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Abstract

As autonomous driving and augmented reality evolve a practical concern is data pri-
vacy, notably when these applications rely on user image-based localization. The widely
adopted technology uses local feature descriptors derived from the images. While it was
long thought that they could not be reverted back, recent work has demonstrated that
under certain conditions reverse engineering attacks are possible and allow an adversary
to reconstruct RGB user images. This poses a potential risk to user privacy.

We take this further and model potential adversaries using a privacy threat model. We
show a reverse engineering attack on sparse feature maps under controlled conditions and
analyze the vulnerability of popular descriptors including FREAK, SIFT and SOSNet.
Finally, we evaluate potential mitigation techniques that select a subset of descriptors to
carefully balance privacy reconstruction risk. While preserving image matching accuracy,
our results show that similar accuracy can be obtained when revealing less information.

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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1 Introduction
Privacy and security of user data has quickly become a concern and an important design
consideration when engineering autonomous driving and augmented reality systems. These
systems require always-on information capture in order to support machine perception stacks
and rely directly or indirectly on the data that originates from the user’s device, i.e., RGB,
inertial, depth, and other sensor values. Data assets are rich in private information, but due
to the compute power limitations on the device, they must be sent to a service provider
to enable services such as localization, and virtual content overlay. As a result, there is
understandable concern that any data assets shared with a cloud service provider, no matter
how well-trusted, can potentially be abused [12]. To enable augmented reality in practice,
beyond the application functionality, privacy-preserving techniques are thus an important
consideration.

We focus on localization as a fundamental component of augmented reality. Localization
relies on visual data assets to make a prediction of the pose of the user; in particular, most
established algorithms rely on local feature descriptors. Since these descriptors contain only
derived information, they were long thought to be secure. Unfortunately, recent literature
shows that descriptors can be reverse engineered surprisingly well (Figure 1).

For feature descriptors, a reverse engineering attack [6] attempts to reconstruct the orig-
inal RGB image that was used to derive the feature descriptors. The fidelity to which the
original RGB image can be reconstructed is an indication of the severity of the potential risk
to privacy. Prior work [19, 23, 34, 49] has shown that feature descriptors are potentially
susceptible to such an attack under a range of conditions and configurations. However, there
is limited work on quantitatively analyzing privacy implications as well as evaluating po-
tential defenses against such reverse engineering attacks, which our work will explore. To
understand the privacy implications, we first utilize a privacy threat model [17] to determine
what assets are available to a descriptor reverse-engineering attack and evaluate how infor-
mation might be leaking. We then propose two mitigation techniques inspired by current
best practices in privacy and security [33]: (1) reducing the number of features shared and
(2) selective suppression of features around potentially sensitive objects. We show that these
techniques can mitigate the potency of reverse engineering attacks on feature descriptors to
improve protections on user data. In summary, we make the following contributions:
1. We present a privacy threat model for a reverse engineering attack to narrow down the

privacy-critical information and scope the setup for a practical attack.
2. We demonstrate a reverse engineering attack to reconstruct RGB images from sparse

feature descriptors such as FREAK [20], SIFT [3] and SOSNet [51], and quantitatively
analyze the privacy implications. In contrast to previous work [49, 34], our approach does
not take additional information such as sparse RGB, depth, orientation, or scale as input.

3. We present two mitigation techniques to improve local feature descriptor privacy by re-
ducing the number of keypoints shared for localization. We show that there is a trade-off
between enhanced privacy (less fidelity of reconstruction) and the utility (localization
accuracy). We also show that the choice of shared keypoints matters for privacy.

