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Abstract

Server Flash Cache (SFC) is increasingly adopted in vir-

tualization environments for IO acceleration. Deciding

the optimal SFC allocation among VMs or VM disks is

a major pain-point, dominantly handled manually by ad-

ministrators. In this paper, we present vCacheShare, a

dynamic, workload-aware, policy-driven framework for

continuous and automated optimization of SFC space

partitioning. Its decision-making is based on multiple IO

access characteristics. In particular, vCacheShare adopts

a cache utility model that captures both longer-term lo-

cality behavior and transient locality spikes.

This paper validates the growing applicability of an-

alytical programming techniques to solve real-time re-

source management problems, traditionally addressed

using heuristics. We designed vCacheShare to coordi-

nate with typical VM mobility events and implemented it

within the widely used ESXi hypervisor. We performed

extensive evaluation using 13 representative enterprise

IO workloads, one IO benchmark, and two end-to-end

deployment test cases targeting Virtual Desktop Infras-

tructure (VDI) and data warehousing scenarios respec-

tively. Our results verified the advantage of vCacheShare

over implicit management schemes such as global LRU,

and confirmed its self-adaptive capability.

1 Introduction

Solid State Disks (SSDs) are being increasingly used

in virtualized environments as an SFC (Server Flash

Cache) to accelerate I/O operations of guest Virtual Ma-

chines (VMs). However, growing CPU bandwidth and

memory capacities are enabling higher VM-to-server

consolidation ratios, making SFC management a night-

mare. The onus of proportional allocation of SFC space

among VMs is handled manually by administrators to-

day, based on heuristics and oftentimes simply guess-

work. Besides, allocations should not be one-time ac-

tivities, but continuously optimized for changing charac-

teristics of workloads, device service times, and config-
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uration events related to VM mobility. In order to ef-

fectively leverage flash for its $/IOPS advantages and to

address existing performance bottlenecks within the in-

frastructure, it is critical to extend the hypervisor to au-

tomate and continuously optimize the space management

of SFC, similar to other hardware resources.

The primary use-case of SFC is to speed up applica-

tions running inside VMs. Scenarios with performance

bottleneck of the backend storage arrays benefit the most,

delaying capital investments in provisioning of new hard-

ware. At the hypervisor level, SFC space optimization

translates to reducing the I/O latency of VMs, which are

prioritized based on administrator input. The optimiza-

tion needs to take into account multiple dimensions:

• VM priority: VMs have different importance de-

pending on applications running inside.

• Locality of reference: A VM running low-locality

workload(s) does not benefit as much from caching

and should therefore receive smaller allocation.

• I/O access characteristics: A VM running write-

heavy workload(s) may receive smaller benefit and

incur higher cost with flash caching, due to SSD

devices’ asymmetric read-write performance and

write durability concerns.

• Backend storage device service times: A VM Disk

on faster (or less busy) backend storage benefits less

from SFC allocation.

• Configuration events: Hypervisors are optimized to

continuously monitor and optimize the placement

of resources from a virtualized pool of hardware.

Guest VMs can be migrated to other servers with-

out application down time, with ready functionality

available such as VMware vMotion.

Current commercial solutions [1, 2, 3, 4, 5, 6] re-

quire administrators to carve static space allocations at

the time of enabling SFC for VMs. Meanwhile, mem-

ory virtualization techniques within hypervisors are not

directly applicable to SFC space management. The rea-

sons are two-fold. First, memory resources are explic-

itly requested by users and the hypervisor has to satisfy
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such requests with reasonable latency, while cache re-

sources are transparent to applications and allocated by

the hypervisor for performance enhancement. Second,

typical VMs expect their data to be memory-resident in

most cases, and heavy swap activities are seen as an in-

dication of intensive memory contention and may subse-

quently trigger VM migration. In contrast, flash cache

is designed as an intermediate level of storage, in order

to accelerate IO rather than to accommodate all VMs’

combined working set. At the same time, existing CPU

cache partitioning techniques [7, 8, 9] will not be able to

exploit options available to managing flash-based SSD

cache spaces. The latter problem is significantly differ-

ent in aspects such as response time, space availability

for optimization, access patterns, and performance con-

straints. In general, affordable in-memory book keep-

ing and the much slower storage access enable a much

larger solution space and more sophisticated algorithms.

Unique flash storage issues such as write endurance also

bring additional complexities.

Another alternative is to retrofit IO QoS management

techniques [10, 11] for SFC management. IO QoS

aims at providing fairness and prioritization among re-

quests serviced under bandwidth contention. This prob-

lem is different from SFC management, as the defini-

tion of resource contention is much less straight-forward

for caching — the criteria here is not “actively used

cache space” by the VM, but rather the performance gain

through caching based on its IO access locality behavior.

In this paper, we present vCacheShare, a dynamic,

workload-aware, policy-driven framework for automated

allocation of flash cache space on a per-VM or per-VM-

Disk basis. vCacheShare combines the dimensions of

data locality, IO operation characteristics, and device

service time into a self-evolving cache utility model.

It approaches flash cache allocation/partitioning as a

constrained optimization problem with the objective of

maximizing the cumulative cache utility, weighted by

administrator-specified VM priorities.

