
MetaBalance: Improving Multi-Task Recommendations via
Adapting Gradient Magnitudes of Auxiliary Tasks

Yun He
Texas A&M University

USA
yunhe@tamu.edu

Xue Feng
Meta AI
USA

xfeng@fb.com

Cheng Cheng
Meta AI
USA

cc6@fb.com

Geng Ji
Meta AI
USA

gji@fb.com

Yunsong Guo
Meta AI
USA

yunsong@fb.com

James Caverlee
Texas A&M University

USA
caverlee@tamu.edu

ABSTRACT
In many personalized recommendation scenarios, the generaliza-
tion ability of a target task can be improved via learning with
additional auxiliary tasks alongside this target task on a multi-
task network. However, this method often suffers from a serious
optimization imbalance problem. On the one hand, one or more aux-
iliary tasks might have a larger influence than the target task and
even dominate the network weights, resulting in worse recommen-
dation accuracy for the target task. On the other hand, the influence
of one or more auxiliary tasks might be too weak to assist the target
task. More challenging is that this imbalance dynamically changes
throughout the training process and varies across the parts of the
same network. We propose a new method: MetaBalance to balance
auxiliary losses via directly manipulating their gradients w.r.t the
shared parameters in the multi-task network. Specifically, in each
training iteration and adaptively for each part of the network, the
gradient of an auxiliary loss is carefully reduced or enlarged to
have a closer magnitude to the gradient of the target loss, prevent-
ing auxiliary tasks from being so strong that dominate the target
task or too weak to help the target task. Moreover, the proximity
between the gradient magnitudes can be flexibly adjusted to adapt
MetaBalance to different scenarios. The experiments show that our
proposed method achieves a significant improvement of 8.34% in
terms of NDCG@10 upon the strongest baseline on two real-world
datasets. The code of our approach can be found at here.1

CCS CONCEPTS
• Computing methodologies → Multi-task learning; • Infor-
mation systems → Recommender systems;

1https://github.com/facebookresearch/MetaBalance

*A majority of this work was done while the first author was interning at Meta AI.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9096-5/22/04.
https://doi.org/10.1145/3485447.3512093

KEYWORDS
Multi-Task Learning, Auxiliary Learning, Personalized Recommen-
dation, Gradient-based Optimization

ACM Reference Format:
Yun He, Xue Feng, Cheng Cheng, Geng Ji, Yunsong Guo, and James Caverlee.
2022. MetaBalance: Improving Multi-Task Recommendations via Adapting
Gradient Magnitudes of Auxiliary Tasks. In Proceedings of the ACM Web
Conference 2022 (WWW ’22), April 25–29, 2022, Virtual Event, Lyon, France.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3485447.3512093

1 INTRODUCTION
The accuracy of personalized recommendations can often be im-
proved by transfer learning from related auxiliary information. For
example, a primary task on e-commerce platforms like Amazon
and eBay is to predict if a user will purchase an item. This purchase
prediction task can benefit from transferring knowledge about the
user’s preference from auxiliary information like which item URLs
the user has clicked and which items the user has put into the
shopping cart. A common way to enable such transfer learning is to
formulate this auxiliary information as auxiliary tasks (e.g., predict
if a user will click a URL) and optimize them jointly with the target
task (e.g., purchase prediction) on a multi-task network. In this
way, knowledge can be transferred from the auxiliary tasks to the
target task via the shared bottom layer of the multi-task network
as shown in Figure 1(a). Enhanced with auxiliary information, the
target task can obtain better performance than training the target
task in isolation. Since the motivation of introducing those auxiliary
tasks is often to purely assist the target task, in this paper, we focus
on scenarios where only the performance of the target task is of
interest.

Beyond purchase prediction, many other recommendation sce-
narios [1, 3, 9, 11, 20–22, 33, 35] can also benefit from such transfer
learning from auxiliary tasks. In social recommendation [9, 21, 33],
knowledge can be transferred from the social network to improve
personalized recommendations via training the target task simulta-
neously with auxiliary tasks like predicting the connections or trust
among users. To better estimate post-click conversion rate (CVR) in
online advertising, related information like post-view click-through
rate (CTR) and post-view click-through & conversion rate (CTCVR)
can be introduced as auxiliary tasks [22]. Another example is that
learning user and item embeddings from product review text can be

https://github.com/facebookresearch/MetaBalance
https://doi.org/10.1145/3485447.3512093
https://doi.org/10.1145/3485447.3512093


designed as auxiliary tasks to improve the target goal of predicting
ratings on e-commerce platforms [35].

However, a key challenge to transfer learning from auxiliary
tasks in personalized recommendation is the potential for a sig-
nificant imbalance of gradient magnitudes, which can negatively
affect the performance of the target task. As mentioned before,
such transfer learning is often conducted on a multi-task network,
which is commonly composed of a bottom layer with shared pa-
rameters and several task-specific layers. In training, each task has
a corresponding loss and each loss has a corresponding gradient
with respect to the shared parameters of that multi-task network.
The sum of these gradients (for the target task and the auxiliary
tasks) impacts how the shared parameters are updated. Hence, the
larger the gradient is, the greater the impact this gradient has on
the shared parameters. As a result, if the gradient of an auxiliary
loss is much larger than the gradient of the target loss, the shared
parameters will be most impacted by this auxiliary task rather than
the target task. Consequently, the target task could be swamped by
the auxiliary tasks, resulting in worse performance. On the other
hand, if an auxiliary gradient is much smaller than the target gradi-
ent, the influence of this auxiliary task might be too weak to assist
the target task. This imbalance of gradient magnitudes is common
in industrial recommender systems: Figure 1(b) and 1(c) highlight
two examples from Alibaba, which respectively demonstrate how
the target task gradient can be dominated by an auxiliary task, and
how some auxiliary tasks have gradients so small that they may
only weakly inform the target task.

So how can we overcome this gradient imbalance? A simple and
often used approach is to tune the weights of task losses (or gradi-
ents) through a grid or random search. However, such fixed task
weights are not optimal because the gradient magnitudes change
dynamically throughout the training and the imbalance might vary
across the different subsets of the shared parameters as shown
in Figure 1. Besides, it is time-consuming to tune the weights for
multiple auxiliary tasks.

In this paper, we propose MetaBalance as a novel algorithm and
flexible framework that adapts auxiliary tasks to better assist the
target task from the perspective of gradient magnitudes. Specifically,
MetaBalance has three strategies: (A) Strengthening the dominance
of the target task – auxiliary gradients with larger magnitudes
than the target gradient will be carefully reduced in each training
iteration; (B) Enhancing the knowledge transferring from weak
auxiliary tasks – auxiliary gradients with smaller magnitudes than
the target gradient will be carefully enlarged; and (C) MetaBalance
adopts both (A) and (B) in the same iteration. In the absence of
sufficient prior knowledge, which strategy to apply is treated as a
data-driven problem, where the best strategy can be empirically
selected based on the performance over the validation set of the
target task.

Moreover, MetaBalance has three key characteristics:

(1) Auxiliary gradients can be balanced dynamically throughout
the training process and adaptively for different subsets of
the shared parameters, which is more flexible than fixed
weights for task losses;

(2) MetaBalance prioritizes the target task via preventing auxil-
iary tasks from being so strong that they dominate the target

Task-specific
Layer

Task-specific
Layer

Task-specific
Layer

Shared Bottom Layer

Auxiliary Task A Target Task Auxiliary Task B
Transfer Transfer

(a) Transfer Learning from Auxiliary Tasks to Improve the Target Task on a
Multi-task Network

(b) Imbalance on one part of the shared
parameters (e.g., MLP layer)

(c) Imbalance on another part of the
shared parameters (e.g., embedding layer)

Figure 1: The imbalance of gradient magnitudes in trans-
fer learning from auxiliary tasks for recommendations on
Alibaba data. The magnitudes dynamically change through-
out the training, with the imbalance varying across different
parts of the same multi-task network: in Fig 1(b), the gradi-
ent of auxiliary task click-URL is much larger than the tar-
get gradient; in Fig 1(c), the gradient of auxiliary task Add-
to-Favorite is much smaller than the target gradient.

task or too weak to help the target task, which can be easily
monitored by choosing one of the three strategies;

(3) The next important question is howmuch should the auxiliary
gradient magnitudes be reduced or enlarged? We design a
relax factor to control this to flexibly adapt MetaBalance to
different scenarios. The relax factor can also be empirically
selected based on the performance over the validation dataset
of the target task.

