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Abstract

We present moolib, a library that enables the implementation of distributed reinforcement
learning and other machine learning codebases. Our implementation aims to be both simple
and scalable, targeting researchers with a wide range of available computing resources, e.g., from
individual to hundreds of GPUs. moolib is build around efficient remote procedure calls (RPCs)
for both tensor and non-tensor data. Together with the moolib library, we present example user
code which shows how moolib’s components can be used to implement common reinforcement
learning agents as a simple but scalable distributed network of homogeneous peers. Together with
this whitepaper, moolib and its examples are provided as open source code at our repository at
github.com/facebookresearch/moolib.

1 Introduction
Reinforcement learning (RL) has enjoyed a sustained interest in recent years as part of the broader
deep learning revolution, itself a consequence of both improved hardware and new algorithms. The
seminal breakthroughs for this approach were super-human results on Atari [1] and the game of Go [2],
a long-standing grand challenge of Artificial Intelligence (AI).

At the same time, recent results in RL have arguably been less accessible, harder to reproduce and
harder to build on than breakthroughs in other domains in Machine Learning (ML). Often, details
that are critical to the success of a specific RL method’s implementation are omitted from the write up
[3], making the released code a requirement for reproducible research. Many results depend on highly
efficient implementations which can be difficult to use or understand, which leads researchers to prefer
of simpler, less efficient models where possible. Moreover, the design assumptions underpinning one
algorithm’s efficient implementation might be a considerable hindrance to new research directions, to
the point of making it impossible to try out particular new ideas.

In this paper we present moolib, a library that aims to address these issues by satisfying the requirements
of both the high performance and high understandability ends of the spectrum, striking a balance
where they are in conflict. It does so by offering a highly performant and flexible system based on
asynchronous operations for sending data within a group of peers. moolib’s primary target is to enable
efficient implementations of RL agents, but its components are useful for the wider field of ML as well,
see below. From a high-level perspective, moolib consists of two parts: (1) A library for distributed
machines learning codebases which offers gradient accumulation, RPCs, and some additional features,
some of which are RL-specific. (2) Implementations of example RL agents with the help of this library.
These example agent implementations are written to be both simple and scalable, see Algorithm 1
below for an overview of a prototypical moolib agent.

Remote procedure calls. At the heart of moolib is its Remote Procedure Call (RPC) functionality,
which is designed to be fast and flexible. RPCs are a convenient abstraction for distributed computation.
In the context of machine learning, RPCs have recently been leveraged for building efficient distributed
reinforcement learning systems, e.g. [4, 5, 6]. However, RPCs are used throughout machine learning;
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// Setup.
accumulator := new moolib accumulator
envs := new batched environment
model := randomly initialized neural network model
optimizer := new stateful optimizer
env_future := envs.reset()
while not steps < total training steps do

if not connected then
wait(a_bit)
continue

end
if accumulator.has_gradients() then

optimizer.step() // Apply gradients we received.
accumulator.zero_gradients() // Turns has_gradients() to False again.

else if len(rollouts) ≥ unroll_length and accumulator.wants_gradients() then
// Consume data, compute gradients, and start async accumulation.
loss := compute_loss(model, rollouts)
loss.backward() // Produce local gradients.
accumulator.reduce_gradients(local_batch_size) // Returns immediately.

else
// No gradients to produce or apply. Generate data.
env_outputs := env_future.result()
actor_outputs := model(env_outputs)
rollouts.append(env_outputs, actor_outputs) // One timestep.
env_future := envs.step(actor_outputs.action) // Returns immediately.

end
end
Algorithm 1: Pseudocode for an agent implemented with moolib. For runnable code that still
avoids the complications of actual experiment code, see examples/a2c.py of the open source release.
For code with all necessary features for experiments, see examples/vtrace/experiment.py.

one recent example is [7]1; RPCs are also used in the recent [8] and [9]2. See Section 3.3 for a discussion
of moolib’s RPC features.