Contributions This paper addresses the pain-point of

optimal space partitioning of SFC in a virtualization

environment. Our goal is to develop a mathematical

optimization solution for SFC management. With the

trend of CPU threads per socket doubling every 12-18

months [12], we think the time has come for resource

management techniques to adopt such strategies for dy-

namic multi-dimensional optimization.

We consider the major contributions of this work as

follows: (1) We addressed a unique challenge in man-

aging time-varying IO behavior common to many VM

workloads, namely, the conflict in long-term behavior

analysis required for accurate cache hit ratio estima-

tion and fast response required for handling transient lo-

cality bursts. In response, we propose a novel cache

utility modeling approach that takes into consideration

both long-term reuse patterns and short-term reuse in-

tensity levels. (2) We designed vCacheShare, a cost-

effective, adaptive framework that scales in today’s high-

VM-density environments, based on the proposed tech-

niques. (3) We implemented our prototype within a

widely used commercial hypervisor, VMware ESXi 5.0,

and performed extensive evaluation using a combination

of 10+ real-world traces, one IO benchmark, and two

workload deployment tests with up to 100 VM instances.

2 A Bird’s Eye-view of vCacheShare

2.1 Target Environment

Typically in a datacenter using virtualization, multiple

hosts share the same SAN/NAS storage to utilize the rich

set of functionality provided by the hypervisor. The hosts

sharing storage form a cluster within the datacenter. In

such an environment, a file or block storage is visible

to the Virtual Machine (VM) as a Virtual Machine Disk

(VMDK). One VM could have multiple VMDKs just as

a physical machine may have several physical disks. The

hypervisor (sometimes referred to as server) internally

tracks VMs and VMDKs using Universally Unique Iden-

tifiers (UUIDs). The UUIDs for VMs and VMDKs are

unique cluster-wide. In our target environment, both

VMs and VMDKs can be moved non-disruptively across

physical resources — commonly referred to as vMotion

and Storage vMotion respectively.

vCacheShare adopts the write around cache policy,

i.e., writes bypass the SFC and directly go to the back-

end disks. There are several reasons to focus on read

intensive workloads. First, there are multiple layers of

memory cache above SFC, which are shown to have re-

duced the read-after-write percentage [13] and conse-

quently weakened the benefit of write caching. Sec-

ond, write around prolongs the SFC lifetime by reduc-

ing writes and prioritizing data to be re-read. Finally, it

simplifies design and implementation by relaxing consis-

tency requirement. In fact, several commercial SFC so-

lutions [2, 4] started from write around or write through,

including VMware’s recent vFRC (Flash Read Cache).

2.2 vCacheShare Overview

vCacheShare decides the SFC space allocation sizes on

per-VM or per-VMDK basis, based on runtime analy-

sis of the VMs/VMDKs’ IO access characteristics, along

with hardware/administrative settings.

Figure 1 depicts vCacheShare’s location in our target

environment, as well as its internal architecture. The

vCacheShare decision making workflow requires the co-

ordination among its major components: (1) monitor,

which intercepts IO requests and logs information about

them, (2) analyzer, which periodically processes trace
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Figure 1: vCacheShare architecture

data logged by the monitor and extracts per-VMDK ac-

cess characteristics, (3) optimizer, which, based on the

analyzer-extracted workload characteristics and a cache

utility model, dynamically optimizes the cache partition-

ing plan, and (4) actuator, which executes the optimized

plan. The analyzer and optimizer are implemented as

user-level agents, while monitor and actuator are imple-

mented within the VMkernel.

In addition to runtime workload monitoring input,

vCacheShare also takes from administrators two key

configuration parameters: (1) a per-VMDK IO priority

level and (2) per-VMDK cache allocation lower and up-

per bounds. The lower bound is also referred to as re-

served cache space. Not all VMs/VMDKs need flash

cache enabled: for example, some VMDKs may be pro-

visioned out of an all-flash array.

In the rest of the paper, we base our discussion on per-

VMDK cache space allocation, though the techniques

and observations also apply to per-VM allocation.

2.3 Event-Driven Analysis and Re-Optimization

The vCacheShare design is well integrated with the hy-

pervisor’s VM management. In particular, its workflow

has to be coordinated with common VM state transi-

tions and migration operations (for both VMs and storage

devices). Table 1 lists vCacheShare’s actions triggered

by such common VM management activities. Though

the events are hypervisor specific, we believe that the

vCacheShare workflow and event-handling methodology

can be applied to other hypervisors as well.

3 Monitoring

The vCacheShare monitoring module sits within the hy-

pervisor kernel, on the IO path between the VMs and the

SFC. It intercepts, records, and analyzes all IO accesses

from the VMs on each physical host. For each VMDK, it

performs periodic online trace processing to extract the

reuse pattern needed by the vCacheShare cache utility

model (Section 4).

vCacheShare’s trace data collection is performed on

a per-VMDK basis. For each cache-enabled VMDK,

vCacheShare sets up a circular log buffer in kernel mem-

ory for storing trace entries. Their content can be com-

mitted to SSD storage regularly and asynchronously to

reduce memory usage. The in-memory and on-SSD cir-

cular buffer sizes, as per-VMDK configurable parame-

ters, limit the maximum memory/SSD space consumed

by vCacheShare IO trace collection. In our experiments,

each VMDK has a 4MB on-SSD trace buffer, plus two

64KB in-memory ones for double buffering.