In sum, MetaBalance provides a flexible framework for adapt-
ing auxiliary gradients to better improve the target task from the
perspective of gradient magnitudes. Extensive experiments over
two real-world user behavior datasets from Alibaba show the effec-
tiveness and flexibility of MetaBalance. In particular, we have four
target observations:
• With the best strategy and relax factor selected from the valida-
tion set, MetaBalance can significantly boost the test accuracy
of the target task, which shows that auxiliary knowledge can be
better transferred to the target task via MetaBalance.
• MetaBalance can significantly outperform previous methods for
adapting auxiliary tasks to improve the target task. For example,
we observe a significant improvement of 8.34% upon the strongest
baselines in terms of NDCG@10.
• Only one hyper-parameter in MetaBalance (the relax factor)
needs to be tuned, irrespective of the number of tasks. Hence,
MetaBalance requires only a few training runs, which is more
efficient than tuning the weights of task losses, which can be
computationally intensive as the number of tasks increases.



• MetaBalance can collaborate well with several popular optimiz-
ers including Adam, Adagrad and RMSProp, which shows the
potential that MetaBalance can be widely applied in many sce-
narios.

2 RELATEDWORK
Recommendations with Auxiliary Tasks. In many personal-
ized recommendation scenarios, the test accuracy of the target
task can be improved via joint learning with auxiliary tasks. In
social recommendation [9, 21, 33], the knowledge about the user
preference can be transferred from social network to the improve
recommendations while the target task like rating prediction jointly
train with auxiliary tasks like predicting the connections and trust
among users. To improve post-click conversion rate (CVR) predic-
tion, Ma et al. [22] consider the sequential pattern of user actions
and introduce post-view click-through rate (CTR) and post-view
click-through&conversion rate (CTCVR) as auxiliary tasks. To en-
hance music playlists or booklists recommendations, predicting if
a user will like an individual song or book can also be used as aux-
iliary tasks and jointly learn with the list-based recommendations.
Besides, Bansal et al. [1] design auxiliary tasks of predicting item
meta-data (e.g., tags, genres) to improve the rating prediction as
the target task. To improve the target goal of predicting ratings,
learning user and item embeddings from product review text can
also be designed as auxiliary tasks [35].

Auxiliary Learning. In this paper, we focus on transferring knowl-
edge from auxiliary tasks to improve the target recommendation
task, which is an example of auxiliary learning paradigm. While
multi-task learning aims to improve the performance across all
tasks, auxiliary learning differs in that high test accuracy is only
required for a primary task, and the role of the other tasks is to
assist in generalization of the primary task. Auxiliary learning has
been widely used in many areas. In speech recognition, Toshniwal
et al. [29] apply auxiliary supervision from phoneme recognition to
improve the performance of conversational speech recognition. In
computer vision, Liebel at al. [16] propose auxiliary tasks such as
the global description of a scene to boost the performance for single
scene depth estimation. Mordan et al. [24] observe that object detec-
tion can be enhanced if it jointly learns with depth prediction and
surface normal prediction as auxiliary tasks. Liu et al. [18] propose
a Meta AuXiliary Learning (MAXL) framework that automatically
learns appropriate labels for auxiliary tasks. In NLP, Trinh et al.
[30] show that unsupervised auxiliary losses significantly improve
optimization and generalization of LSTMs. Auxiliary learning has
also been applied to improve reinforcement learning [12, 17].

Gradient Direction-based Methods for Adapting Auxiliary
Tasks. In auxiliary learning, several methods [7, 17, 34] have been
proposed to adapt auxiliary tasks to avoid the situation where
they dominate or compete with the target task, where an auxiliary
gradient will be down-weighted or masked out if its direction is
conflicting with the direction of the target gradient. We will intro-
duce these methods in detail in the Appendix (Section A.1.1) and
compare them with the proposed MetaBalance. In particular, Meta-
Balance does not punish auxiliary gradients with conflict directions
but strengths the dominance of the target task from the perspective

of gradient magnitudes. In the experiments, MetaBalance shows
better generalization than these gradient direction-based methods.

Multi-Task Learning.Multi-task learning [26, 32] is used to im-
prove the learning efficiency and prediction accuracy of multiple
tasks via training them jointly. Shared-bottom model [32] is a com-
monly used structure where task-specific tower networks receive
the same representations that come from a shared bottom network.

Multi-Task BalancingMethods. In multi-task learning, methods
have been proposed to balance the joint learning of all tasks to avoid
the situation where one or more tasks have a dominant influence on
the network weight [4, 14, 19, 23, 27]. Although these methods have
no special preference to the target task (as in our focus in this paper),
we do discuss their connection to MetaBalance in Section A.1.2 (in
Appendix) and experimentally compare with them in Section 5.

3 PROBLEM STATEMENT
Our goal is to improve the test accuracy of a target task via training
auxiliary tasks alongside this target task on a multi-task network,
where useful knowledge from auxiliary tasks can be transferred
so that the shared parameters of the network converge to more
robust features for the target task. In the context of personalized
recommendation, the target task is normally to predict if a user
will interact (e.g., purchase or click) with an item, which can be
formulated as a binary classification problem. The test accuracy
is measured over the top-K items ranked by their probabilities of
being interacted with by the user against the ground-truth set of
items that the user actually interacted with.

Let \ denote a subset of the shared parameters. For example,
\ could be the weight matrix or the bias vector of a multi-layer
perceptron in the shared bottom network. \ is learned by jointly
minimizing the target task loss L𝑡𝑎𝑟 with auxiliary task losses
L𝑎𝑢𝑥,𝑖 , 𝑖 = 1, ..., 𝐾 :

L𝑡𝑜𝑡𝑎𝑙 = L𝑡𝑎𝑟 +
𝐾∑
𝑖=1
L𝑎𝑢𝑥,𝑖 (1)

We assume that we update \𝑡 via gradient descent with learning
rate 𝛼 :

\𝑡+1 = \𝑡 − 𝛼 ∗ G𝑡
𝑡𝑜𝑡𝑎𝑙

(2)

where 𝑡 means the 𝑡-th training iteration over the mini-batches
(𝑡 = 1, 2...𝑇 ) and G𝑡

𝑡𝑜𝑡𝑎𝑙
is the gradient of L𝑡

𝑡𝑜𝑡𝑎𝑙
w.r.t \ :

G𝑡
𝑡𝑜𝑡𝑎𝑙

= ∇\L𝑡𝑡𝑜𝑡𝑎𝑙 = ∇\L
𝑡
𝑡𝑎𝑟 +

𝐾∑
𝑖=1
∇\L𝑡𝑎𝑢𝑥,𝑖 (3)

where G𝑡𝑜𝑡𝑎𝑙 is equivalent to adding up each gradient of the target
and auxiliary losses. To simplify the notations, we have:
• G𝑡𝑎𝑟 (i.e., ∇\L𝑡𝑎𝑟 ): the gradient of the target task loss L𝑡𝑎𝑟 with
respect to \ .
• G𝑎𝑢𝑥,𝑖 (i.e., ∇\L𝑎𝑢𝑥,𝑖 ): the gradient of the 𝑖-th auxiliary task loss
L𝑎𝑢𝑥,𝑖 with respect to \ , where 𝑖 = 1, 2...𝐾 .
• ∥G∥: the magnitude (L2 Norm) of the corresponding gradient.

As shown in Eq 3 and 2, the larger the magnitude of a gradient
is, the greater the influence this gradient has in updating \ .



4 PROPOSED METHOD
The imbalance of gradient magnitudes may negatively affect the tar-
get task optimization. On the one hand, if ∥G𝑎𝑢𝑥,𝑖 ∥ (∃𝑖 ∈ {1, 2...𝐾})
is much larger than ∥G𝑡𝑎𝑟 ∥, the target task will lose its dominance
of updating \ and get lower performance. On the other hand, if
∥G𝑎𝑢𝑥,𝑖 ∥ (∃𝑖 ∈ {1, 2...𝐾}) is much smaller than ∥G𝑡𝑎𝑟 ∥, the corre-
sponding auxiliary task might become less influential to assist the
target task. As illustrated in Figure 1, many personalized recommen-
dations may suffer from this imbalance. Hence, we are motivated
to propose a new algorithm that adapts auxiliary tasks from the
perspective of gradient magnitudes.

