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Abstract

Despite renewed interest in emergent language simulations with neural networks,
little is known about the basic properties of the induced code, and how they
compare to human language. One fundamental characteristic of the latter, known
as Zipf’s Law of Abbreviation (ZLA), is that more frequent words are efficiently
associated to shorter strings. We study whether the same pattern emerges when two
neural networks, a “speaker” and a “listener”, are trained to play a signaling game.
Surprisingly, we find that networks develop an anti-efficient encoding scheme,
in which the most frequent inputs are associated to the longest messages, and
messages in general are skewed towards the maximum length threshold. This anti-
efficient code appears easier to discriminate for the listener, and, unlike in human
communication, the speaker does not impose a contrasting least-effort pressure
towards brevity. Indeed, when the cost function includes a penalty for longer
messages, the resulting message distribution starts respecting ZLA. Our analysis
stresses the importance of studying the basic features of emergent communication
in a highly controlled setup, to ensure the latter will not depart too far from human
language. Moreover, we present a concrete illustration of how different functional
pressures can lead to successful communication codes that lack basic properties of
human language, thus highlighting the role such pressures play in the latter.

1 Introduction

There is renewed interest in simulating language emergence among neural networks that interact
to solve a task, motivated by the desire to develop automated agents that can communicate with
humans [e.g., Havrylov and Titov, 2017, Lazaridou et al., 2017, 2018, Lee et al., 2018]. As part
of this trend, several recent studies analyze the properties of the emergent codes [e.g., Kottur et al.,
2017, Bouchacourt and Baroni, 2018, Evtimova et al., 2018, Lowe et al., 2019, Graesser et al., 2019].
However, these analyses generally consider relatively complex setups, when very basic characteristics
of the emergent codes have yet to be understood. We focus here on one such characteristic, namely
the length distribution of the messages that two neural networks playing a simple signaling game
come to associate to their inputs, in function of input frequency.

In his pioneering studies of lexical statistics, George Kingsley Zipf noticed a robust trend in human
language that came to be known as Zipf’s Law of Abbreviation (ZLA): There is an inverse (non-
linear) correlation between word frequency and length [Zipf, 1949, Teahan et al., 2000, Sigurd et al.,
2004, Strauss et al., 2007]. Assuming that shorter words are easier to produce, this is an efficient
encoding strategy, particularly effective given Zipf’s other important discovery that word distributions
are highly skewed, following a power-law distribution. Indeed, in this way language approaches
an optimal code in information-theoretic terms [Cover and Thomas, 2006]. Zipf, and many after
him, have thus used ZLA as evidence that language is shaped by functional pressures toward effort
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minimization [e.g., Piantadosi et al., 2011, Mahowald et al., 2018, Gibson et al., 2019]. However,
others [e.g., Mandelbrot, 1954, Miller et al., 1957, Ferrer i Cancho and del Prado Martín, 2011, del
Prado Martín, 2013] noted that some random-typing distributions also respect ZLA, casting doubts
on functional explanations of the observed pattern.

We study a Speaker network that gets one out of 1K distinct one-hot vectors as input, randomly
drawn from a power-law distribution (so that frequencies are extremely skewed, like in natural
language). Speaker transmits a variable-length message to a Listener network. Listener outputs
a one-hot vector, and the networks are rewarded if the latter is identical to the input. There is no
direct supervision on the message, so that the networks are free to create their own “language”.
The networks develop a successful communication system that does not exhibit ZLA, and is indeed
anti-efficient, in the sense that all messages are long, and the most frequent inputs are associated to
the longest messages. Interestingly, a similar effect is observed in artificial human communication
experiments, in conditions in which longer messages do not demand extra effort to speakers, so that
they are preferred as they ease the listener discrimination task [Kanwal et al., 2017]. Our Speaker
network, unlike humans, has no physiological pressure towards brevity [?], and our Listener network
displays an a priori preference for longer messages. Indeed, when we penalize Speaker for producing
longer strings, the emergent code starts obeying ZLA. We examine the implications of our findings in
the Discussion.

2 Setup

2.1 The game

We designed a variant of the Lewis signaling game [Lewis, 1969] in which the input distribution
follows a power-law distribution. We think of these inputs as a vocabulary of distinct abstract word
types, to which the agents will assign specific word forms while learning to play the game. We
leave it to further research to explore setups in which word type and form distributions co-evolve [?].
Importantly, our basic inefficient encoding result also holds when the inputs are uniformly distributed
(Appendix A.5). Formally, the game proceeds as follows:

1. The Speaker network receives one of 1K distinct one-hot vectors as input i. Inputs are not
drawn uniformly, but, like in natural language, from a power-law distribution. That is, the
rth most frequent input ir has probability 1

r×
∑1000

k=1
1
k

to be sampled, with r ∈ J1, ..., 1000K.