Different requirements in RL. The computational resources required for research in the field of
RL vary wildly. Interesting theoretical and empirical results have been achieved with the help of
computational resources at either end of a scale ranging from single machines, including laptops, to
thousands of special-purpose hardware accelerators like GPUs or TPUs [10]. At each end, very different
architectural choices may be required. At one end computationally intensive implementations must
prioritise performance above other considerations; at the other end ease of use, understandability and
flexibility have a greater priority. These priorities needn’t be permanently at odds. A modern deep
learning library with the right architectural design choices could in principle allow the same experiment
to be run along a broad section of this spectrum. moolib aims to be an example of such a library. The
example implementations that come as part of moolib try to offer simplicity by including all code
relevant to research in a single file of a few hundred lines, consisting mainly of a single loop instruction
that runs for the duration of the training process, see Algorithm 1 and Section 3.1 below.

1In [7], the authors rely on RPCs to host an index of text embeddings (> 100GB in RAM). In this case, loading one
index per GPU isn’t feasible for multi-GPU training, but neither is pre-computing results per query because live access
to the index is needed for backpropagating to the query vector. Instead, an ‘index server’ implemented with a precursor
of moolib met all the requirements.

2Although neither publication mentions RPC or network communication, these techniques are an important part of
their implementations (source: private communication).
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2 Related Work
Many existing frameworks provide comparable functionality to moolib. For RPCs in RL and ML more
broadly, there’s Ray [11], RLgraph [12], Reverb [5], Launchpad [6]. Some core ideas that inspired
moolib can also be found in SEED RL’s set of gRPC TensorFlow ops [4, file grpc/ops/grpc.cc], or
even in the earlier ‘dynamic batching’ feature of IMPALA [13]. Outside of the field of machine learning,
generic communication libraries like gRPC [14] and ∅MQ [15] also offer some comparable features, and
are in fact the basis of more specialized libraries such as Reverb or SEED RL. Somewhat in between is
the TensorPipe [16] library, which targets ML code in the sense that it optimizes sending and receiving
buffer data, including via CUDA, but is otherwise quite general; moolib is built on top of TensorPipe.
An alternative backend could be TorchRPC or DistributedDataParallel (DDP), both parts of recent
versions of PyTorch [17]. TorchRPC is also built on TensorPipe.

For RL agents, again, many existing open sourced implementations have comparable, if slightly different,
goals to moolib. Among them are A3C [18], IMPALA [13], PPO in its various versions [19, 20, 21, 22],
RLlib [23], Tianshou [24], SEED RL [4], rlpyt [25], TorchBeast [26], SaLinA [27], Acme [28], and
Sample Factory [29]. We argue that having this multitude of options is fortunate and attests to the
healthy state of research in the field of RL: The design space of agent implementation is arguably larger
than, say, that of training code for computer vision classifiers, and is in fact itself an active area of
study to which we are looking to further contribute. Our hope is that moolib adds a solution that’s
simpler than most of what is currently available, while still being able to scale to a large number of
GPUs.

3 moolib

3.1 High Level Design
moolib enables a large number of system designs, but we ship the prototypical setup along with
the library release as an example. The design aims to optimize the use of accelerators, enable high
throughput, and be easy to reason about and modify. The setup consists of a group of homogeneous
peers, each iterating through a copy of the same main loop as described in pseudocode in Algorithm 1.
Each of these peers interacts with its own instance of the Accumulator, see Figure 3.1, which handles
the asynchronous communication between peers.

This segmentation of functionality was chosen for readability and ease of modification. Using this group of
homogeneous peers deviates from the original IMPALA design [13, 26], which uses a heterogeneous group
of peers consisting of one learner and several actor instances. Although moolib allows implementing
this design via RPCs, see Section 3.3, a dynamically-sized group of homogeneous peers is often easier
to reason about and manipulate.