Algorithm 1 The Basic Version of MetaBalance

Input: \ 1, L𝑡𝑎𝑟 , L𝑎𝑢𝑥,1, ..., L𝑎𝑢𝑥,𝐾 , Strategy that is selected from
{∥G𝑎𝑢𝑥,𝑖 ∥ > ∥G𝑡𝑎𝑟 ∥, ∥G𝑎𝑢𝑥,𝑖 ∥ < ∥G𝑡𝑎𝑟 ∥, (∥G𝑎𝑢𝑥,𝑖 ∥ > ∥G𝑡𝑎𝑟 ∥)
or (∥G𝑎𝑢𝑥,𝑖 ∥ < ∥G𝑡𝑎𝑟 ∥)}

Output: \𝑇

1: for t = 1 to T do
2: G𝑡𝑡𝑎𝑟 = ∇\ L𝑡𝑡𝑎𝑟
3: for i = 1 to K do
4: G𝑡

𝑎𝑢𝑥,𝑖
= ∇\ L𝑡𝑎𝑢𝑥,𝑖

5: if (Strategy) then

6: G𝑡
𝑎𝑢𝑥,𝑖

← G𝑡
𝑎𝑢𝑥,𝑖

∗
∥G𝑡𝑡𝑎𝑟 ∥
∥G𝑡
𝑎𝑢𝑥,𝑖

∥
7: end if
8: end for
9: G𝑡

𝑡𝑜𝑡𝑎𝑙
= G𝑡𝑡𝑎𝑟 + G𝑡𝑎𝑢𝑥,1 + . . .G𝑡𝑎𝑢𝑥,𝐾 (element-wise addition)

10: Update \ using G𝑡
𝑡𝑜𝑡𝑎𝑙

(e.g., Gradient Descent: \𝑡+1 = \𝑡 − 𝛼 ∗
G𝑡
𝑡𝑜𝑡𝑎𝑙

)
11: end for

4.1 Adapting Auxiliary Gradient Magnitudes
As discussed above, the magnitude imbalance between G𝑡𝑎𝑟 and
G𝑎𝑢𝑥,𝑖 , ...,G𝑎𝑢𝑥,𝐾 may negatively affect the target task optimization.
To alleviate this imbalance, MetaBalance is proposed to dynamically
and adaptively balance the magnitudes of auxiliary gradients with
three strategies and a relax factor (will be detailed in the next
subsection).

The basic version of MetaBalance is presented in Algorithm 1,
including four steps:
(1) Calculating the Gradients. In each training iteration, we
firstly calculate G𝑡𝑡𝑎𝑟 and G𝑡

𝑎𝑢𝑥,𝑖
respectively (line 2 and 4).

(2) Applying the Strategy. In line 5, we can choose either re-
ducing auxiliary gradients with larger magnitudes than the target
gradient, or enlarging auxiliary gradients with smaller magnitudes,
or applying the two strategies together. The strategy can be selected
based on the validation performance of the target task.
(3) Balancing the Gradients. Next, G𝑡

𝑎𝑢𝑥,𝑖
is normalized to be a

unit vector by dividing by ∥G𝑡
𝑎𝑢𝑥,𝑖
∥ and then rescaled to have the

same magnitude as G𝑡𝑡𝑎𝑟 by multiplying ∥G𝑡𝑡𝑎𝑟 ∥ (line 6).
(4) Updating the Parameters. After that, G𝑡

𝑡𝑜𝑡𝑎𝑙
(line 9) is ob-

tained by summing G𝑡𝑡𝑎𝑟 and balanced G𝑡
𝑎𝑢𝑥,1, . . .G

𝑡
𝑎𝑢𝑥,𝐾

together.
Then, G𝑡

𝑡𝑜𝑡𝑎𝑙
is used to update \ following an optimizer’s rule such

as gradient descent (line 10). Since step (3) and (4) are completely

decoupled, MetaBalance has the potential to collaborate with most
commonly used optimizers like Adam and Adagrad [8].

MetaBalance benefits auxiliary learning from six aspects:
(1) G𝑡

𝑎𝑢𝑥,𝑖
with much larger magnitude than G𝑡𝑡𝑎𝑟 could be auto-

matically reduced, which prevents the dominance of one or more
auxiliary tasks for the target task. (Strategy A)
(2) G𝑡

𝑎𝑢𝑥,𝑖
with much smaller magnitude than G𝑡𝑡𝑎𝑟 could be auto-

matically enlarged, which enhances the knowledge transference
from the corresponding auxiliary task. (Strategy B)
(3) The (1) and (2) could be done together if necessary. (Strategy C)
(4) The strategy is selected based on the target task’s performance
over validation dataset, which is the empirically best strategy for a
specific task and dataset.
(5) Because ∥G𝑡𝑡𝑎𝑟 ∥

∥G𝑡
𝑎𝑢𝑥,𝑖

∥ can be regarded as a dynamic weight for

G𝑡
𝑎𝑢𝑥,𝑖

in line 6,MetaBalance can balanceG𝑡
𝑎𝑢𝑥,𝑖

dynamically through-
out the training process.
(6) As shown in Figure 1, the imbalance of gradient magnitudes
varies across the different parts of the same network (e.g., the aux-
iliary gradients might be much larger than the target gradient in
an MLP but much smaller in an embedding layer). Because Meta-
Balance can be easily applied to each part of the shared parameters
separately (\ is an input of Algorithm 1), the training of the differ-
ent parts can be balanced respectively and adaptively. (5) and (6)
makes MetaBalance more flexible than using fixed weights for task
losses.

However, the drawback of this basic version in Algorithm 1 is
also obvious: forcing auxiliary gradients to have exactly the same
magnitude as the target gradient might not be optimal for the target
task. To overcome this inflexibility of the magnitude scaling, we
design a relax factor to control the closeness of ∥G𝑡

𝑎𝑢𝑥,𝑖
∥ to ∥G𝑡𝑡𝑎𝑟 ∥

in the following subsection.

4.2 Adjusting Magnitude Proximity
The next question is how to flexibly adjust the magnitude proximity
betweenG𝑎𝑢𝑥,𝑖 andG𝑡𝑎𝑟 to adapt to different scenarios? We design
a relax factor 𝑟 to control this magnitude proximity, which is used
in line 6 of Algorithm 1:

G𝑡𝑎𝑢𝑥,𝑖 ← (G
𝑡
𝑎𝑢𝑥,𝑖 ∗

∥G𝑡𝑡𝑎𝑟 ∥
∥G𝑡

𝑎𝑢𝑥,𝑖
∥
) ∗ 𝑟 + G𝑡𝑎𝑢𝑥,𝑖 ∗ (1 − 𝑟 )

where, if 𝑟 = 1, thenG𝑡
𝑎𝑢𝑥,𝑖

has exactly the same magnitude asG𝑡𝑡𝑎𝑟 .
If 𝑟 = 0, then G𝑡

𝑎𝑢𝑥,𝑖
keeps its original magnitude. The larger 𝑟 is,

the closer ∥G𝑡
𝑎𝑢𝑥,𝑖
∥ gets to ∥G𝑡𝑡𝑎𝑟 ∥. Hence, 𝑟 balances the magni-

tude information between each auxiliary gradient and the target
gradient.

The impact of 𝑟 on the magnitude proximity is illustrated in
Figure 2. We observe that the target gradient is dominated by an
auxiliary gradient with its much larger magnitude when 𝑟 = 0 in
Figure 1(b). In contrast, 𝑟 = 1 lets all gradients have the same but
very small magnitude as the target gradient in Figure 2(d). Between
the two extremes, Figure 2(b) (𝑟 = 0.2) and Figure 2(c) (𝑟 = 0.7)
balance the gradient magnitudes in a more moderate way, which
pushes ∥G𝑡

𝑎𝑢𝑥,𝑖
∥ closer to ∥G𝑡𝑡𝑎𝑟 ∥ but not exactly the same – the

original magnitude can be partially kept.



(a) MetaBalance with 𝑟 = 0 (b) MetaBalance with 𝑟 = 0.2 (c) MetaBalance with 𝑟 = 0.7 (d) MetaBalance with 𝑟 = 1.0

Figure 2: The impact of relax factor 𝑟 onmagnitude proximity on UserBehavior-2017 dataset. In the legend, “target” represents
the target task (i.e., purchase prediction). Y-axis is the average gradient magnitude over all mini-batch iterations in one epoch,
where the gradient w.r.t a MLP layer of the multi-task network is taken as the example.