2 Related Work
The concept of reverse engineering local features has evolved over recent years as local de-
scriptors play an increasingly important role. Prior work focused on better understanding
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Figure 1: Reverse Engineering Attack and Mitigations. (a) Original image. Objects de-
tected marked in orange (b) Reverse-engineered image using our attack. The reconstruction
preserves semantic information. By (c) reducing the number of features or (d) selective
suppression around private objects, we reduce the efficacy of the attack and improve privacy.

the image features. Only recently have there been proposals towards leveraging this line of
research to understand the privacy implications. Work towards discovering vulnerabilities
and preventing attacks remains an emerging area of research.
Reconstructing Images from Sparse Local Features. Weinzaepfel et al. [19] demonstrated
the feasibility of reconstructing images given SIFT [3] descriptors and keypoint locations, by
finding and stitching the nearest neighbors in a database of patches. d’Angelo et al. [23] cast
the reconstruction problem as regularized deconvolution to recover the image content from
binary descriptors and keypoint locations (FREAK [20], ORB [18]). Kato and Harada [26]
showed that it is possible to recover some of the structures of the original image from an
aggregation of sparse local descriptors in bag-of-words (BoW) representation, even without
keypoint locations. While the quality of reconstructed images from these methods is low,
they allow clear interpretations of semantic content. Here, we demonstrate that reverse en-
gineering attacks using CNNs reveal more image details and quantitatively analyze privacy
implications for hand-crafted [3, 20], and machine-learned descriptors [51].
Reconstructing Images from Dense Feature Maps. Vondrick et al. [25] perform a visu-
alization of HoG [10] features to understand its gaps for recognition tasks. To understand
what information is captured in CNNs, Mahendran and Vedaldi [29] showed the inversions
of CNN feature maps as well as a differentiable version of DenseSIFT [16] and HoG [10]
descriptors using gradient descent. Dosovitskiy and Brox [34] directly model the inverse of
feature extraction for HoG [10], LBP [4] and AlexNet [37] using CNNs, and qualitatively
show better reconstruction results than the gradient descent approach [29]. They also show
reconstructions from SIFT [3] features using descriptor, keypoint, scale, and orientation in-
formation. In our reconstruction, we use descriptors and keypoints only.
Modern Reverse Engineering Attacks. In the context of 3D point clouds and the AR/VR
applications built on top of them, a common formulation of the reverse engineering attack is
to synthesize scene views given the 3D reconstruction information. Recent work by Pittaluga
et al. [49] showed that it is possible to reconstruct a scene from an arbitrary viewpoint from
SfM models using the projected keypoints, sparse RGB values, depth, and descriptors. Our
work extends this approach by considering only keypoints and descriptors.
Mitigations for Attacks on Sparse Local Features. For reverse engineering attacks on
local features, one notable recent work [50, 54, 55] proposes using line-based features to
obfuscate the precise location of keypoints in the scene to make the reconstruction difficult.
The key idea is to lift every keypoint location to a line with a random direction, but passing
through the original 2D [54] or 3D keypoints [50]. Since the feature location can be any-
where on a line, this alleviates privacy implications in the standard mapping and localization
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process. Shibuya et al. [55] later extended this approach for SLAM. Similarly, Dusmanu et
al. [53] represent a keypoint location as an affine subspace passing through the original point,
as well as augmenting the subspace with adversarial feature samples, which makes it more
difficult for an adversary to recover original image content.
Mitigations on Raw Images. Other works try to alleviate the privacy concern by perturbing
the images [45, 47, 28, 35, 38, 46, 48, 52]. One way of achieving this is to mask out or
replace the parts of images (e.g., faces) that may contain private information [39, 45, 47].
Another stream of work focuses on encoding schemes or degrading images to prevent recog-
nition of private image content [28, 35, 38, 46, 48, 52]. A few cryptographic methods using
homomorphic encryption [14, 15, 40] have emerged, but they are computationally expensive
and it is unclear how to apply them to complex applications such as localization.
Relationship to Adversarial Attacks on Neural Networks. Recent work has shown that
it is possible to trick deep learning models with adversarial inputs to induce incorrect out-
puts [24, 30, 22, 41]. Conceptually, these adversarial attacks are similar to the mitigation
strategies that we propose. But, unlike prior work, our insight is that inputs can be modified
to induce incorrect outputs to defend against reverse engineering attacks.