Consequently, the probability of sampling the 1st input is 0.13 while the probability of
sampling the 1000th one is 1000 times lower.

2. Speaker chooses a sequence of symbols from its alphabet A = {s1, s2..., sa−1, eos} of size
|A| = a to construct a message m, terminated as soon as Speaker produces the ‘end-of-
sequence’ token eos. If Speaker has not yet emitted eos at max_len− 1, it is stopped and
eos is appended at the end of its message (so that all messages are suffixed with eos and no
message is longer than max_len).

3. The Listener network consumes m and outputs î.

4. The agents are successful if i = î, that is, Listener reconstructed Speaker’s input.

The game is implemented using the EGG toolkit [Kharitonov et al., 2019], and the code can be found
at https://github.com/facebookresearch/EGG/tree/master/egg/zoo/channel.

2.2 Architectures

As standard in current emergent-language simulations [e.g., Lazaridou et al., 2018], both agents
are implemented as single-layer LSTMs [Hochreiter and Schmidhuber, 1997]. Speaker’s input is a
1K-dimensional one-hot vector i, and the output is a sequence of symbols, defining message m. This
sequence is generated as follows. A linear layer maps the input vector into the initial hidden state
of Speaker’s LSTM cell. Next, a special start-of-sequence symbol is fed to the cell. At each step of
the sequence, the output layer defines a Categorical distribution over the alphabet. At training time,
we sample from this distribution. During evaluation, we select the symbol greedily. Each selected
symbol is fed back to the LSTM cell. The dimensionalities of the hidden state vectors are part of the
hyper-parameters we explore (Appendix A.1). Finally, we initialize the weight matrices of our agents
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with a uniform distribution with support in [− 1√
input_size , 1√

input_size ], where input_size is the
dimensionality of the matrix input (Pytorch default initialization).

Listener consumes the entire message m, including eos. After eos is received, Listener’s hidden
state is passed through a fully-connected layer with softmax activation, determining a Categorical
distribution over 1K indices. This distribution is used to calculate the cross-entropy loss w.r.t. the
ground-truth input, i.

The joint Speaker-Listener architecture can be seen as a discrete auto-encoder [Liou et al., 2014].

2.3 Optimization

The architecture is not directly differentiable, as messages are discrete-valued. In language emergence,
two approaches are dominantly used: Gumbel-Softmax relaxation [Maddison et al., 2016, Jang et al.,
2016] and REINFORCE [Williams, 1992]. We also experimented with the approach of Schulman et al.
[2015], combining REINFORCE and stochastic backpropagation to estimate gradients. Preliminary
experiments showed that the latter algorithm (to be reviewed next) results in the fastest and most
stable convergence, and we used it in all the following experiments. However, the main results we
report were also observed with the other algorithms, when successful.

We denote by θs and θl the Speaker and Listener parameters, respectively. L is the cross-entropy loss,
that takes the ground-truth one-hot vector i and Listener’s output L(m) distribution as inputs. We
want to minimize the expectation of the cross-entropy loss E L(i, L(m)), where the expectation is
calculated w.r.t. the joint distribution of inputs and message sequences. The gradient of the following
surrogate function is an unbiased estimate of the gradient∇θs∪θl

E L(i, L(m)):

E [L(i, L(m;θl)) + ({L(i, L(m;θl)} − b) logPs(m|θs)] (1)

where {·} is the stop-gradient operation, Ps(m|θs) is the probability of producing the sequence m
when Speaker is parameterized with vector θs, and b is a running-mean baseline used to reduce the
estimate variance without introducing a bias. To encourage exploration, we also apply an entropy
regularization term [Williams and Peng, 1991] on the output distribution of the speaker agent.

Effectively, under Eq. 1, the gradient of the loss w.r.t. the Listener parameters is found via conventional
backpropagation (the first term in Eq. 1), while Speaker’s gradient is found with a REINFORCE-like
procedure (the second term). Once the gradient estimate is obtained, we feed it into the Adam [Kingma
and Ba, 2014] optimizer. We explore different learning rate and entropy regularization coefficient
values (Appendix A.1).