More than that, 𝑟 can actually affect the weight for each auxiliary
task. We can further reformulate line 6 in Algorithm 1 as:

G𝑡𝑎𝑢𝑥,𝑖 ← G𝑡𝑎𝑢𝑥,𝑖 ∗𝑤
𝑡
𝑎𝑢𝑥,𝑖

where𝑤𝑡
𝑎𝑢𝑥,𝑖

is the weight for G𝑡
𝑎𝑢𝑥,𝑖

and we have:

𝑤𝑡𝑎𝑢𝑥,𝑖 = (
∥G𝑡𝑡𝑎𝑟 ∥
∥G𝑡

𝑎𝑢𝑥,𝑖
∥
− 1) ∗ 𝑟 + 1 (4)

where, if ∥G𝑡𝑡𝑎𝑟 ∥ > ∥G𝑡𝑎𝑢𝑥,𝑖 ∥, the higher 𝑟 is, the higher𝑤
𝑡
𝑎𝑢𝑥,𝑖

will
be; however, if ∥G𝑡𝑡𝑎𝑟 ∥ < ∥G𝑡𝑎𝑢𝑥,𝑖 ∥, the higher 𝑟 is, the lower𝑤

𝑡
𝑎𝑢𝑥,𝑖

will be.
The next key question is how to choose this 𝑟? As presented in

Equation 4, 𝑟 affects the weight for each auxiliary task. Without
the prior knowledge of the importance of each auxiliary task to
the target task, we treat the setting of 𝑟 as a data-driven problem
and believe that 𝑟 should be carefully adjusted to adapt to different
scenarios. Since 𝑟 is only used in the backward propagation and
hence has no gradient from any loss, 𝑟 is not a learnable parameter
inherently. Hence, we treat 𝑟 as a hyper-parameter, which is tuned
over validation datasets. Note that the same 𝑟 for all auxiliary tasks
does not mean that they will have the same weight or gradient
magnitude because𝑤𝑡

𝑎𝑢𝑥,𝑖
is not only decided by 𝑟 but also affected

by ∥G𝑡𝑡𝑎𝑟 ∥ and ∥G𝑡𝑎𝑢𝑥,𝑖 ∥ (see Equation 4).
Therefore, there is only one hyper-parameter 𝑟 in MetaBalance

that needs to be tuned, which is irrespective of the number of tasks.
In contrast, the computational complexity of tuning weights of task
losses increases exponentially for each task added. Moreover, we
also observe that MetaBalance achieves higher test accuracy than
tuning the task weights in our experiments.

Finally, instead of using currentmagnitudes ∥G𝑡𝑡𝑎𝑟 ∥ and ∥G𝑡𝑎𝑢𝑥,𝑖 ∥
in Algorithm 1, following [23], we apply the moving average of
magnitude of the corresponding gradient to take into account the
variance among all gradient magnitudes over the training iterations:

𝑚𝑡𝑡𝑎𝑟 = 𝛽 ∗𝑚𝑡−1𝑡𝑎𝑟 + (1 − 𝛽) ∗ ∥G𝑡𝑡𝑎𝑟 ∥ (5)

𝑚𝑡𝑎𝑢𝑥,𝑖 = 𝛽 ∗𝑚
𝑡−1
𝑎𝑢𝑥,𝑖 + (1 − 𝛽) ∗ ∥G

𝑡
𝑎𝑢𝑥,𝑖 ∥,∀𝑖 = 1, ..., 𝐾 (6)

where𝑚0
𝑡𝑎𝑟 =𝑚

0
𝑎𝑢𝑥,𝑖

= 0 and 𝛽 is to control the exponential decay
rates of the moving averages, which could be empirically set as
0.9. The moving averages make the training more stable and will
be discussed in the experiments. Finally, the complete version of
MetaBalance is shown in Algorithm 2.

4.3 Time and Space Complexity Analysis
In this section, we show that MetaBalance does not significantly
increase the time and space complexity of training multi-task net-
works. Assume that addition, subtraction, multiplication, division
and square root take “one unit” of time. The time complexity of
training a multi-task network depends on the network’s structure.
For simplicity, assume that an MLP is the shared layer of a multi-
task network and \ is a weight matrix of a single layer in the MLP,
where \ has input dimension 𝑛 and output dimension𝑚. The time
complexity of updating \ is O(𝑇 (1 + 𝐾)𝑛𝑚𝑑) [2], where 𝑇 is the
number of training iterations over the mini-batches, (1 + 𝐾) is the
count of the target task plus 𝐾 auxiliary tasks and 𝑑 is the size
of the mini-batch. For MetaBalance in Algorithm 2, in each train-
ing iteration and for each task, 𝑟 is a hyper-parameter, calculating
𝑚𝑡
𝑎𝑢𝑥,𝑖

or𝑚𝑡𝑡𝑎𝑟 takes O(𝑛𝑚𝑑), and the time complexity of updating
the magnitude of G𝑡

𝑎𝑢𝑥,𝑖
(line 9) is also O(𝑛𝑚𝑑). To sum up, the

time complexity of MetaBalance is still O(𝑇 (1 + 𝐾)𝑛𝑚𝑑). There-
fore, MetaBalance will not significantly slow down the training of
multi-task networks.

Algorithm 2 The Complete Version of MetaBalance

Input: \ 1, L𝑡𝑎𝑟 , L𝑎𝑢𝑥,1, ..., L𝑎𝑢𝑥,𝐾 , relax factor 𝑟 , 𝛽 in moving aver-
ages, Strategy that is selected from {𝑚𝑎𝑢𝑥,𝑖 >𝑚𝑡𝑎𝑟 ,𝑚𝑎𝑢𝑥,𝑖 <𝑚𝑡𝑎𝑟 ,
(𝑚𝑎𝑢𝑥,𝑖 >𝑚𝑡𝑎𝑟 ) or (𝑚𝑎𝑢𝑥,𝑖 <𝑚𝑡𝑎𝑟 )}

Output: \𝑇

1: Initialize𝑚0
𝑡𝑎𝑟 =𝑚0

𝑎𝑢𝑥,𝑖
= 0

2: for t = 1 to T do
3: G𝑡𝑡𝑎𝑟 = ∇\ L𝑡𝑡𝑎𝑟
4: 𝑚𝑡𝑡𝑎𝑟 = 𝛽 ∗𝑚𝑡−1𝑡𝑎𝑟 + (1 − 𝛽) ∗ ∥G𝑡𝑡𝑎𝑟 ∥
5: for i = 1 to K do
6: G𝑡

𝑎𝑢𝑥,𝑖
= ∇\ L𝑡𝑎𝑢𝑥,𝑖

7: 𝑚𝑡
𝑎𝑢𝑥,𝑖

= 𝛽 ∗𝑚𝑡−1
𝑎𝑢𝑥,𝑖

+ (1 − 𝛽) ∗ ∥G𝑡
𝑎𝑢𝑥,𝑖

∥
8: if (Strategy) then

9: G𝑡
𝑎𝑢𝑥,𝑖

← (G𝑡
𝑎𝑢𝑥,𝑖

∗
𝑚𝑡𝑡𝑎𝑟

𝑚𝑡
𝑎𝑢𝑥,𝑖

) ∗ 𝑟 + G𝑡
𝑎𝑢𝑥,𝑖

∗ (1 − 𝑟 )

10: end if
11: end for
12: G𝑡

𝑡𝑜𝑡𝑎𝑙
= G𝑡𝑡𝑎𝑟 + G𝑡𝑎𝑢𝑥,1 + . . .G𝑡𝑎𝑢𝑥,𝐾 (element-wise addition)

13: Update \ using G𝑡
𝑡𝑜𝑡𝑎𝑙

(e.g., \𝑡+1 = \𝑡 − 𝛼 ∗ G𝑡
𝑡𝑜𝑡𝑎𝑙

)
14: end for

Except for the space of training a multi-task network, MetaBal-
ance only requires extra space for𝑚𝑡𝑎𝑟 , 𝑟 , 𝛽 and𝑚𝑎𝑢𝑥,𝑖 ,...,𝑚𝑎𝑢𝑥,𝐾 ,



where the space complexity is O(3 + 𝐾) = O(1) (𝐾 is normally a
small number). Hence, MetaBalance does not significantly increase
the space complexity of multi-task networks training either.

5 EXPERIMENTS
In this section, we present our results and discussion toward an-
swering the following experimental research questions:
• RQ1: How well does MetaBalance improve the target task via
adapting the magnitudes of auxiliary gradients?
• RQ2:Howwell does MetaBalance perform compared to previous
auxiliary task adapting and multi-task balancing methods?
• RQ3: How well does MetaBalance collaborate with commonly
used optimizers such as Adam and Adagrad?
• RQ4: What is the impact of moving averages of gradient magni-
tudes in MetaBalance?

5.1 Experimental Setup
Following the auxiliary learning setting [18, 31], high test accuracy
is only required for a target task while the role of auxiliary tasks is
to assist the target task to achieve better test accuracy.

Datasets. IJCAI-20152 is a public dataset from IJCAI-15 contest,
which contains millions of anonymized users’ shopping logs in the
past 6months. UserBehavior-20173 is a public dataset of anonymized
user behaviors from Alibaba. The two datasets both contain users’
behaviors including click, add-to-cart, purchase and add-to-favorite.
The statistics of preprocessed datasets are summarized in Table 5 (in
Appendix). We treat purchase prediction as the target task and the
prediction of other behaviors as auxiliary tasks. We formulate the
prediction of each behavior like purchase as a binary classification
problem and negative samples are randomly selected.

Evaluation and metrics. In the evaluation, all items are ranked
according to the probability of being purchased by the user and the
top-K items are returned and measured against the ground-truth
items set of what users actually purchased, where we adopt three
metrics: Normalized Discounted Cumulative Gain (NDCG) [13] at
10 and 20 (N@10 and N@20), precision at 10 and 20 (P@10 and
P@20), and recall at 10 and 20 (R@10 and R@20).

