [KL(qφ(z|w)||rθ(z|w))] (21)

= Eqφ(ω) [log qφ(ω)− log p(ω)] + Eqφ(ω,z) [log qφ(z | ω)− log rθ(z | ω)] (22)

= Eqφ(ω,z) [log(qφ(ω)qφ(z | ω))− log p(ω)− log rθ(z | ω)] (23)

= Eqφ(ω,z) [log(qφ(ω | z)qφ(ω))− log p(ω)− log rθ(z | ω)] (24)

= Eqφ(ω,z) [KL(qφ(ω | z)||p(ω)) + log qφ(z)− log rθ(z | ω] (25)

which proves the lower bound in equation 12

B Algorithms

Algorithm 2 MNF-DDPG algorithm

Input: m mini-batch size; D empty replay buffer; K update frequency, U target update frequency
Initialize critic network Q(s, a, εz, εw;φ, θ) and actor π(s;ψ) with weights θ, φ and ψ.
Initialize target critic networkQ(s, a, εz, εw;φ

−1, θ−) and actor π(s;ψ−) with weights θ− ← θ, φ−1 ← φ, ψ− ← ψ
for episode e ∈ 1, ...,M do

Set s← s0
Sample noise variables εw and εz from standard normal distribution.
for t ∈ 1, . . . do

Select an action at ← π(s;ψ)
Observe next state st+1 and reward rt after taking action at
Store transition (st, at, rt, st+1) in the replay buffer D
if t mod K == 0 then

Sample a mini-batch of m transitions ((sj , aj , rj , s′j) ∼ D)mj=1

for j = 1, . . . ,m do
if s′j is terminal state then yj = rj
else

yj = rj + γQ(s, π(s;ψ−), 0, 0;φ−1θ−)
end if

end for
Re-sample noise variables εw and εz and perform gradient step with respect to (φ, θ):
1
m

∑
j=1,...m (yj −Q(sj , aj , εz, εw;φ, θ))

2
+ λregularization_cost(εz, εw;φ, θ)

Update the actor using sampled policy gradient: 1
m

∑
j=1,...m∇aQ(sj , a, εz, εw;φ, θ)|a=π(sj ;ψ)∇ψπ(sj ;ψ)

Re-sample noise variables εw and εz
end if
if t mod U == 0 then

Set θ− ← τθ + (1− τ)θ−
Set φ− ← τφ+ (1− τ)φ−
Set ψ− ← τψ + (1− τ)ψ−

end if
Set s← st+1

end for
end for



C Continuous Control Architecture Details

The actor and critic use 2 hidden layers each with 64 ReLU units. The action is added to the second hidden layer of the
critic. Layer-normalization is applied between the hidden layers before the non-linearity and target-networks are soft
updated with τ = 0.001. Critic is trained with learning rate = 10−3 and the actor with 10−4. Adam optimizer is used
with batch size of 128 to update the weights. Replay buffer has size of 100K transitions with γ = 0.99. Both update
frequency (K) and target update frequency (U ) are set to 1 (in Alg.2).

D Comparison with Bayesian DQN

We did not implement Bayesian DQN (Azizzadenesheli et al., 2018) but we used the results of 14 Atari games provided
by authors in the article’s github repository https://github.com/kazizzad/BDQN-MxNet-Gluon. Out of
these 14 games, seven are in common with our set of games. Among these 7 games, Bayesian DQN outperforms our
method only in 3 games. See Figure .

Figure 6: Comparison of the training curves of MNF-DQN agent versus the Bayesian DQN (Azizzadenesheli et al.,
2018) for various Atari games.

https://github.com/kazizzad/BDQN-MxNet-Gluon
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