The Accumulator can be thought of as a state machine which transitions between three states:
(1) ‘wants gradients’, where it waits to receive gradients from the peers; (2) ‘reducing gradients’, where
it asynchronously reduces the gradients and (3) ‘has gradients’, where the accumulated gradients
are available for use by the peer. This stateful design allows for the simple training loop shown in
Algorithm 1, which abstracts away the necessary parallelism done in background threads without
user-defined callbacks.

moolib optimizes for efficiently using accelerators and for overall throughput by providing “asynchronous
dispatch” versions of all of its operations. In order to efficiently use an accelerator, such as a GPU, it
must be consistently “kept busy”, i.e., perform computations at near maximum capacity with minimal
idle time. While this can be achieved with tools that enable multiple flows of control, such as threads,
this can lead to complicated user-facing code. Additionally, the popular Python programming language
does not support this type of parallelism well, due to its design around the global interpreter lock (GIL)
mutex, among other reasons.3 Instead, moolib provides “asynchronous dispatch” versions of all of its
operations. From a high-level perspective, these are:

• asynchronously accumulating gradients across nodes,
3However, there are concrete plans to fix this situation, see github.com/colesbury/nogil. For a discussion of the

GIL in the context of RL, see [26, Section 5.3]
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Figure 1: The moolib Accumulator as a state machine: From the user’s perspective, the Accumulator
transitions from (1) the ‘wants gradients’ state, where it waits to receive gradients from the peers,
to (2) the ‘reducing gradients’ state, where it asynchronously reduces the gradients, to (3) the ‘has
gradients’, where the accumulated gradients are available for use by the peer, and back to (1). Note
that wants_gradients() and has_gradients() are moolib API calls, while the ‘reducing gradients’
state is active only when neither of the two functions return true.

• asynchronously stepping a full batch of environments,

• asynchronously evaluating the neural network model (implicitly, e.g., via PyTorch on CUDA).

Since all operations involving heavy computation or network communication are asynchronous, it’s
possible to keep all accelerators continuously occupied with model forwards or updates. moolib chooses
the fastest available transport method for gradient accumulation to further increase throughput, and
using more than one set of batched environments can additionally increase the GPU and host CPU
utilization via a ‘double buffering’ technique.

For a thorough description of the Accumulator and the asynchronous operations, see Section 3.2.
moolib also offers more primitive building blocks for arbitrary peer-to-peer communication in the form
of its RPC mechanism, described in Section 3.3. The details of moolib’s all-reduce operation are
provided in Section 3.4. Finally, some additional components of moolib are described in Section 3.5:
the EnvPool for asynchronous batched environments, the Broker, and the Batcher.

3.2 Accumulator
The Accumulator is the primary interface that enables multi-peer and multi-node training. Its primary
purpose is to all-reduce gradients such that all peers may contribute to the gradients used for training,
allowing large-scale training, e.g., by having a large “virtual” batch size, or simply being able to consume
training data at a higher rate.

At creation time, the Accumulator is given a handle to an RPC group of peers (see Section 3.3 for
more details) along with a list of shared parameters and buffers. From the user’s perspective, the
Accumulator manages the transitions of a “virtual” state machine as described in Figure 3.1. Each peer
interacts with its own instance of the Accumulator, performing operations based on the current state
as seen in Algorithm 1. When the Accumulator is in the ‘wants_gradients’ state, each peer calculates
losses and uses the Accumulator to reduce its gradients with those from the rest of the peers. When
the Accumulator is in the ‘has_gradients’ state then each peer takes an optimizer step with all of
the gradients provided by the Accumulator. During the remaining time, while the Accumulator is
reducing the gradients, the peers continue to collect samples in anticipation of the next state change.
This powerful interface abstracts away gradient manipulation and asynchronous operations, allowing for
a simple training loop. It also enables a graceful cleanup operation, e.g., on a user-supplied keyboard
interrupt, as well as a step-by-step ‘debuggability’. The latter property is usually not present systems
with fully independent heterogeneous peers such as TorchBeast [26].

This is somewhat analogous to PyTorch’s DistributedDataParallel (DDP) interface, but with some
important differences. With DDP, all peers would operate in “lock-step”, i.e., they would all calculate
their loss (and perform the backward pass), the gradients would be all-reduced, and they would all step
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their optimizer synchronously. With Accumulator, only some peers may calculate their loss function,
and the Accumulator would determine if this is enough to fill the desired virtual batch size. If so, the
gradients would effectively be all-reduced, and all peers would step their optimizers synchronously. If
the virtual batch size isn’t filled yet, a given peer may further contribute by calculating its loss function
(and performing the backward step) on another batch of data. If a peer has not yet generated enough
data to compute a loss and contribute to the gradients, it will still receive the accumulated gradients
from the peers that did so. This allows the training loop to progress with minimal overhead due to
waiting, even with a large number of peers or with a slow environment.