Each trace entry is 15 bytes long, containing 8 fields.

Among them, the VM UUID and the VMDK UUID fields

identifies the IO request issuer (VM) and the destination

device (VMDK), respectively. The timestamp field

logs the request time. isRead records the IO opera-

tion type, while LBA and len define the initial logical

block address and IO request size (in terms of blocks).

latency records the total service time to complete the

IO. For each entry, most of the data collection happens

before the IO request hits the flash caching module, ex-

cept for latency, which is logged upon IO comple-

tion. Finally, isCached tags IOs serviced from the

flash cache rather than from the backend storage. As

measured with our implementation, such trace collec-

tion activities add only 4-5 nanoseconds to the overall

microsecond- or millisecond-level IO service time.

Note that the above vCacheShare monitoring and trace

collection is in addition to the hypervisor’s built-in IO

profiling. Such profiling gather high-level statistics

through approaches such as moving window averages,

regarding IOPS, latency, read-write ratio, request sizes,

etc., on a per VM or VMDK basis. The IO statistics are

averaged over a user configurable monitoring window

(default at 20 seconds). Some of these data items, e.g.,

read percentage and average latency, are used in vCache-

Share’s cache utility model calculation.

4 Dynamic Cache Utility Analysis

vCacheShare performs its cache space allocation opti-

mization based on cache utility (CU) [7] on a per-VMDK

basis. CU reflects the effectiveness of allocating SFC

space, i.e., the relative performance gain brought by ad-

ditional SFC space allocation.

Cache utility depends on several factors. Intuitively,

a VMDK generates better cache utility if it displays

good reference locality or is built on backend storage de-

vices with higher read latency (either due to slower de-

vice speed or saturation). In addition, vCacheShare fa-

vors read-heavy workloads, both due to the current write

around caching design and well-known performance plus
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VM Events Actions by vCacheShare Framework

VM Power-Off, Suspend, vMotion

Source

Trigger optimization to re-allocate; free IO trace buffers for all associated VMDKs

VM Boot Strap, Power-On, Resume Make initial allocation based on reserved cache space and priority settings; start trace collection

vMotion Destination Trigger optimization to re-allocate based on IO characteristics migrated with the VMDKs involved

in vMotion

Storage vMotion (runtime backend de-

vice change)

Suspend analysis/optimization till completion; evict device service latency history; trigger re-

optimization upon vMotion completion

VM Fast Suspend, vMotion Stun Reserve cached data; lock cache space allocation to involved VMs by subtracting allocated size from

total available cache size

Table 1: Actions by vCacheShare upon VM Events

endurance problems with flash writes. Such limitations

make read-intensive access patterns more flash-cache-

friendly even with write caching turned on in the fu-

ture. Finally, vCacheShare takes into account an attribute

much less often factored in for cache partitioning: the in-

tensity of re-accesses. This metric considers both locality

and access speed, allowing our model to favor workloads

that generate more reuse of cached data in unit time.

Device access speed and read-write ratio can be mea-

sured rather easily. Hence our discussion focuses on es-

timating access locality and reuse intensity.

4.1 Measuring Locality

Many prior studies have examined cache hit ratio pre-

diction/estimation based on workload access characteris-

tics [14, 15]. vCacheShare adopts a low-overhead online

estimation approach that examines access reuse distance,

similar to that used in CPU cache partitioning [14]. How-

ever, vCacheShare explores reuse distance for storage

cache partitioning, where more sophisticated follow-up

algorithms could be explored due to both more resource

availability and slower data access rates.

For each identified re-access, where the same block is

revisited, the reuse distance is measured as the number

of distinct blocks accessed between the two consecutive

uses of that block [14]. vCacheShare constantly mon-

itors the distribution of reuse distances, to measure the

temporal locality in accesses to each VMDK. Consider-

ing that our current read-only cache design, only read ac-

cesses are counted in vCacheShare’s reuse distance cal-

culation. Such per-VMDK overall temporal locality for

reads is expressed in a CDF (cumulative distance func-

tion) of reuse distances.

To dynamically build and update the reuse distance

distribution, vCacheShare first extracts relevant data

from its IO traces using a two-phase O(n) process, where

n is the number of trace entries. This Map-Reduce like

process can easily be parallelized to use multiple cores

available, if necessary.

vCacheShare maintains one hash table per VMDK. In

the “Map” phase, IO traces are scanned into the appro-

priate hash table. We pre-process IO logs here to address

large block IOs and un-aligned 4K accesses. A log en-

try request for greater than 4KB is divided into multiple

4KB entries, with LBA adjusted for each. This is inline

with our target flash cache implementation, where cache

book-keeping is done at the 4KB granularity. Based

on our analysis of real-world workloads from the SNIA

MSR traces [16], only 5-10% of accesses are unaligned,

which are discarded in our processing. For each read

log entry, a pointer to the entry is inserted into the per-

VMDK hash table, using its LBA as the key.

In the “Reduce” phase, vCacheShare scans the val-

ues of the per-VMDK hash tables, generating for each

a Reuse Distance Array (RD Array). This is an array of

lists that for each LBA, stores its reuse distances between

each pair of adjacent accesses. The reuse distance CDF

can then be easily constructed using histograms.