3 System and Threat Definition

In this section, we define privacy, utility, the trade-offs, and define our privacy threat model.
Privacy. LINDDUN, a popular methodology in academic discussions, looks at the follow-
ing privacy properties [17]: linkability, identifiability, non-repudiation, detectability, infor-
mation disclosure, content unawareness, and policy. LINDDUN claims that whenever users
share information, one or more of these privacy properties may be at risk. This leads to the
notion that minimizing the amount of shared information improves privacy. However, pre-
cisely quantifying the impact on privacy is application-specific and can be implemented as
a continuum, modulating the amount of information to be shared as required. In this work,
references to privacy risk and/or threat applies specifically to reidentification risk, a direct re-
sult of the reverse engineering attack; we describe and evaluate the trade-offs in Section 5.2.
Utility. Utility captures the accuracy (or performance) of an application. Applications may
have multiple utility functions for a well-rounded understanding of the operation. Utility of-
ten presents a trade-off with privacy as performance tends to increase with data size, e.g., ML
training. We use feature matching recall as a proxy for localization accuracy (Section 5.2).
Privacy-Utility Trade-Off. Applying privacy-preserving techniques can adversely affect
utility. Ideally, we want high utility and high privacy, but in practice there is a fundamen-
tal trade-off between the amount of information one is willing to share and the utility one
receives from sharing it. In this work, the trade-off is between the localization accuracy (util-
ity) and the images that may potentially be revealed (privacy). In certain cases where the
definitions of utility and privacy are simple, this trade-off can be formalized and reasoned
about analytically (e.g. k-anonymity [5]). In larger systems this is not possible and we must
actively play roles of attacker and defender to model possible attacks and understand the po-
tential risks to user privacy from reidentification. This is the role of a privacy threat model [2,
7, 9, 21, 56, 8, 17].
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Figure 2: Privacy threat model for localization. A client derives descriptors from RGB
images and shares them with a service provider. The service provider is honest and faith-
fully executes localization by matching query descriptors against a map. But, the service
provider may attempt to derive insight about the user. Our mitigation strategy is to minimize
information shared between the client and the service provider to maximize privacy.

3.1 Privacy Threat Model
Building a privacy threat model is application specific. For localization, we use the LIND-
DUN "hard privacy" threat model [17]. LINDDUN proposes building a dataflow diagram of
a system and marking data assets, adversaries, and potential attack vectors. These are used
to audit against potential threats (described in LINDDUN) that impact privacy. We focus on
identifiability, detectability, and information disclosure to audit potential reverse engineering
attacks on RGB images. Identifiability checks if an adversary can identify items of interest.
Detectability looks at whether an adversary can detect whether items exist or not. Informa-
tion disclosure asks if private information is disclosed to an adversary without access. An
adversary with an RGB image can observe information about each of these properties which
poses a risk to privacy. Our goal is to prevent the adversary from having such access.
System Definition and Sensitive Data Assets. Figure 2 shows the components of our pri-
vacy threat model. Our system follows a client-server architecture to process localization
requests. For localization, there are two primary data assets: (1) RGB images (2) feature
descriptors. We prevent the sharing of RGB images which can leak private information. De-
scriptors are perceived as more private and more acceptable to share because they do not
directly leak RGB information. The client derives feature descriptors (from RGB images)
and shares them with the server to query its pose from a global map.
Adversary Definition and Potential Attacks. Our privacy threat model considers the ser-
vice provider as an adversary (Figure 2) that is honest-but-curious [42]. This type of adver-
sary is a legitimate participant in the system and executes the agreed upon service faithfully.
But, while fulfilling the service, the adversary is curious and may use available data to learn
information about the client. In our case, the adversary might reverse engineer the user’s
RGB images from feature descriptors. This is possible because the adversary has access to
similar data (feature descriptors, source RGB images) and large scale compute resources.
The adversary is capable of training deep-learning models (such as a reverse engineering
model) to analyze user data in a reasonable amount of time. Our goal is to understand how
to improve a client’s protection against an honest-but-curious adversary capable of training
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Figure 3: Reverse Engineering Attack Results. Top to bottom: ground truth and recon-
structions from a max. of 1,000 sparse SIFT, FREAK and SOSNet features. Reconstruction
from only sparse local features reveals the original image information extremely well. Note:
images show landmarks not included in the training data. Image attribution [11].

deep learning models to reverse engineer RGB images from feature descriptors.