Multi-task network. Because how to design a better multi-task
network is not the emphasis of this paper, we directly adopt the
combination of MLP layer and matrix factorization layer as the
shared bottom network, which is widely adopted for recommen-
dations in both academia [10] and industry like Google [6] and
Facebook [25]. We build MLP layer as the task-specific tower for
each task. The multi-task network is shown in Figure 6 (Appendix).

Baselines. We compare MetaBalance with 10 baseline methods.
Gradient direction-based methods that are designed for adapting
auxiliary tasks to improve the target task, which will be detailed in
Section A.1.1, including: GradSimilarity [7], GradSurgery [34],
OL-AUX [17]. Multi-Task balancing methods that treat all tasks
equally, which will be detailed in Section A.1.2, including: Un-
certainty [14], GradNorm [4], DWA [19], MTAdam [23] and
MGDA [27]. And three simple baselines. Single-Loss: we mask

2https://tianchi.aliyun.com/dataset/dataDetail?dataId=47&userId=1
3https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1

out the loss terms of auxiliary tasks and only use target task loss to
calculate gradients and update parameters in the model. Vanilla-
Multi: multiple loss terms are not balanced where the weights for
all loss terms are 1. Weights-Tuning: weights of loss terms are
obtained by random search.

Reproducibility. Due to limited space, the details of reproducibil-
ity is presented in Appendix (Section A.2), including dataset pre-
processing and split, implementation and training details.

5.2 RQ1: Improvement of Target Task via
Adapting Auxiliary Gradients

In this subsection, we discuss the impact of adapting auxiliary
gradient magnitudes on the target task’s performance.

Impact of Strategy Selection. We firstly study which strategy is
optimal for the two recommendation datasets. Note that we firstly
compare the three strategies over the validation dataset to choose
the best one and apply it on the test dataset. To be consistent with
other experimental results, we present the results of the three strate-
gies over the test dataset in Table 1, which reflects the same pattern
as the validation dataset. First of all, all three strategies significantly
outperform vanilla multi-task learning baseline (“Vanilla-Multi")
in UserBehavior-2017 and Strategy C significantly outperforms
the baseline in IJCAI-2015, which shows the effectiveness and ro-
bustness of MetaBalance. We observe the pattern “Strategy C >
Strategy A > Strategy B" across the two datasets, which shows
that strengthening the dominance of the target task (Strategy A) is
more important than enhancing the knowledge transferring from
weak auxiliary tasks (Strategy B) and combining the two strategies
together can achieve further improvements for the two datasets.
Therefore, we apply Strategy C in the rest of the experiments.

Impact of Relax Factor. Based on Strategy C, we further study
the impact of the relax factor. Figure 3 presents the varying of
NDCG@10 and Recall@10 as 𝑟 changes in UserBehavior-2017 dataset
(the similar observation is obtained in IJCAI-2015 dataset).

The worst NDCG@10 and Recall@10 are achieved when 𝑟 = 0
(Vanilla-Multi), where auxiliary gradients (∥G𝑡

𝑎𝑢𝑥,𝑖
∥) keep their

original magnitudes (i.e., not balanced as in Vanilla-Multi). In Figure
1(b), we observe that click task’s gradient magnitude (blue curve) is
much larger than ∥G𝑡𝑡𝑎𝑟 ∥ (red curve). Hence, the target task gradient
is probably dominated by the click task gradient, which explains
the low target task performance of Vanilla-Multi (see Table 2).

In contrast, 𝑟 = 1 in MetaBalance means that ∥G𝑡
𝑎𝑢𝑥,𝑖
∥ becomes

very close to ∥G𝑡𝑡𝑎𝑟 ∥ as shown in Figure 2(d), where the four curves
are twisted together. However, 𝑟 = 1 achieves suboptimal results
as shown in Figure 3, which demonstrates that the target task
performance might be negatively impacted by a large 𝑟 . A possible
reason is that most auxiliary gradients are reduced to be very similar
to the target gradient and hence the update of the shared parameters
becomes so small that it negatively affects the optimization.

Between the two extremes, Figure 2(b) (𝑟 = 0.2) and Figure 2(c)
(𝑟 = 0.7) balance the gradient magnitudes in a more moderate way
– getting ∥G𝑡

𝑎𝑢𝑥,𝑖
∥ closer to ∥G𝑡𝑡𝑎𝑟 ∥ but not exactly the same, where

𝑟 = 0.7 achieves the best performance as shown in Figure 3.

https://tianchi.aliyun.com/dataset/dataDetail?dataId=47&userId=1
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1


Table 1: Strategy Selection
Datasets UserBehavior-2017 IJCAI-2015

Metrics (%) N@10 R@10 P@10 N@10 R@10 P@10

Vanilla-Multi 0.820 1.284 0.291 0.844 0.965 0.437
Strategy A (strengthening the dominance of the target task) 0.948 1.487 0.316 0.858 0.963 0.424

Strategy B (enhancing the knowledge transferring from weak auxiliary tasks) 0.904 1.384 0.301 0.818 0.950 0.425
Strategy C (Adopting Strategy A and Strategy B together) 0.990 1.550 0.339 0.974 1.164 0.509

Table 2: Experimental Results
UserBehavior-2017 IJCAI-2015

Metric(%) N@10 R@10 P@10 N@20 R@20 P@20 N@10 R@10 P@10 N@20 R@20 P@20
Single-Loss 0.817 1.265 0.275 0.994 1.825 0.208 0.883 0.935 0.431 1.022 1.314 0.298
Vanilla-Multi 0.820 1.284 0.291 1.074 2.107 0.237 0.844 0.965 0.437 0.992 1.353 0.311
Weights-Tuning 0.909 1.378 0.326 1.165 2.195 0.263 0.866 1.013 0.445 1.037 1.448 0.330
Uncertainty 0.724 1.158 0.266 0.903 1.739 0.201 0.695 0.818 0.365 0.834 1.186 0.266
GradNorm 0.913 1.292 0.297 1.147 2.044 0.237 0.878 0.953 0.430 1.035 1.375 0.307
DWA 0.915 1.419 0.309 1.165 2.232 0.248 0.899 1.005 0.442 1.040 1.372 0.312
MGDA 0.845 1.328 0.292 1.075 2.058 0.237 0.809 1.104 0.439 1.104 1.673 0.350
MTAdam 0.869 1.382 0.305 1.112 2.153 0.247 0.880 1.015 0.463 1.071 1.525 0.348
GradSimilarity 0.923 1.444 0.308 1.186 2.270 0.255 0.817 0.977 0.427 1.025 1.529 0.336
GradSurgery 0.936 1.471 0.319 1.213 2.371 0.263 0.876 0.998 0.445 1.042 1.434 0.327
OL-AUX 0.931 1.471 0.311 1.162 2.224 0.243 0.804 0.921 0.413 0.950 1.312 0.295
MetaBalance 0.990∗ 1.550∗ 0.339∗ 1.258∗ 2.421∗ 0.269∗ 0.974∗ 1.164∗ 0.509∗ 1.134∗ 1.588 0.353

Improvement 5.77% 5.32% 3.96% 3.66% 2.09% 2.08% 8.34% 14.68% 10.01% 2.72% – 0.86%
∗We conduct a two-sided significant test between MetaBalance and the strongest baseline (highlighted by underscore), where * means the p-value is smaller
than 0.05.

0.80

1.00

1.20

1.40

1.60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(%) NDCG@10 Recall@10

Relax Factor r

Figure 3: Impact of relax factor 𝑟

5.3 RQ2: Comparison with Baseline Methods
Table 2 presents the experimental results and the improvement of
MetaBalance upon the strongest baseline in terms of each metric,
where MetaBalance significantly outperforms all baselines over
most of metrics on the two datasets.

MetaBalance vs. gradient direction-based methods. First,
we observe that MetaBalance outperforms GradSimilarity, OL-AUX
and GradSurgery, which are designed to boost the target task via
adapting auxiliary tasks. Remember that the same idea behind these
methods is that the less similar the direction of target gradient and
one auxiliary gradient is, the lower weight will be assigned to that
auxiliary task. While these gradient direction-based methods have
worse performance than MetaBalance over the testing dataset, in-
terestingly, they actually achieve better training loss thanMetaBal-
ance, where an example is shown in Figure 4, which demonstrates
they are more prone to overfitting than MetaBalance. Hence, this
observation reveals that auxiliary gradients that have dissimilar
directions with the target gradient might be sometimes helpful to

improve the generalization ability of the model, which is consistent
with the observations in the literature [5, 32]. For example, they
might help the target task to correct its direction of the optimization
to achieve a better generalization ability. MetaBalance keeps the
direction conflicts between the target gradient and the auxiliary
gradients but reduces the auxiliary gradients whose magnitudes
are much larger than the target gradient, which prevents the domi-
nance of auxiliary tasks and shows more robust performance for
personalized recommendations.