As mentioned in Section 3, vCacheShare maintains

per-VMDK cyclic trace buffers. The per-VMDK hash

tables are updated according to a time stamp marking the

oldest valid log entry in the trace buffer. Older entries are

discarded from the hash tables, during either insertion or

periodic garbage collection sessions. This way, vCache-

Share automatically assesses access patterns in a sliding-

window manner, with a sampling window size equal to

the size of the cyclic trace buffer.

4.2 Locality-based Hit Ratio Estimation

With the reuse distance CDF calculated as described

above, we can produce a rough cache hit ratio estima-

tion for each VMDK at a given cache size. Assuming an

LRU or LRU-like cache replacement algorithm, the hit

ratio can be computed by dividing the total number of

cache hits (re-accesses whose reuse distance falls under

the cache size) by the total number of accesses.

The effectiveness of such estimation, however, de-

pends heavily on the aforementioned sampling window

size. Intuitively, if the sampling window is too small,

vCacheShare will not be able to fully capture a work-

load’s temporal locality. On the other hand, large sam-

pling windows will produce slower response to workload

behavior changes, as new access patterns will be “damp-

ened” by a large amount of older entries. In addition,

larger sampling windows require more space and time

overhead for trace collection and analysis.
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Figure 2: Impact of sampling window size on hit ratio estima-

tion

Figure 2 demonstrates the impact of sampling win-

dow size on hit ratio estimation, through a representative

workload, “web”, member of the SNIA MSR traces [16].

It shows that in general, larger sampling window sizes

produce higher cache hit ratio estimates, and reach hit

ratio saturation points later (with exceptions likely due

to well known caching anomalies). On the other hand,

a reasonably large sampling window size (e.g., 1MB)

seems to produce very similar trend in hit ratio growth

to a window size a few times larger (4MB). Other read-

intensive traces in the MSR collection show similar re-

sults. We choose to leave the sampling window size as

a tunable parameter. Note that a larger flash device of-

fers more cache space and can benefit from larger sam-

pling windows. This goes well with our design of having

SSD-resident cyclic trace buffers, as the same device can

accommodate higher space overhead as well.
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Figure 3: Hit ratio as a function of cache size

To further verify the need of cache partitioning, Fig-

ure 3 shows the cache hit ratios of a selected set of rep-

resentative MSR traces under different cache sizes. Each

trace is replayed for the first one million IO accesses. We

can clearly see that (1) different workloads from the same

enterprise environment have diverse locality properties,

and (2) among workloads that possess certain locality,

there are large variances in their working set sizes.

4.3 Measuring Reuse Intensity

Trace based temporal locality analysis has been shown to

provide quite accurate hit ratio estimation [14, 15]. How-

ever, for cache partitioning between concurrent accesses

to multiple VMDKs, such analysis fails to consider the

relative speed of cache accesses. In particular, it does

not capture bursts in data reuse. vCacheShare needs to

identify and absorb locality spikes, caused by common

activities such as boot storms in VDI environments [17].

Fast response is especially challenging with a larger sam-

pling window, due to its dampening effect.

For this, we introduce another factor in modeling CU:

reuse intensity, which measures the burstiness of cache

hits. This metric captures the fast changing aspect of

CU, to bias cache allocation toward VMDKs undergoing

locality spikes. More accurately, for VMDKi, its reuse

intensity RIi is defined as

RIi =
Stotal

tw × Sunique
(1)

Here, for a given monitoring time window size tw, Stotal

and Sunique describe the total read access volume and the

total size of unique blocks read (i.e., access footprint).

E.g., with tw at 5 minutes, within which 1G blocks are

read from VMDKi accessing 1000 unique blocks, the re-

sulting RIi will be 1G
1000×300s

. This metric effectively cap-

tures the locality-adjusted per-VMDK read throughput:

an influx of accesses to new blocks brings similar growth

to total access volume and footprint, therefore lowering

RI; an influx of re-accesses, on the other hand, increases

the former but not the latter, inflating RI.

tw is another tunable vCacheShare parameter, prefer-

ably with relatively small values for better responsive-

ness. It asserts little computation overhead, and can be

maintained as a per-VMDK moving average. In situa-

tions where detailed trace collection/analysis is impracti-

cal or overly expensive, RI can contribute independently

to the vCacheShare CU model as a cheap and less ac-

curate alternative, since it does reflect temporal locality.

However, tw should ideally be decided adaptively based

on the rate of locality change measured in real time.

We are currently performing follow-up study on devis-

ing such a dynamic algorithm. In this paper, we empir-

ically observed that tw values between 2 and 60 seconds

are suitable for the workloads tested. Our experiments

used 60 seconds unless otherwise noted.
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To verify the existence of locality spikes, we exam-

ine the temporal locality shifts in the MSR workloads.

Figure 4 plots the hit rate changes for six sample traces

along the execution timeline. The hit ratio in y axis is

calculated with a 60-second moving window. The results

illustrate the time-varying nature of reference locality, as

well as the existence of transient locality spikes in multi-

ple traces (such as mds, usr, and pro j).