4 Reverse Engineering Attack
This section defines the convolutional neural network models we use to craft our reverse
engineering attack. As shown in Figure 2, this model takes sparse local features (keypoints
and descriptors) as input and estimates the original RGB image.
Model Architecture. Given a user image I(i, j) ∈ R3 and a derived sparse feature map
FI,M(i, j) ∈ RC containing C-dimensional local descriptors from the image I using a feature
extractor M, we seek to reconstruct an image Î(i, j) ∈ R3 from FI,M . The sparse feature
map is assembled by starting with zero vectors and placing extracted descriptors at key-
point locations i, j. Our reverse engineering attack relies on a deep convolutional generator-
discriminator architecture that is trained for each specific feature extraction method M. The
generator GM produces the reconstructed image: Î = GM(FI,M) and follows a single 2-
dimensional U-Net topology [32] with 5 encoding and 5 decoding layers as well as skip
connections with convolutions. The discriminator DM is a 6 layer convolutional network
operating on top of GM [31]. Please see the supplemental material for details. In order to
adhere to our privacy threat model and in contrast to prior work by Pittaluga et al. [49], we
do not use depth or RGB inputs and subsequently also do not make use of a VisibNet.
Loss Functions. We use 3 loss functions to train the reconstruction network. The mean
absolute error (MAE) is the pixelwise L1 distance between the reconstructed and ground
truth RGB images (Eq. 1). The L2 perceptual loss is measured as in Eq. 2 with ϕk being
the outputs of a pre-trained and fixed VGG16 ImageNet model [13]. ϕk are taken after the
ReLU layer k with k ∈ {2,9,16}. For the generator-discriminator combination, we use the
binary cross-entropy (BCE) loss defined as in Eq. 3. Finally, we optimize the losses together
as shown in Eq. 4 with α and β as scaling factors.
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Lmae = ∑
i, j

||Î(i, j)− I(i, j)||1 (1)

Lperc = ∑
i, j

3

∑
k=1

||ϕk(Î(i, j))−ϕk(I(i, j))||22 (2)

Lbce = ∑
i, j

log(DM(I(i, j)))+ log(1−DM(Î(i, j))) (3)

LG = Lmae +αLperc +βLbce (4)

5 Evaluation

5.1 Experimental Setup

Sparse Local Features. For feature extraction from Section 4, we use SIFT [3], FREAK [20],
and SOSNet [51] descriptors representing traditional and machine-learned variants. Key-
point locations for FREAK and SOSNet were detected using Harris corner detection [1]. For
reconstruction, we use the SIFT detector for SIFT descriptors as in [49]; however, for image
matching we use Harris corners as the SIFT detector performed poorly. We do not use addi-
tional information from Harris corner detector except keypoint locations in our experiments.
Training and Evaluation Data. We train our networks on 50,000 images and their extracted
sparse local features from MegaDepth’s [43] training partition. For testing the attack, we
sampled 9,800 images from the MegaDepth testset that contain potentially private objects.
Network Training. A different reverse engineering model M is trained for 400 epochs for
each descriptor type. The learning rate is initialized to 0.001 and 0.0001 for the generator and
discriminator networks respectively. Learning rates are adjusted by the Adam optimizer [27].