In addition, we are curious if MetaBalance can be enhanced when
it also considers using the direction similarity to adapt auxiliary
gradients. Specifically, in each training iteration, we first enlarge
or reduce auxiliary gradients via MetaBalance and then enlarge
or reduce them again according to one of the gradient direction-
based methods. The results in Table 3 show that the performance
of MetaBalance mostly drops after including the gradient direction-
based methods, which demonstrates that naively combining both
magnitude and direction-based approaches can interfere with each
another. We leave how to better consider both gradient magnitudes
and directions for adapting auxiliary tasks to help the target task
in the future work.

MetaBalance vs. multi-task balancing methods. Second, it
is understandable that Uncertainty, GradNorm, DWA are inferior to
MetaBalance because they have no special preference to the target
task. In DWA, the lower the loss decreases, the higher the weight
is assigned to that loss. In GradNorm, the target task gradient mag-
nitude is regularized to be similar to the average of all gradient



Figure 4: The training loss on UserBehavior-2017

magnitudes, which might not be the optimal magnitude for the
target task optimization. In Uncertainty, the higher the uncertainty
of the task dataset, the higher weight is assigned to that task loss.
We also compare MGDA [27] as one of the most representative
Pareto methods with MetaBalance. MGDA treats multi-task learn-
ing as multi-objective optimization problem and finds solutions
that satisfy Pareto optimality. In MGDA, the shared parameters are
only updated along common directions of the gradients for all tasks,
which might not be the best optimization direction for the target
task. Consequently, the target task is not guaranteed to be improved
the most among all tasks in Pareto optimal solutions like MGDA. In
contrast, MetaBalance is a specialized method designed for boost-
ing the target task. As Table 2 shows, MetaBalance significantly
outperforms MGDA over most of the metrics. Although MTAdam
is not originally designed for auxiliary learning, we let the target
task serve as the anchor task in MTAdam. In this way, MetaBalance
and MTAdam share the same core idea that the auxiliary gradient
magnitudes become closer to the target gradient. However, Table 2
shows that MetaBalance significantly outperforms MTAdam. The
possible reason might be the relax factor in MetaBalance that can
control the magnitude proximity, which makes MetaBalance more
flexible than MTAdam.

In addition, Vanilla-Multi is even inferior to Single-loss over
most of metrics on both datasets. This demonstrates that transfer
learning from auxiliary tasks is a non-trivial task – that might hurt
the performance of the target task rather than boosting it. After
that, Table 2 shows that Weights-Tuning, where the target task loss
normally has a higher weight assigned than the auxiliary tasks,
outperforms Vanilla-Multi over all metrics on both datasets. How-
ever, the performance of Weights-Tuning is significantly inferior to
MetaBalance. A possible reason is that the tuned weights are fixed
during the training and hence behave sub-optimally in adapting
auxiliary tasks.

To sum up, the results demonstrate that the three strategies and
the relax factor make MetaBalance a flexible and effective frame-
work to adapt auxiliary tasks from the perspective of gradient mag-
nitudes, which significantly improves the target task’s performance
and outperforms baselines.

Table 3: MetaBalance plus Gradient Direction-based Meth-
ods

Metric(%) N@10 R@10 P@10 N@20 R@20 P@20

MetaBalance (MB) 0.990 1.550 0.339 1.258 2.421 0.269
MB+GradientSimilarity 0.937 1.398 0.311 1.190 2.210 0.250
MB+GradientSurgery 0.925 1.585 0.329 1.167 2.351 0.258
MB+OL-AUX 0.898 1.374 0.308 1.158 2.224 0.248

0.5

0.7

0.9

1.1

N@10 R@10

(%) Adagrad Adagrad+MetaBalance

(a) Adagrad

0.5

0.7

0.9

1.1

1.3

N@10 R@10

(%) RMSProp RMSProp+MetaBalance

(b) RMSProp

Figure 5: Collaboration with Other Optimizers

5.4 RQ3: Collaboration with More Optimizers
As shown in Algorithm 1 and 2, MetaBalance balances the gradi-
ent magnitudes and these balanced gradients are used to update
shared parameters following the rules of optimizers. Results in
Table 2 have shown that MetaBalance can collaborate with Adam
well. We are also curious if MetaBalance can collaborate with other
popular optimizers – achieving higher performance for the target
task compared to the multi-task network that is trained without
MetaBalance. In Figure 5, we observe that two other widely used
optimizers – Adagrad [8] and RMSProp [28] – can also achieve
better performance via using the balanced gradients from Meta-
Balance. This result demonstrates that MetaBalance can flexibly
collaborate with commonly-used optimizers.

5.5 RQ4: Impact of Moving Averages of
Gradient Magnitudes

In Table 4, we compare the performance of MetaBalance with its
variant (“−Moving Average”) where the moving averages of mag-
nitude 𝑚𝑡𝑡𝑎𝑟 and 𝑚𝑡

𝑎𝑢𝑥,𝑖
(in Equation 5 and 6) are replaced with

the current magnitudes G𝑡𝑡𝑎𝑟 and G𝑡
𝑎𝑢𝑥,𝑖

at each iteration. We ob-
serve that the performance drops slightly on UserBehavior-2017
and drastically on IJCAI-2015 dataset. This result demonstrates the
moving averages of magnitudes benefits the optimization, which
takes into account the variance among all gradient magnitudes over
the training iterations.

Table 4: Ablation Study of Moving Average of Magnitude
Datasets UserBehavior-2017 IJCAI-2015

Metrics (%) N@10 R@10 P@10 N@10 R@10 P@10

MetaBalance 0.990 1.550 0.339 0.974 1.164 0.509
−Moving Average 0.983 1.513 0.325 0.835 0.956 0.426

6 CONCLUSION
In many personalized recommendation scenarios, the target task
can be improved via training auxiliary tasks alongside this target
task on a multi-task network. In this paper, we propose MetaBal-
ance to adapt auxiliary tasks to better assist the target task from the
perspective of gradient magnitude. Specifically, MetaBalance has
three adapting strategies, such that it not only protects the target
task from the dominance of auxiliary tasks but also avoids that one
or more auxiliary tasks are ignored. Moreover, auxiliary gradients
are balanced dynamically throughout the training and adaptively
for each part of the network. Our experiments show that MetaBal-
ance can be flexibly adapted to different scenarios and significantly
outperforms previous methods on two real-world datasets.



REFERENCES
[1] Trapit Bansal, David Belanger, and Andrew McCallum. 2016. Ask the gru: Multi-

task learning for deep text recommendations. In proceedings of the 10th ACM
Conference on Recommender Systems. 107–114.

[2] Walter Baur and Volker Strassen. 1983. The complexity of partial derivatives.
Theoretical computer science 22, 3 (1983), 317–330.

[3] Da Cao, Liqiang Nie, Xiangnan He, Xiaochi Wei, Shunzhi Zhu, and Tat-Seng
Chua. 2017. Embedding factorization models for jointly recommending items
and user generated lists. In SIGIR.

[4] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. 2018.
Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask
networks. In International Conference on Machine Learning. PMLR, 794–803.

[5] Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar,
Yuning Chai, and Dragomir Anguelov. 2020. Just pick a sign: Optimizing deep
multitask models with gradient sign dropout. arXiv preprint arXiv:2010.06808
(2020).

[6] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7–10.

[7] Yunshu Du, Wojciech M Czarnecki, Siddhant M Jayakumar, Mehrdad Farajtabar,
Razvan Pascanu, and Balaji Lakshminarayanan. 2018. Adapting auxiliary losses
using gradient similarity. arXiv preprint arXiv:1812.02224 (2018).

[8] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of machine learning
research 12, 7 (2011).

[9] Guibing Guo, Jie Zhang, and Neil Yorke-Smith. 2015. Trustsvd: Collaborative
filtering with both the explicit and implicit influence of user trust and of item
ratings. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 29.

[10] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWW.

[11] Yun He, Jianling Wang, Wei Niu, and James Caverlee. 2019. A Hierarchical Self-
Attentive Model for Recommending User-Generated Item Lists. In Proceedings of
the 28th ACM International Conference on Information and KnowledgeManagement.
ACM, 1481–1490.

[12] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z
Leibo, David Silver, and Koray Kavukcuoglu. 2016. Reinforcement learning with
unsupervised auxiliary tasks. arXiv preprint arXiv:1611.05397 (2016).

[13] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. TOIS (2002).

[14] Alex Kendall, Yarin Gal, and Roberto Cipolla. 2018. Multi-task learning using
uncertainty to weigh losses for scene geometry and semantics. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 7482–7491.

[15] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[16] Lukas Liebel and Marco Körner. 2018. Auxiliary tasks in multi-task learning.
arXiv preprint arXiv:1805.06334 (2018).