We train agents for 2500 episodes, each consisting of 100 mini-batches, in turn including 5120 inputs
sampled from the power-law distribution with replacement. After training, we present to the system
each input once, to compute accuracy by giving equal weight to all inputs, independently of amount
of training exposure.

2.4 Reference distributions

As ZLA is typically only informally defined, we introduce 3 reference distributions that display
efficient encoding and arguably respect ZLA.

2.4.1 Optimal code

Based on standard coding theory [Cover and Thomas, 2006], we design an optimal code (OC)
guaranteeing the shortest average message length given a certain alphabet size and the constraint that
all messages must end with eos. The shortest messages are deterministically associated to the most
frequent inputs, leaving longer ones for less frequent ones. The length of the message associated to
an input is determined as follows. Let A = {s1, s2...sa−1, eos} be the alphabet of size a and ir be
the rth input when ranked by frequency. Then ir is mapped to a message of length

lir = min{n :

n∑
k=1

(a− 1)k−1 ≥ r} (2)
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For instance, if a = 3, then there is only one message of length 1 (associated to the most frequent
referent), 2 of length 2, 4 of length 3 etc.1 Section 2 of Ferrer i Cancho et al. [2013] presents a proof
of how this encoding is the maximally efficient one.

2.4.2 Monkey typing

Natural languages respect ZLA without being as efficient as OC. It has been observed that Monkey
typing (MT) processes, whereby a monkey hits random typewriter keys including a space character,
produce word length distributions remarkably similar to those attested in natural languages [Simon,
1955, Miller et al., 1957]. We thus adapt a MT process to our setup, as a less strict benchmark for
network efficiency.2

We first sample an input without replacement according to the power-law distribution, then generate
the message to be associated with it. We repeat the process until all inputs are assigned a unique
message. The message is constructed by letting a monkey hit the a keys of a typewriter uniformly
at random (p = 1/a), subject to these constraints: (i) The message ends when the monkey hits eos.
(ii) A message cannot be longer than a specified length max_len. If the monkey has not yet emitted
eos at max_len− 1, it is stopped and eos is appended at the end of the message. (iii) If a generated
message is identical to one already used, it is rejected and another is generated.

For a given length l, there are only (a− 1)l−1 different messages. Moreover, for a random generator
with the max_len constraint, the probability of generating a message of length l is:

Pl = p× (1− p)l−1, if l < max_len and Pmax_len = (1− p)max_len−1 (3)

From these calculations, we derive two qualitative observations about MT. First, as we fix max_len
and increase a (decrease p = 1/a), more generated messages will reach max_len. Second, when
a is small and max_len is large (as in early MT studies where max_len was infinite), a ZLA-like
distribution emerges, due to the finite number of different messages of length l. Indeed, for any l
less than max_len, Pl strictly decreases as l grows. Then, for given inputs, the monkey is likely
to start by generating messages of the most probable length (that is, 1). As we exhaust all unique
messages of this length, the process starts generating messages of the next probable length (i.e., 2)
and so on. Figure A.1 in Appendix A.2 confirms experimentally that our MT distribution respects
ZLA for a ≤ 10 and various max_len.

2.4.3 Natural language

We finally consider word length distributions in natural language corpora. We used pre-compiled
English, Arabic, Russian and Spanish frequency lists from http://corpus.leeds.ac.uk/serge/,
extracted from corpora of internet text containing between 200M (Russian) and 16M words (Arabic).
For direct comparability with input set cardinality in our simulations, we only looked at the distribution
of the top 1000 most frequent words, after merging lower- and upper-cased forms, and removing
words containing non-alphabetical characters. The resulting word frequency distributions obeyed
power laws with exponents between−0.81 and−0.92 (we used−1 to generate our inputs). Alphabet
sizes are as follows: 30 (English), 31 (Spanish), 47 (Russian), 59 (Arabic). These are larger than
normative sizes, as unfiltered Internet text will occasionally include foreign characters (e.g., accented
letters in English text). Contrary to previous reference distributions, we cannot control max_len and
alphabet size. We hence compare human and network distributions only in the adequate settings. In
the main text, we present results for the languages with the smallest (English) and largest (Arabic)
alphabets. The distributions of the other languages are comparable, and presented in Appendix A.3.