5.2 Measuring Privacy and Utility

Measuring Privacy with SSIM. Our first metric for measuring privacy is structural sim-
ilarity (SSIM), which measures the perceptual similarity between images. We use SSIM
to evaluate how well the reverse engineering attack can recover visual information, i.e., to
measure identifiability. SSIM looks at the whole image, which includes private and public
information (e.g. people and buildings respectively). Measuring how well the whole image
can be reconstructed includes the reconstruction quality of private regions.
Measuring Privacy by Object Detection. We use an object detector (YOLO v3 [44], with
80 classes) to measure semantic information from the reverse-engineered images. We com-
pare object detection results on both the original and the reconstructed images. If an object’s
bounding box in the original image has at least 50% overlap with the reconstructed image of
the same class label, we consider them a match. The more correspondence between objects
in the original and the reconstructed image, the higher the risk to privacy.
Measuring Utility. To assess utility of local features when applying our mitigation strategies,
we define an image matching task as a proxy for localization and investigate how the feature
matching between two images deteriorates as we increase the privacy. Specifically, we gener-
ate corresponding image pairs from the 53 landmarks of the test split of the MegaDepth [43]
dataset. For each landmark, we sample 50 pairs of images that have at least 20 covisible 3D
points determined from a reference map built with COLMAP [36], resulting in 2,650 image
pairs. For each corresponding pair of images, we perform local correspondence matching
using input features, and count the number of pairs with at least 20 inlier matches which we
deem as successful. We refer to the proportion of image pairs that have been successfully
matched as our matching recall, which we use as our utility measure (Table 2).
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Figure 4: Reverse engineering ablation study of reducing keypoints. SIFT, FREAK and
SOSNet reverse engineering results using 1,000, 800, 400, 200, and 100 keypoints respec-
tively, annotated in red. Reducing keypoints reduces the potency of the reverse engineering
attack. Regions with higher densities of keypoints have better reconstruction quality.

Descriptor SSIM Detected Objects
SIFT [3] 0.675 32.58%

FREAK [20] 0.511 19.32%
SOSNet [51] 0.616 41.26%

Table 1: Privacy metrics of reverse-engineered images using 1,000 keypoints. Detected
object percentage [44] is relative to number of objects detected in ground truth.

5.3 Reverse Engineering Attack
We first evaluate to what extent the reverse-engineering attack from Section 4 poses a rei-
dentification risk to privacy. Examples of the reconstructions are shown in Figure 3 and the
privacy metrics of the reverse-engineered images are given in Table 1. Reconstructions using
FREAK [20] descriptors yield substantially poorer reconstruction quality and semantic con-
tent than SIFT [3] and SOSNet [51]. Despite differences in feature extraction techniques and
descriptor sizes, all three descriptors are susceptible to the attack and yield reconstructions
comparable to prior work [49] (please see supplemental material for detailed comparison to
prior work), but notably without RGB or depth information as input. At a higher level, the
results show that under controlled conditions the reverse engineering attack can introduce
a reidentification risk of RGB image content. The results from Table 1 also show that the
reverse-engineered images still allow an adversary to potentially detect and identify some
objects that were present in the original images.

5.4 Mitigation by Reduction of Features
To improve privacy, our objective is to minimize the information shared by the client (Sec 3.1).
We investigate how reducing the number of features increases privacy at the expense of util-
ity. For each descriptor type, we retain a maximum of N top-scoring keypoints based on the
detector response and vary N from 1000 to 100. For each value of N we then evaluate how
well our reverse-engineering models perform. Qualitative results are given in Figure 4. We
show the average privacy (measured by 1−SSIM) of the reconstructed images vs. the num-



DANGWAL ET AL.: MITIGATING REVERSE ENGINEERING ATTACKS 9

(a) (b) (c)

Figure 5: Utility-Privacy Trade-Off when Varying the Number of Features. Privacy
increases when reducing the number of features where FREAK gives the best results. For
utility, FREAK and SIFT gives the best results. SIFT gives the best overall trade-off.