[17] Xingyu Lin, Harjatin Baweja, George Kantor, and David Held. 2019. Adaptive
Auxiliary Task Weighting for Reinforcement Learning. In Advances in Neural
Information Processing Systems. 4772–4783.

[18] Shikun Liu, Andrew Davison, and Edward Johns. 2019. Self-supervised generali-
sation with meta auxiliary learning. In Advances in Neural Information Processing
Systems. 1679–1689.

[19] Shikun Liu, Edward Johns, and Andrew J Davison. 2019. End-to-end multi-task
learning with attention. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 1871–1880.

[20] Yidan Liu, Min Xie, and Laks VS Lakshmanan. 2014. Recommending user gener-
ated item lists. In Recsys.

[21] Hao Ma, Haixuan Yang, Michael R Lyu, and Irwin King. 2008. Sorec: social
recommendation using probabilistic matrix factorization. In Proceedings of the
17th ACM conference on Information and knowledge management. 931–940.

[22] Xiao Ma, Liqin Zhao, Guan Huang, Zhi Wang, Zelin Hu, Xiaoqiang Zhu, and Kun
Gai. 2018. Entire space multi-task model: An effective approach for estimating
post-click conversion rate. In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval. 1137–1140.

[23] Itzik Malkiel and Lior Wolf. 2020. MTAdam: Automatic Balancing of Multiple
Training Loss Terms. arXiv preprint arXiv:2006.14683 (2020).

[24] TaylorMordan, Nicolas Thome, Gilles Henaff, andMatthieu Cord. 2018. Revisiting
multi-task learning with rock: a deep residual auxiliary block for visual detection.
Advances in neural information processing systems 31 (2018), 1310–1322.

[25] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-
Jean Wu, Alisson G Azzolini, et al. 2019. Deep learning recommendation model
for personalization and recommendation systems. arXiv preprint arXiv:1906.00091
(2019).

[26] Sebastian Ruder. 2017. An Overview of Multi-Task Learning in Deep Neural
Networks. arXiv (2017), arXiv–1706.

[27] Ozan Sener and Vladlen Koltun. 2018. Multi-task learning as multi-objective
optimization. arXiv preprint arXiv:1810.04650 (2018).

[28] T. Tieleman and G. Hinton. 2012. Lecture 6.5—RmsProp: Divide the gradient by
a running average of its recent magnitude. COURSERA: Neural Networks for
Machine Learning.

[29] Shubham Toshniwal, Hao Tang, Liang Lu, and Karen Livescu. 2017. Multitask
Learning with Low-Level Auxiliary Tasks for Encoder-Decoder Based Speech
Recognition. Proc. Interspeech 2017 (2017), 3532–3536.

[30] Trieu Trinh, Andrew Dai, Thang Luong, and Quoc Le. 2018. Learning Longer-
term Dependencies in RNNs with Auxiliary Losses. In International Conference
on Machine Learning. 4965–4974.

[31] Abhinav Valada, Noha Radwan, and Wolfram Burgard. 2018. Deep auxiliary
learning for visual localization and odometry. In 2018 IEEE international conference
on robotics and automation (ICRA). IEEE, 6939–6946.

[32] Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proes-
mans, Dengxin Dai, and Luc Van Gool. 2020. Multi-Task Learning for Dense
Prediction Tasks: A Survey. arXiv preprint arXiv:2004.13379 (2020).

[33] Xin Wang, Wenwu Zhu, and Chenghao Liu. 2019. Social recommendation with
optimal limited attention. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 1518–1527.

[34] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman,
and Chelsea Finn. 2020. Gradient surgery for multi-task learning. arXiv preprint
arXiv:2001.06782 (2020).

[35] Wei Zhang, Quan Yuan, Jiawei Han, and Jianyong Wang. 2016. Collaborative
multi-Level embedding learning from reviews for rating prediction.. In IJCAI,
Vol. 16. 2986–2992.



A APPENDIX
A.1 Relations of MetaBalance to Previous

Methods
In this section, we compare MetaBalance with previous methods.

A.1.1 Auxiliary Task Adapting Methods. These methods are specif-
ically designed for auxiliary learning such that auxiliary tasks are
adapted to better improve the target task. The common idea is that
if G𝑎𝑢𝑥,𝑖 is conflicting with G𝑡𝑎𝑟 from the perspective of direction,
G𝑎𝑢𝑥,𝑖 will be down-weighted or masked out. Compared with them,
MetaBalance is the first method that adapts auxiliary task to assist
the target task from the perspective of gradient magnitudes rather
than punishingG𝑎𝑢𝑥,𝑖 due to conflicting directions. The experimen-
tal results show that keeping inner-competition between the target
gradient and conflicting auxiliary gradients as MetaBalance does
improves the generalization ability of the model.
GradSimilarity [7] adapts auxiliary tasks via the gradient similar-
ity between G𝑡𝑎𝑟 and G𝑎𝑢𝑥,𝑖 . Specifically, if 𝑐𝑜𝑠𝑖𝑛𝑒 (G𝑡𝑎𝑟 ,G𝑎𝑢𝑥,𝑖 ) is
negative, then G𝑎𝑢𝑥,𝑖 will not be added to G𝑡𝑜𝑡𝑎𝑙 and hence will be
ignored in updating the shared layers.
GradSurgery4 [34] replaces G𝑎𝑢𝑥,𝑖 by its projection onto the nor-
mal plane of G𝑡𝑎𝑟 if 𝑐𝑜𝑠𝑖𝑛𝑒 (G𝑡𝑎𝑟 ,G𝑎𝑢𝑥,𝑖 ) is negative, unlike [7]
where G𝑎𝑢𝑥,𝑖 is just ignored. Formally, if 𝑐𝑜𝑠𝑖𝑛𝑒 (G𝑡𝑎𝑟 ,G𝑎𝑢𝑥,𝑖 ) is
negative, they let:

G𝑡𝑎𝑢𝑥,𝑖 = G𝑡𝑎𝑢𝑥,𝑖 −
G𝑡
𝑎𝑢𝑥,𝑖

· G𝑡𝑡𝑎𝑟
∥G𝑡𝑡𝑎𝑟 ∥2

· G𝑡𝑡𝑎𝑟 (7)

In this way, the conflict between G𝑡𝑎𝑟 and G𝑎𝑢𝑥,𝑖 can be alleviated.
OL-AUX (Oline learning for Auxiliary Losses) [17] defines the total
loss as L𝑡 = L𝑡𝑡𝑎𝑟 +

∑𝐾
𝑖=0𝑤

𝑡
𝑎𝑢𝑥,𝑖

· L𝑡
𝑎𝑢𝑥,𝑖

where𝑤𝑎𝑢𝑥,𝑖 is the weight
of L𝑎𝑢𝑥,𝑖 and V𝑡 (w) as the speed at which the target task loss
decreases at the 𝑡-th iteration andw = [𝑤1, ...,𝑤𝐾 ]𝑇 . OL-AUX seek
to optimize the N-step decrease of the target task w.r.t w:

V𝑡,𝑡+𝑁 (w) = L𝑡+𝑁𝑡𝑎𝑟 − L𝑡𝑡𝑎𝑟 (8)

With some approximations, they find that ∀𝑖 = 1, ..., 𝐾 :

∇𝑤𝑎𝑢𝑥,𝑖V𝑡,𝑡+𝑁 (𝑤𝑎𝑢𝑥,𝑖 ) = −
𝑁−1∑
𝑗=0
(G𝑡+𝑗𝑡𝑎𝑟 )

𝑇G𝑡+𝑗
𝑎𝑢𝑥,𝑖

(9)

Then, w ← w − 𝛽 · ∇wV𝑡,𝑡+𝑁 (w) such that the speed at which
L𝑡𝑎𝑟 decreases could be maximized.

A.1.2 Multi-Task Balancing Methods. In contrast to the auxiliary
learning-specific methods, these multi-task balancing methods are
for general learning where all tasks are treated equally important.
Although they have no preference to the target task, they are valid
baselines because MetaBalance is specifically for auxiliary learning
and is supposed to outperform them. For convenience, we let 𝑗
denotes the index of any task in this subsection, where 𝑗 = 0, 1, ..., 𝐾 .
Let𝑤 𝑗 be the weight of the 𝑗-th task loss L 𝑗 .
Uncertainty [14] assumes that the higher the uncertainty of task
data is, the lower the weight of this task loss should be assigned.