3 Experiments

3.1 Characterizing the emergent encoding

We experiment with alphabet sizes a ∈ [3, 5, 10, 40, 1000]. We chose mainly small alphabet sizes to
minimize a potential bias in favor of long messages: For high a, randomly generating long messages
becomes more likely, as the probability of outputting eos at random becomes lower. At the other

1There is always only one message of length 1 (that is, eos), irrespective of alphabet size.
2No actual monkey was harmed in the definition of the process.
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extreme, we also consider a = 1000, where the Speaker could in principle successfully communicate
using at most 2-symbol messages (as Speaker needs to produce eos). Finally, a = 40 was chosen to
be close to the alphabet size of the natural languages we study (mean alphabet size: 41.75).

After fixing a, we choose max_len so that agents have enough capacity to describe the whole input
space (|I| = 1000). For a given a and max_len, Speaker cannot encode more inputs than the message
space size Mmax_len

a =
∑max_len

j=1 (a− 1)j−1. We experiment with max_len ∈ [2, 6, 11, 30]. We
couldn’t use higher values because of memory limitations. Furthermore, we studied the effect of
D =

Mmax_len
a

|I| . While making sure that this ratio is at least 1, we experiment with low values, where
Speaker would have to use nearly the whole message space to successfully denote all inputs. We also
considered settings with significantly larger D, where constructing 1K distinct messages might be an
easier task.

We train models for each (max_len, a) setting and agent hyperparameter choice (4 seeds per choice).
We consider runs successful if, after training, they achieve an accuracy above 99% on the full input
set (i.e., less than 10 miss-classified inputs). As predicted, the higher D is, the more accurate the
agents become. Indeed, agents need much larger D than strictly necessary in order to converge. We
select for further analysis only those (max_len, a) choices that resulted in more than 3 successful
runs (mean number of successful runs across the reported configurations is 25 out of 48). Moreover,
we focus here on configurations with max_len = 30, as the most comparable to natural language.3
We present results for all selected configurations (confirming the same trends) in Appendix A.4.

Figure 1 shows message length distribution (averaged across all successful runs) in function of
input frequency rank, compared to our reference distributions. The MT results are averaged across
25 different runs. We show the Arabic and English distributions in the plot containing the most
comparable simulation settings (30, 40).

Across configurations, we observe that Speaker messages greatly depart from ZLA. There is a clear
general preference for longer messages, that is strongest for the most frequent inputs, where Speaker
outputs messages of length max_len. That is, in the emergent encoding, more frequent words are
longer, making the system obey a sort of “anti-ZLA” (see Appendix A.6 for confirmation that this
anti-efficient pattern is statistically significant). Consequently, the emergent language distributions
are well above all reference distributions, except for MT with a = 1000, where the large alphabet size
leads to uniformly long words, for reasons discussed in Section 2.4.2. Finally, the lack of efficiency in
emergent language encodings is also observed when inputs are uniformly distributed (see Appendix
A.5).

Although some animal signing systems disobey ZLA, due to specific environmental constraints [e.g.,
Heesen et al., 2019], a large survey of human and animal communication did not find any case of
significantly anti-efficient systems [Ferrer i Cancho et al., 2013], making our finding particularly
intriguing.
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(d)max_len=30, a=1000

emergent messages monkey typing optimal coding English Arabic

Figure 1: Mean message length across successful runs as a function of input frequency rank, with
reference distributions. For readability, we smooth natural language distributions by reporting the
sliding average of 10 consecutive lengths.

3Natural languages have no rigid upper bound on length, and 30 is the highest max_len we were able to train
models for. Qualitative inspection of the respective corpora suggest that 30 is anyway a reasonable “soft” upper
bound on word length in the languages we studied (longer strings are mostly typographic detritus).
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3.2 Causes of anti-efficient encoding

We explore the roots of anti-efficiency by looking at the behavior of untrained Speakers and Listeners.
Earlier work conjectured that ZLA emerges from the competing pressures to communicate in a
perceptually distinct and articulatorily efficient manner [Zipf, 1949, Kanwal et al., 2017]. For our
networks, there is a clear pressure from Listener in favour of ease of message discriminability , but
Speaker has no obvious reason to save on “articulatory” effort. We thus predict that the observed
pattern is driven by a Listener-side bias.

3.2.1 Untrained Speaker behavior

For each i drawn from the power-law distribution without replacement, we get a message m from
90 distinct untrained Speakers (30 speakers for each hidden size in [100, 250, 500]). We experiment
with 2 different association processes. In the first, we associate the first generated m to i, irrespective
of whether it was already associated to another input. In the second, we keep generating a m for i
until we get a message that was not already associated to a distinct input. The second version is closer
to the MT process (see Section 2.4.2). Moreover, message uniqueness is a reasonable constraint,
since, in order to succeed, Speakers need first of all to keep messages denoting different inputs apart.