4.4 Summary: Cache Utility Model

Putting everything together, vCacheShare’s CU Model

for VMDKi is generated as a function of its estimated

cache hit rate Hi(c) (where c is the target cache partition

size), reuse intensity RIi, average target device latency

li, and read ratio RRi (fraction of total accesses that are

reads): If we expand the variables to show the input of

the model, we end up with the following equation:

CUi = li ×RRi× (Hi(c)+αR̂Ii) (2)

Here Hi(c) generates the estimated hit ratio for VMDKi

at cache partition size c, based on its locality observed

in the previous sampling window. R̂Ii gives the reuse in-

tensity observed for the same VMDK, normalized to the

highest RI across all VMDKs in the previous intensity

monitoring window. Therefore, both Hi(c) and RIi have

values between 0 and 1. α is included as an additional

tuning knob to adjust the relative weight between longer-

term, more accurate temporal locality, and short-term lo-

cality spikes. Though set to 1 in our evaluation, system

administrators can change α to favor persistently cache-

friendly workloads or fast-changing, bursty accesses.

5 Optimization

vCacheShare approaches SFC space allocation as a con-

strained optimization problem. Its optimizer explores

different permutations of per-VMDK space allocation

values, calculates cache utility as the objective function,

and returns the permutation with the global maximum in

the search space. More specifically, vCacheShare adopts

the following objective function:
n

∑
i=1

priorityi ×CUi,

where n is the number of VMDKs, prioritei is the user-

or administrator-defined priority level (e.g., based on

QoS requirement) of VMDKi, and CUi is the cache utility

of VMDKi defined earlier.

The vCacheShare optimizer will search for the global

optimum in the form of a recommended cache alloca-

tion plan: < c1,c2, . . . ,cn >, which satisfies the follow-

ing constraints:

c1 + c2 + . . .+ cn =C

cmin ≤ ci ≤ cmax

where C is the total available server-side flash cache size,

and cmin/cmax is the administrator-specified per-VMDK

cache space lower/upper bound.

This optimization problem is NP-Hard, with much ex-

isting research on heuristics such as simulated anneal-

ing [18] and hill-climbing [19]. These techniques ap-

proximate the optimal solutions via linear, non-linear, or

piecewise linear algorithms, among others. We consider

such constrained optimization a mature field and beyond

the scope of this work. Our prototype implementation

uses an open-source simulated annealing tool [18], while

vCacheShare is designed to be able to utilize alternative

optimization algorithm plug-ins.

6 Execution

The execution module actuates changes in per-VMDK

SFC allocation. It also controls the bootstrapping pro-

cess when vCacheShare is enabled for the first time on a

server or when new VMs are added.

For bootstrapping, vCacheShare allocates the

administrator-specific per-VMDK cache space lower

bound (also referred as reserved size) for each enabled

VMDK. The rest of the available cache size is then

divided among the VMDKs, proportional to their

priorities. When a VMDK is first added to a running

vCacheShare instance, as its CU estimate is not yet

available, it again receives the reserved allocation, by re-

claiming space proportionally from existing allocations

according to VMDK priorities.

Once bootstrapped, vCacheShare manages SFC

as per-VMDK linked lists of blocks, each with a

current size and a target size. Upon invocation, the ac-

tuator only changes the target size for each list, based

on input from the optimization module. The actual sizes

then automatically adapt gradually, with VMDKs gain-

ing allocation grabbing SFC blocks from those losing.

With this approach, the speed of cache allocation

change automatically reflects the activity level of the

VMDKs gaining allocation, again favoring workloads

with locality spikes. Such incremental and gradual ad-

justment also avoids thrashing, where the system oscil-

lates rapidly between two states. Lastly, such lazy evic-

tion maximizes the use of cached data for those VMDKs

losing cache allocation.

7 Experimental Evaluation

7.1 Prototype Implementation

We implemented a vCacheShare prototype in the widely

used VMware ESXi 5.0 hypervisor.

The trace analysis, CU computation, and optimization

modules are implemented as agents in the user world,

with ˜2800 lines of C++ code. The modeling and op-

timization results are persisted via service APIs for the

monitoring database currently available on a cluster wide

management node.
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The rest of vCacheShare is implemented in the ker-

nel, with ˜2500 lines of C code. First, to enable run-

time cache allocation optimization, an SFC framework

was implemented within the hypervisor. All the read

IOs below 64KB are intercepted to check if the requested

data is cached. The cache itself is managed with LRU,

with 4KB blocks. The flash device is used exclusively

for caching (including vCacheShare management usage)

and cannot be directly accessed by the guest VMs or the

hypervisor filesystem layer.

7.2 Test Setup

Unless otherwise noted, our experiments used an HP

Proliant DL385 G7 Server, with two AMD Opteron 6128

processors, 16GiB memory, and Intel 400GB PCI-E SSD

910. Local SATA disk drives and an EMC Clariion Stor-

age Array are used to stored VMDKs. The tests used

2-100 VMs, running Windows Server 2008 or Ubuntu

Linux 11.04, each assigned a single vCPU, 1GB mem-

ory, and a 8GB VMDK.

We used the MSR Cambridge traces from SNIA [16].

The traces represent a variety of workloads: user home

directories (usr), project directories (pro j), print server

(prn), hardware monitoring(hm), research projects

(rsrch), web proxy (prxy), source control (src), web

staging(stg), terminal server (ts), web SQL server (web),

media server (mds), and test web server (wdev). They

represent IO accesses at the storage disk tier and have ac-

counted for buffer cache as well as application caching

effects. This aligns well with vCacheShare’s target

placement within the hypervisor kernel.