4GradSurgery is originally for balancing multi-task learning. We can easily apply
GradSurgery for auxiliary learning by specifying a task as the target task and the
others as the auxiliary tasks

They design a learnable parameter 𝜎 𝑗 to model the uncertainty for
each task. Specifically, they optimize the model parameters and 𝜎 𝑗
to minimize the following objective:

L =

𝐾∑
𝑗=0

1
𝜎2
𝑗

L 𝑗 +
𝐾∑
𝑗=0

𝑙𝑜𝑔𝜎 𝑗 (10)

Minimizing the lossL w.r.t. 𝜎 𝑗 can automatically balanceL 𝑗 during
training, where increasing 𝜎 𝑗 reduces the weight for task loss L 𝑗 .
GradNorm [4] encourages ∥G𝑡

𝑗
∥ to be the mean of all ∥G𝑡

𝑗
∥, 𝑗 =

0, ..., 𝐾 . In this way, all tasks could have a similar impact on the
updating of shared-parameters. In particular, they minimize the
following two objectives:

L𝑡 =
𝐾∑
𝑗=0

𝑤𝑡𝑗 · L
𝑡
𝑗 (11)

L𝑡𝑛𝑜𝑟𝑚𝐿𝑜𝑠𝑠 =
𝐾∑
𝑗=0

𝐿1𝑁𝑜𝑟𝑚(∥𝑤𝑡𝑗 · G
𝑡
𝑗 ∥ − ∥G𝑡 ∥ · [𝑟

𝑡
𝑗 ]
𝛼 ) (12)

In each iteration, L𝑡 is firstly optimized w.r.t model parameters
\ (not including𝑤𝑡

𝑗
) to obtain G𝑡

𝑗
and the L𝑡

𝑛𝑜𝑟𝑚𝐿𝑜𝑠𝑠
is optimized

w.r.t𝑤𝑡
𝑗
. In the next iteration, updated𝑤𝑡

𝑗
can balanceL𝑡

𝑗
. Moreover,

𝑟𝑡
𝑗
is to model the pace at which different tasks are learned, where

𝑟𝑡
𝑗
= 𝑝𝑡

𝑗
/𝐸 [𝑝𝑡

𝑗
] and 𝑝𝑡

𝑗
= L𝑡

𝑗
/L0

𝑗
. And 𝛼 is a hyper-parameter which

sets the strength of forcing tasks back to a common training rate.
DWA (DynamicWeight Averaging) [19] balances the pace at which
tasks are learned. In DWA,𝑤𝑡

𝑗
is set as:

𝑤𝑡𝑗 =
𝑁 · 𝑒𝑥𝑝 (𝑝𝑡−1

𝑗
/𝑇 )∑

𝑛 𝑒𝑥𝑝 (𝑝𝑡−1𝑛 /𝑇 )
, 𝑝𝑡−1𝑗 =

L𝑡−1
𝑗

L𝑡−2
𝑗

(13)

where 𝑁 is the number of tasks and temperature 𝑇 controls the
softness of the task weighting in the softmax function. 𝑝 𝑗 estimates
the relative descending rate of L 𝑗 . When L 𝑗 decreases at a slower
rate compared with other task losses,𝑤 𝑗 will be increased.
MGDA (Multiple-Gradient Descent Algorithm) [27] treats multi-
task learning as multi-objective optimization problem and finds
solutions that satisfies Pareto optimality – as long as there is a
common direction along which losses can be decreased, we have
not reached a Pareto optimal point yet. Since the shared parameters
are only updated along common directions of the task-specific
gradients, MGDA has no preference on a particular task.
MTAdam [23] is an Adam-based optimizer that balances gradient
magnitudes and then update parameters according to the rule of
Adam [15]. Following MTAdam, we also directly manipulate the
gradient magnitudes, instead of weighting task losses like Uncer-
tainty [14], GradNorm [4] and DWA [19]. MetaBalance differs from
MTAdam in the following aspects:
• MTAdam lets all gradient magnitudes be similar to that of the
first loss (not necessarily the target loss) while MetaBalance has
three strategies that can flexibly encourage auxiliary gradients
to better help the target task optimization.
• ∥G𝑡

𝑎𝑢𝑥,𝑖
∥ can only be very similar to ∥G𝑡𝑡𝑎𝑟 ∥ in MTAdam while

MetaBalance can adjust the proximity of ∥G𝑡
𝑎𝑢𝑥,𝑖
∥ to ∥G𝑡𝑡𝑎𝑟 ∥



Table 5: Statistics of Preprocessed Datasets
Target Task Auxiliary Tasks

Dataset #User #Item #Buy Density of Buy #Add-to-Cart #Click #Add-to-Favorite

IJCAI-2015 19,839 50,973 390,600 0.039% 1,693 2,025,910 224,279
UserBehavior-2017 16,089 25,813 89,404 0.022% 53,245 394,246 19,585

via the relax factor, which is vital for adapting MetaBalance to
different scenarios.
• MetaBalance is an auxiliary task adapting algorithm that can
collaborate with most optimizers like Adagrad or RMSprop to
update parameters, whereas MTAdam is specially designed for
Adam-based optimizers only.

A.2 Reproducibility of Experiments
The code of our approach can be found at here.5

Dataset Preprocessed and Split. IJCAI-2015 is preprocessed by
filtering out users who purchase fewer than 20 unique items and
items which are purchased by fewer than 10 unique users. We
omit add-to-cart as an auxiliary task in IJCAI-2015 because this
behavior only has 1,693 feedbacks. For UserBehavior-2017, we filter
out users who purchase fewer than 10 unique items and items
which are purchased by fewer than 10 unique users. The datasets
are summarized in Table 5. We randomly split purchase interactions
into a training set (70%), validation set (10%) and testing set (20%).
For the interactions of auxiliary tasks like add-to-cart, we merge
them into the training set. Since auxiliary interactions like add-to-
cart are highly related to purchase interaction, to prevent possible
information leakage, we remove user-item pairs from the auxiliary
interactions if these pairs appear in the validation set and testing
set of the purchase interactions.

Implementation and Training Details.We implement MetaBal-
ance, Uncertainty, DWA, GradSimilarity, GradSurgery and OL-AUX
via Pytorch. The code of GradNorm is from this repo6 and the code
of MTAdam is from the authors.7 All experiments are conducted on
an Nvidia GeForce GTX Titan X GPU with 12 GB memory. Cross-
entropy loss is adopted for each task and Adam [15] is the optimizer
with batch size of 256 and learning rate of 0.001.

Hyper-parameters. All hyper-parameters are carefully tuned in
the validation set, where early stopping strategy is applied such that
we terminate training if validation performance does not improve
over 20 epochs. In the multi-task recommendation network, the size
of user and item embeddings is 64, the size of the shared MLP layers
is {32, 16, 8} and the size of the task-specific MLP layers is {64, 32}. To
prevent overfitting, dropout with rate of 0.5 is applied for each layer
and we also use weight decay with rate of e-7. For MetaBalance, 𝑟
is selected from 0.1, 0.2, ...0.9 and 0.7 is the best for UserBehavior-
2017 and 0.9 is the best for IJCAI-2015. For MTAdam, 𝛽1, 𝛽2, 𝛽3 are
respectively set as 0.9, 0.999 and 0.9. For DWA, T is set as 2 and we
calculate the mean of losses in very 5 iterations on IJCAI-2015 and
in very 10 iterations on UserBehavior-2017. For GradNorm, 𝛼 is set

5https://github.com/facebookresearch/MetaBalance
6https://github.com/hosseinshn/GradNorm
7https://github.com/ItzikMalkiel/MTAdam

User MF
Embedding

User MLP
Embedding

Matrix Factorization Layer

Item MF
Embedding

Item MLP
Embedding

MLP Layer

MLP Layer

Concatenation Layer

MLP Layer MLP Layer

Prediction
of Purchase

Prediction
of Click

Prediction of
add-to-favorite 

Shared
Parameters

ConcatenationElement-wise
Product

User One-hot Vector Item One-hot Vector

MLP Layer

Prediction of
add-to-cart 

Figure 6: Multi-Task recommendation network in the eval-
uation. The shared bottom layers is the combination of
MLP layer and matrix factorization layer, which is widely
adopted for recsys in both academia [10] and industry [6, 25]

as 0.75 on IJCAI-2015 and 0 on UserBehavior-2017. For OL-AUX, 𝛽
is set as 0.1 on IJCAI-2015 and 1 on UserBehavior-2017.

https://github.com/facebookresearch/MetaBalance
https://github.com/hosseinshn/GradNorm
https://github.com/ItzikMalkiel/MTAdam

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Proposed Method
	4.1 Adapting Auxiliary Gradient Magnitudes
	4.2 Adjusting Magnitude Proximity
	4.3 Time and Space Complexity Analysis

	5 Experiments
	5.1 Experimental Setup
	5.2 RQ1: Improvement of Target Task via Adapting Auxiliary Gradients
	5.3 RQ2: Comparison with Baseline Methods
	5.4 RQ3: Collaboration with More Optimizers
	5.5 RQ4: Impact of Moving Averages of Gradient Magnitudes

	6 Conclusion
	References
	A Appendix
	A.1 Relations of MetaBalance to Previous Methods
	A.2 Reproducibility of Experiments