Figure 2 shows that untrained Speakers have no prior toward outputting long sequences of symbols.
Precisely, from Figure 2 we see that the untrained Speakers’ average message length coincides with
the one produced by the random process defined in Eq. 3 where p = 1

a .4 In other words, untrained
Speakers are equivalent to a random generator with uniform probability over symbols.5 Consequently,
when imposing message uniqueness, non-trained Speakers become identical to MT. Hence, Speakers
faced with the task of producing distinct messages for the inputs, if vocabulary size is not too large,
would naturally produce a ZLA-obeying distribution, that is radically altered in joint Speaker-Listener
training.
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(a) max_len = 30, a = 3
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(b) max_len = 30, a = 5
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(c) max_len = 30, a = 40

untrained Speaker with uniqueness constraint untrained Speaker monkey typing

Figure 2: Average length of messages by input frequency rank for untrained Speakers, compared to
MT. See Appendix A.7 for more settings.

3.2.2 Untrained Listener behavior

Having shown that untrained Speakers do not favor long messages, we ask next if the emergent
anti-efficient language is easier to discriminate by untrained Listeners than other encodings. To
this end, we compute the average pairwise L2 distance of the hidden representations produced by
untrained Listeners in response to messages associated to all inputs.6 Messages that are further apart
in the representational space of the untrained Listener should be easier to discriminate. Thus, if
Speaker associates such messages to the inputs, it will be easier for Listener to distinguish them.

4Note that we did not use the uniqueness-of-messages constraint to define Pl.
5We verified that indeed untrained Speakers have uniform probability over the different symbols.
6Results are similar if looking at the softmax layer instead.
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Specifically, we use 50 distinct untrained Listeners with 100-dimensional hidden size.7 We test
4 different encodings: (1) emergent messages (produced by trained Speakers) (2) MT messages
(25 runs) (3) OC messages and (4) human languages. Note that MT is equivalent to untrained
Speaker, as their messages share the same length and alphabet distribution (see Section 3.2.1). We
study Listeners’ biases with max_len = 30 while varying a as messages are more distinct from
reference distributions in that case (see Figure A.3 in Appendix A.4). Results are reported in Figure
3. Representations produced in response to the emergent messages have the highest average distance.
MT only approximates the emergent language for a = 1000, where, as seen in Figure 1 above, MT is
anti-efficient. The trained Speaker messages are hence a priori easier for non-trained Listeners. The
length of these messages could thus be explained by an intrinsic Listener’s bias, as conjectured above.
Also, interestingly, natural languages are not easy to process by Listeners. This suggests that the
emergence of “natural” languages in LSTM agents is unlikely, without imposing ad-hoc pressures.
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Arabic

Figure 3: Average pairwise distance between messages’ representation in Listener’s hidden space,
across all considered non-trained Listeners. Vertical lines mark standard deviations across Listeners.

3.2.3 Adding a length minimization pressure

We next impose an artificial pressure on Speaker to produce short messages, to counterbalance
Listener’s preference for longer ones. Specifically, we add a regularizer disfavoring longer messages
to the original loss:

L′(i, L(m),m) = L(i, L(m)) + α× |m| (4)

where L(i, L(m)) is the cross-entropy loss used before, |.| denotes length, and α is a hyperparameter.
The non-differentiable term α×|m| is handled seamlessly as it only depends on Speaker’s parameters
θs (which specify the distribution of the messages m), and the gradient of the loss w.r.t. θs is
estimated via a REINFORCE-like term (Eq. 1). Figure 4 shows emergent message length distribution
under this objective, comparing it to other reference distributions in the most human-language-like
setting: (max_len=30, a=40). The same pattern is observed elsewhere (see Appendix A.8, that also
evaluates the impact of the α hyperparameter). The emergent messages clearly follow ZLA. Speaker
now assigns messages of ascending length to the 40 most frequent inputs. For the remaining ones, it
chooses messages with relatively similar, but notably shorter, lengths (always much shorter than MT
messages). Still, the encoding is not as efficient as the one observed in natural language (and OC).
Also, when adding length regularization, we noted a slower convergence, with a smaller number of
successful runs, that further diminishes when α increases.