7.3 Result 1: Proof-of-concept Verification

Justifying Cache Partitioning First of all, we demon-

strate that explicit, workload-aware cache partitioning is

necessary by showing the inadequacy of implicit strate-

gies such as global LRU [7, 20, 21]. In this experiment,

we replay two MSR workload traces with a VMware in-

house cache simulator with both LRU and vCacheShare

replacement algorithms. VM1 runs src1 0, which per-

forms a simple data scan, while VM2 plays prxy1, with

much higher temporal locality. This simulation worked

as a proof-of-concept assessment before we set out to im-

plement our vCacheShare prototype, due to the complex-

ity of coding in a real hypervisor.

Figure 5 shows the comparison between using a glob-

ally shared LRU cache (GLRU) and vCacheShare (vCS)

from a representative segment of the VMs’ execution. It

plots the VM1, VM2, as well as the overall cache allo-

cation (shown as percentage of the overall cache space

occupied) and hit ratio (cumulative from time 0).

This test clearly illustrates the advantage of vCache-

Share. With global LRU, the zero-locality VM1 actu-

ally grabs more cache space than VM2 does, with a hit

 0

 25

 50

 75

 100

0 300 600 900 1200 1500 1800

C
a
c
h
e
 s

iz
e
 u

ti
liz

a
ti
o
n
 (

%
)

Time (s)

VM1 GLRU
VM2 GLRU

Overall GLRU
VM1 vCS

VM2 vCS
Overall w/ vCS

(a) Cache utilization

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0 300 600 900 1200 1500 1800

C
a
c
h
e
 h

it
 r

a
ti
o

Time (s)

VM1 GLRU
VM2 GLRU

  Overall GLRU
VM1 vCS
VM2 vCS

  Overall w/ vCS

(b) Cache hit rate

Figure 5: Cache partitioning effectiveness: vCacheShare vs.

global LRU

ratio of near zero all the time. Though LRU automati-

cally favors blocks revisited, the fast scanning behavior

of VM1 still prevents VM2 from getting enough cache

space. With vCacheShare, instead, VM2 gets sufficient

cache space to store its entire working set, allowing the

cumulative cache hit ratio to gradually increase as the im-

pact of initial cold misses weakens. VM1, on the other

hand, is correctly recognized as of little locality and con-

sequently has hardly any cache space allocation. This

avoids the space cost of keeping VM1’s blocks in the

cache brought in by cold misses, only to be evicted later

as in the case of using global LRU. Note that vCache-

Share is able to reduce the total cache space usage (50%

vs. 100% with global LRU), thereby leaving more space

for other VMs, while delivering 21% higher overall hit

ratio at the end of the execution segment.

Hit Ratio Estimation Accuracy We then assess
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Figure 6: vCacheShare hit ratio estimation accuracy

vCacheShare’s capability of predicting a workload’s
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cache hit ratio based on its online temporal locality mon-

itoring. Figure 6 depicts the results in terms of hit ratio

estimation error, which measures the absolute difference

between the predicted and actual cache hit ratios, which

evolves for each sampling window along the execution

timeline (x axis). We replayed week-long SNIA real

workload traces in our evaluation. As shown, vCache-

Share is able to yield accurate hit ratio estimation in the

vast majority of cases, with most data points aggregat-

ing within the [-0.1, 0.1] error range. Meanwhile, there

are evident spikes in estimation error, due to fast work-

load behavior changes. With each spike, vCacheShare

is able to correct its large error, though the converging

speed depends on the sampling window size as discussed

previously. In our analysis of traces collected from a pro-

duction data center environment, the mean value for the

deviation was 0.22 with a standard deviation of 0.4. For-

tunately, our reuse intensity metric helps offset the lack

of responsiveness to locality changes caused by larger

sampling windows.

Necessity of Reuse Intensity (RI) Now we demon-

strate that only hit ratio prediction is not enough when

the workloads exhibit bursty or intensive accesses within

a short time period.
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Figure 7: Reuse intensity of MSR trace web

Figure 7 shows the RI change (normalized to the

largest RI value throughout the execution) of the afore-

mentioned MSR web trace. Note the hit ratio predic-

tion is performed on a longer time interval, e.g. several

minutes or longer. In contrast, RI is generated more fre-

quently. Figure 7 highlights this by two representative

segments of execution concatenated, with small and large

hit ratio estimate error respectively. Similar contrast ex-

ists for all the traces though. Clearly from the figure,

when the hit ratio estimation is close to zero, the RI is

close to zero too. However, if there is bursty access be-

tween two sampling windows, RI will capture it much

more promptly and adapt the cache utility accordingly.