Suppression Privacy (Object Recall) Utility (Matching Recall)
No Yes No Yes

SIFT [3] 20% 2.21% 100% 88%
FREAK [20] 11% 1.29% 34% 28%
SOSNet [51] 28% 5.21% 100% 88%

Table 2: Privacy-Utility Trade-Off for Suppression. Object recall shows how many objects
can be detected from the reverse engineered images compared to the original without and
with suppression (lower is better). Matching recall shows how many images can be matched
without and with selective feature suppression. SIFT gives the best overall trade-off.

ber of features in Figure 5a. The data shows the reconstruction SSIM degrades in as more
keypoints are removed. For less than 300 features, SIFT gives better results than SOSNet.
FREAK outperforms SIFT and SOSNet, and yields the best results in terms of privacy.

However, despite strong privacy results, FREAK has poor utility. In Figure 5b, we show
how the utility changes. Here, FREAK gives the lowest utility, indicating that FREAK de-
scriptors overall provide less useful information than SOSNet and SIFT. Interestingly, for
SOSNet and SIFT the number of keypoints can be reduced to 200 by sacrificing only 2%
performance. The trade-off between utility and privacy is shown in Figure 5c. Overall, we
find that SIFT yields the best privacy-utility trade-off among the evaluated descriptor config-
urations on the Megadepth dataset. We note that these results do not preclude the possibility
that other descriptor configurations (i.e., in terms of dimensionality, target dataset, and type)
may achieve better results. Ultimately the ideal descriptor chosen will depend on the precise
privacy and utility requirements necessitated by the localization service.

5.5 Selective Suppression of Features

Globally reducing image features reduces the potency of the reconstruction attack, but it re-
duces matching accuracy. We investigate how an object detector can help implement a more
selective approach. We identify and mark sensitive regions in the images using bounding
boxes produced by the YOLO v3 [44] object detector. We then suppress features in these re-
gions. Finally, we apply our reverse-engineering attack and measure the detectable semantic
information content in the images before and after reverse engineering (Table 2).



10 DANGWAL ET AL.: MITIGATING REVERSE ENGINEERING ATTACKS
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Figure 6: Reverse Engineering after Selective Feature Suppression. (a) Object detection
on original image (b) Object detection on reverse-engineered images (max. 1000 keypoints)
(c) Object detection on reverse-engineered images with feature suppression. All objects de-
tected by the object detector without suppression are successfully removed with suppression.

Figure 6 shows a qualitative example of how selective feature suppression effectively
defeats the object detector; the people detected in the original image do not appear nor are
identifiable by the object detector in the reconstructed images. These results confirm our
intuition that selective suppression can effectively preserve the privacy around a potentially
sensitive region of interest (in our case semantic content of people in the image). Note
that the quality of the overall image outside of the marked sensitive regions remains largely
unaffected. Finally, the results show that features of private objects should not be shared in
order to mitigate privacy risks posed by reverse engineering attacks.

Results for the privacy-utility trade-off of the suppression are given in Table 2. Under
the evaluated experimental conditions, SIFT and SOSNet give better trade-offs than FREAK;
these trends are consistent with the results from Section 5.4. Notably for SIFT the utility
drops slightly, while the detected objects are almost eliminated.

6 Conclusion
This paper looks at the privacy of image-based localization systems. For the first time, we
have shown a reverse engineering attack that operates in the real-world scenario, where only
sparse local features are available to an honest-but-curious adversary. We found that our
reverse engineering attack could reconstruct the original image with surprisingly good qual-
ity, posing a risk to privacy. We formulate a privacy threat model to review these threats
and introduce two mitigation techniques and showed a trade-off between privacy and utility
(measured by feature matching). We found that using an object detector to suppress objects
slightly reduces matching accuracy (as a proxy for localization accuracy) but gives better pri-
vacy results (fewer reidentifiable objects). Finally, our analysis has shown that, among the
descriptors we evaluate, the best overall privacy-utility trade-off can be achieved with SIFT,
when compared to FREAK and SOSNet. Privacy (defined as reidentification risk through
reverse engineering attacks as specifically described in this paper) may be preserved with
the mitigation techniques described in this paper. Looking forward, our work provides ini-
tial experiments on some mitigation techniques the community may consider to further the
privacy-aware descriptor-based applications research.
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