3.3 Symbol distributions in the emergent code

We conclude with a high-level look at what the long emergent messages are made of. Specifically,
we inspect symbol unigram and bigram frequency distributions in the messages produced by trained
Sender in response to the 1K inputs (the eos symbol is excluded from counts). For direct compa-
rability with natural language, we report results in the (max_len=30,a=40) setting, but the patterns
are general. We observe in Figure 5(a) that, even if at initialization Speaker starts with a uniform
distribution over its alphabet (not shown here), by end of training it has converged to a very skewed
one. Natural languages follow a similar trend, but their distributions are not nearly as skewed (see

7We fix this value because, unlike for Speaker, it has considerable impact on performance, with 100 being
the preferred setting.

7



0 200 400 600 800 1000
inputs sorted by frequency

0

5

10

15

20

25

30

m
es

sa
ge

s l
en

gt
h

emergent messages
emergent messages / length pressure

monkey typing
optimal coding

English
Arabic

Figure 4: Mean length of messages across successful runs as a function of input frequency rank for
max_len = 30, a = 40, α = 0.5. Natural language distributions are smoothed as in Fig. 1.

Figure 8(a) in Appendix A.10 for entropy analysis). We then investigate message structure by looking
at symbol bigram distribution. To this end, we build 25 randomly generated control codes, constrained
to have the same mean length and unigram symbol distribution as the emergent code. Intriguingly,
we observe in Figure 5(b) a significantly more skewed emergent bigram distribution, compared to the
controls. This suggests that, despite the lack of phonetic pressures, Speaker is respecting “phonotactic”
constraints that are even sharper than those reflected in the natural language bigram distributions
(see Figure 8(b) in Appendix A.10 for entropy analysis). In other words, the emergent messages are
clearly not built out of random unigram combinations. Looking at the pattern more closely, we find
the skewed bigram distribution to be due to a strong tendency to repeat the same character over and
over, well beyond what is expected given the unigram symbol skew (see typical message examples
in Appendix A.9). More quantitatively, across all runs with max_len=30, if we denote the 10 most
probable symbols with s1, ..., s10, then we observe P (sr, sr) > P (sr)

2 with r ∈ J1, .., 10K, in more
than 97.5% runs. We leave a better understanding of the causes and implications of these distributions
to future work.
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Figure 5: Distribution of top symbol unigrams and bigrams (ordered by frequency) in different
codes. Emergent and control messages are averaged across successful runs and different simulations
respectively in the (max_len=30,a=40) setting.

4 Discussion

We found that two neural networks faced with a simple communication task, in which they have to
learn to generate messages to refer to a set of distinct inputs that are sampled according to a power-law
distribution, produce an anti-efficient code where more frequent inputs are significantly associated to
longer messages, and all messages are close to the allowed maximum length threshold. The results are
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stable across network and task hyperparameters (although we leave it to further work to replicate the
finding with different network architectures, such as transformers or CNNs). Follow-up experiments
suggest that the emergent pattern stems from an a priori preference of the listener network for longer,
more discriminable messages, which is not counterbalanced by a need to minimize articulatory effort
on the side of the speaker. Indeed, when an artificial penalty against longer messages is imposed on
the latter, we see a ZLA distribution emerging in the networks’ communication code.

From the point of view of AI, our results stress the importance of controlled analyses of language
emergence. Specifically, if we want to develop artificial agents that naturally communicate with
humans, we want to ensure that we are aware of, and counteract, their unnatural biases, such as the one
we uncovered here in favor of anti-efficient encoding. We presented a proof-of-concept example of
how to get rid of this specific bias by directly penalizing long messages in the cost function, but future
work should look into less ad hoc ways to condition the networks’ language. Getting the encoding
right seems particularly important, as efficient encoding has been observed to interact in subtle ways
with other important properties of human language, such as regularity and compositionality [Kirby,
2001]. We also emphasize the importance of using power-law input distributions when studying
language emergence, as the latter are a universal property of human language [Zipf, 1949, Baayen,
2001] largely ignored in previous simulations, that assume uniform input distributions.

ZLA is observed in all studied human languages. As mentioned above, some animal communication
systems violate it [Heesen et al., 2019], but such systems are 1) limited in their expressivity; and
2) do not display a significantly anti-efficient pattern. We complemented this earlier comparative
research with an investigation of emergent language among artificial agents that need to signal a
large number of different inputs. We found that the agents develop a successful communication
system that does not exhibit ZLA, and is actually significantly anti-efficient. We connected this to an
asymmetry in speaker vs. listener biases. This in turn suggests that ZLA in communication in general
does not emerge from trivial statistical properties, but from a delicate balance of speaker and listener
pressures. Future work should investigate emergent distributions in a wider range of artificial agents
and environments, trying to understand which factors are determining them.
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