7.4 Result 2: Adaptivity Evaluation

Next, we evaluate vCacheShare’s capability of adapting

to different policy settings as well as storage backend

performance settings. In these experiments, we have 4

VMs running Iometer [22] as a workload generator. In

the baseline run, Iometer is set to have 100% random

read operations. All the VMs are assigned the same IO

priority of 1000 and run the same IO workload, access-

ing per-VM VMDKs with identical configurations. The

expected vCacheShare decision is therefore uniform par-

titioning across all VMs/VMDKs. The total server flash

cache size controlled by vCacheShare is 8GB.
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Figure 8: Adaptivity

Varied IO Priorities & Varied Read-Write Ratio: Fig-

ure 8(a) shows the effect of varying the IO priority setting

on vCacheShare’s cache partitioning and resulted IO la-

tency. We change the IO priority of one of the VMDKs

along the time line (x axis) to a series of settings:

P1=1000, P2=2000, P4=4000, and P0.4=400. Follow-

ing every priority value change, vCacheShare promptly

adjusts this VMDK’s cache allocation, while the cache

partitioning among the other VMDKs remains uniform.

The corresponding latency change follows suite, though

it takes longer to stabilize as this VMDK’s actual cache

footprint expands/shrinks. In the second experiment, the

read-write ratio for one of the VMDKs was varied using

Iometer. With vCacheShare’s bias toward read accesses

and read locality, this VMDK sees steady reduction in its

cache allocation shares, as shown in Figure 8(b).
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Figure 9: Cache allocation during migration events

Varied Backend Device Latency & Event Handling:

In the backend device latency sensitivity test, one

VMDK is migrated offline to an flash-backed device.

Figure 9 shows the cache allocation for this backend

migration scenario. vCacheShare detects a significantly
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lower service latency from the “victim” VMDK (elimi-

nating the benefit of flash caching) and consequently re-

distributes nearly all of its cache allocation shares to the

other VMDKs.

Figure 9 also shows the behavior of vCacheShare dur-

ing an online storage vMotion event that moves one

VMDK non-disruptively between storage devices. Dur-

ing this transfer, a transient phase where data is sequen-

tially read from the source disk could skew the locality

analysis. vCacheShare’s event handling design allows it

to suspend its analysis till the completion of the vMotion

operation. Since vMotion is from disk-backed device to

the flash-backed device, the lower IO service time causes

a reduction in the cache allocation, which is reversed

when the same VMDK is later moved back to HDD.

7.5 Result 3: End-to-end Evaluation

We then evaluate the overall performance of vCache-

Share using different workloads.

Iometer Test Case: Here we deploy dynamic Iometer

benchmark workloads in two VMs (with the same IO pri-

ority) sharing SFC. RI is calcuated here with tw set to 30

seconds. Iometer profiles are initially identical for both

VMs but adjusted at run time, producing varied IO work-

ing set and intensity. More specifically, we manipulated

access locality by (1) shrinking VM1’s footprint around

time point 480s to increase data reuse level and (2) at

1140s letting VM2 replay its past 300 seconds’ access

traces, to create an artificial reuse burst.

Figure 10(a) shows the cache allocation changes (ex-

cept for static allocation, which produces fixed 50%−

50% split). It can be seen that vCacheShare made con-

siderable adjustment to space allocation in the two afore-

mentioned phase of locality change, while global LRU

made only minor adaptation during VM2’s replay and

basically ignored VM1’s footprint change.

As a result, vCacheShare brings better overall perfor-

mance, with Figure 10(b) showing the average access

latency averaged over 30s time windows. Compared to

GLRU and static allocation strategies, vCacheShare de-

creased the overall average access latency during the ex-

ecution segment by 58.1% and 67.4%, respectively.

Virtual Desktop Infrastructure Test Case: VDI has

become an important trend in the enterprise. It represents

a challenging storage workload, with low average IOPS

but transient 10-20X load spikes caused by boot storms

or app load storms [23], when all the virtual instances are

performing the same task, accessing the base OS image

from the Master VMDK.

In this experiment, we provision 100 VDI instances

based on 4 master images (WinXP, Win2k8 64bit,

Win2k8 32bit and Ubuntu 11.04 64bit). Each master

VMDK is 8GB, running an in-house VDI workload gen-

erator. The total SFC is 80GB and the static cache size
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Figure 11: VDI cache allocation and latency

applied for each master VMDK is the entire virtual disk

size. SFC is managed with vCacheShare, static and

global LRU (GLRU) allocation policies. Along with

VDI VMs, one additional read intensive Iometer VM

(IO access footprint as 80GB) is sharing the same SFC.

The RI calculation uses a tw of 2 seconds. Figure 11

shows the average (among all master VMDKs) latency

improvement for master VMDK, the cache allocation as

well as Iometer VM’s latency during the boot storm pro-

cess. The performance of a no-SFC configuration (“No

cache”) is also shown. The boot storm starts at 2 seconds

for all experiments and finishes at 300 seconds without

caching, 116 seconds for vCacheShare, 74 seconds for

static allocation, and 244 seconds for GLRU. The mas-

ter VMDK has to be brought in from disk-based back-

end, creating severe queuing delay before the cache is

warmed up. This process takes around 38 seconds (till

the 40s time point).

The boot storm lasts over 240 seconds for no cache

and GLRU. However, in the vCacheShare setup the load

spike is captured quickly by its reuse intensity (RI) moni-

toring. After the master VMDK is cached, the boot storm

completes using only 114 seconds, 37.5% and 46.2% of

time consumed by no cache and GLRU respectively.

Static allocation starts caching once the boot storm

starts, so it serves boot storm out of SFC the fastest, thus
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Figure 10: Iometer test results

beat vCacheShare during this process. However, it can

not reclaim the cache space allocated to master VMDK

after the boot storm is over. When there are multiple ver-

sions of master images, more and more SFC space needs

to be allocated for such one-time use. Worse, static man-

agement itself is not able to adaptively adjust cache size

for different workloads. From Figure 11(c), although

static SFC management shortens the boot storm, it sig-

nificantly degrades the performance of other VMs before

and after boot storm. In our test case, Iometer performs

81% better with vCacheShare compared to static alloca-

tion in terms of average latency.
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Figure 12: Cache allocation for TPC-H queries

Data Warehousing Test Case: In this test, we setup

our test case using TPC-H [24] (using a scale factor of

3), with Postgres DB configured with default values on

an Ubuntu 11.04 VM. A scale factor of 3 is used for the

TPC-H database, with Postgres configured with default

values. RI here is calculated with tw set to 10 seconds.

TPC-H contains a collection of 22 queries, demonstrat-

ing varied data locality patterns. In our experiments we

set up three identical VMs, each running the same three

OLAP queries (similar to standard TPC-VMS [25] set-

tings), but in different order: VM1 runs queries 20, 2,

21, VM2 runs 2, 21, 20, and VM3 runs query 21, 20, 2.

Among them, query 20 has highest locality, 2 has little,

and 21 sits in between. Here we omit static partitioning

results as its performance is inferior to GLRU.

Results in Figure 12 reveal three major observations.

First, vCacheShare makes very different partitioning de-

cisions compared to GLRU, assisted by cache utility

modeling to bias toward workloads that can benefit more

from caching. E.g., the VM running query 2 (with the

lowest locality) actually receives more allocation than

other VMs when using GLRU, due to its higher IO ac-

cess rate. vCacheShare correctly detects its lack of data

reuse and reduces its allocation to the default reserve

level. Second, when there is a workload change (switch

between queries), vCacheShare is able to converge to a

new relative allocation level faster than GLRU, with its

active RI modeling plus hit ratio prediction. Finally, as

a result, vCacheShare is able to improve the overall per-

formance by 15.6%, finishing all queries in 430 seconds

compared to 510 seconds with GLRU.

8 Related Work

SFC solutions are rapidly gaining adoption, with sys-

tems such as EMC VFCache [1], NetApp Mercury [2],

as well as schemes developed at Fusion-io [4] and Face-

book [26]. To our best knowledge, existing commercial

solutions support only static, administrator-defined SFC

partitioning or global sharing policies.

Related academic studies have demonstrated that

global LRU is not efficient compared to partitioned

shared cache for both CPU [7, 20] and disk [21]. Ar-

gon [27] partitions the memory cache between differ-

ent services, providing isolation between the hit rate of

each service. The difference with our work is that Ar-

gon optimizes the cache hit rate for individual services,

while vCacheShare optimizes the overall cache utiliza-
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tion (for aggregate I/O performance). Additionally, un-

like vCacheShare, Argon requires administrator involve-

ment each time there are changes in the workload pat-

tern. Janus [28] performs flash allocation optimization

for tiered flash-disk storage. The major difference here

is that vCacheShare targets SFC systems in block granu-

larity while Janus optimizes file based tiered storage.

The most closely related recent work on flash cache

partitioning is S-CAVE [29]. Its optimization is based on

runtime working set identification, while vCacheShare

explores a different dimension by monitoring changes in

locality, especially transient bursts in data reuse.

Memory virtualization [30] facilitates transparent

sharing of memory among multiple VMs. Recent inter-

est in using flash as extended memory [31, 32] has fo-

cused on resolving the access semantics and extending

the interfaces beyond block IO, rather than the dynamic

space management issues addressed in this paper. Sim-

ilarly, techniques proposed for CPU cache partitioning

[7, 8, 9, 20, 33] target problem settings significantly dif-

ferent from IO caching, which is much more resource

(both compute and storage) constrained.

vCacheShare leverages several well-studied concepts

in analytical modeling, optimization, and execution.

E.g., reuse distance analysis has been used in memory ac-

cess patterns for decades [14, 34], including cache man-

agement policies such as LRU-K [35] and LRFU [36].

Recently, Xiang et al. theoretically proves that hit ra-

tio can be constructed from reuse distance [37], while

vCacheShare demonstrates it in practice. Distance-based

analysis of temporal and spatial localities has been char-

acterized for file system caching [35, 36]. Low level

disk access patterns have been analyzed for uses such

as file system or disk layout optimizations [38, 39].

vCacheShare complements existing work by contribut-

ing a new approach in locality monitoring based system

self-configuration, which may potentially be applied be-

yond SFC partitioning.

9 Conclusion

In this paper, we presented the motivation, design, and

evaluation of vCacheShare, a dynamic, self-adaptive

framework for automated server flash cache space alloca-

tion in virtualization environments. Through our imple-

mentation and experimentation, we confirmed that long

observation windows are desirable for accurate cache hit

ratio estimation, but may cause slow response to locality

spikes and bring higher trace collection/processing over-

head. This can be compensated by employing simultane-

ously short-term locality metrics. Meanwhile, the rela-

tionship between observation window size and cache hit

ratio estimation accuracy requires further study.

We have also demonstrated that continuous IO access

monitoring and analysis is affordable for the purpose of

cache space management, even with today’s high-VM-

density environments.
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