Among peers participating through an Accumulator object, a leader is determined. The leader is
responsible for distributing its current state, among them model parameters, optimizer state, and any
other state if required by the user, to other peers joining the training. This state is also distributed at
a regular interval. This ensures all peers are kept synchronized and allows new peers to join ad-hoc.
Note that the regular update is not usually necessary for peers to remain synchronized, but it protects
against shifts due to floating point inaccuracies, and it synchronizes some state which may not remain
implicitly synchronized, such as PyTorch buffers used for instance for batch normalization.

3.3 Remote Procedure Calls (RPCs)
RPCs are the core of moolib. While the concept has recently employed mainly in an RL context (e.g.,
[5, 6]), it is also used for e.g. NLP projects such as [7, 8, 9]. RPCs are increasingly used because they
are easier to reason about and deal with than the underlying mechanisms. Instead of having to track
the details of establishing a connection, serializing the procedure’s name and arguments, sending this
data via network packets, interpreting the data on the other side, calling the procedure in question and
sending the return value, if any, back in the same fashion, an RPC library allows a simpler API built
on top of the existing primitives.

moolib’s RPC functionality is build on TensorPipe [16], the transport library used in PyTorch, which
allows for optimizing throughput while maintaining fault-tolerance. Via TensorPipe, moolib’s RPC
provides automatic transport selection, which employs whichever available transport mode is fastest.
The available transports are POSIX shared memory (if on the same machine), InfiniBand [30], and the
generic TCP/IP. If the available hardware allows it, TensorPipe also enables moolib to send tensor
data directly from one CUDA device to another, bypassing the host memory entirely. This allows
for an effective throughput of roughly 10GB/sec. With this throughput, this part of the program is
unlikely to be the bottleneck in most ML applications. Additionally, moolib’s RPCs are designed to be
fault-tolerant. In case of temporary connection issues, RPCs are tried again, if necessary via a different
transport type.

Caller and Server API. The RPC primitives are designed with flexibility in mind, with multiple
options for designing both the server and the caller.

When building a server with moolib’s Python API, the user can choose from three different entrypoints
which provide different levels of built-in threadpool management. The simplest one, which defers
all thread management to the moolib RPC library, is called define. It binds a Python function to
a given name and executes the function, whenever specified by incoming calls, in a thread owned
by moolib. A trade-off to this simplicity is that the moolib thread in question cannot service other
incoming connections during that time; also, due to Python’s GIL, no other Python code can run
while this function call executes Python code. More fine-grained control is available via define_queue.
Here, incoming calls add the function’s arguments and a promise-like callback function to a queue.
The user will need to include additional functionality in the server to service that queue, execute the
corresponding function or otherwise return a result to the caller. Finally, the most general way to
define a procedure for the RPC is define_deferred, which instead of adding the function’s arguments
and a callback to a queue, simply calls a super-specified function with this tuple of (callback, data) as
arguments.

When designing the caller side, moolib’s API provides three possible entrypoints as well. A sync call is
synchronous, i.e., blocks until the result of the function call has arrived at the caller, and returns that
result. This is the closest to standard function calls within the same program. To make asynchronous
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calls, async_ and async_callback are available. The former returns a Future object which can be
waited on, cancelled, or checked for completion. The latter instead lets the user supply a callback
function which will be invoked with the result once it’s available.

Besides the core functionality of sending tensor data as arguments or return values, moolib allows
sending any serializable Python object including lists, dictionaries, tuples, etc, via Python’s builtin
pickle module.

Connecting Peers. In order to make procedure calls across the peer network, it is first necessary to
discover and connect all of the relevant peers in the network. moolib provides an ad-hoc name service
where each peer must supply a globally unique peer (or RPC ) name4. A given peer can find any peer
known to its already known peers, i.e., name discovery works with up to one level of indirection while
peers two hops away or more won’t be found. It is possible to build custom peer discovery with these
primitives, but moolib also offers a standalone program to facilitate this process: the Broker. See
Section 3.5 for more information on the Broker, but at a high level it provides a central node in the
peer network which allows for communication between any pair of peers within the group.

Batched RPCs. For some applications (e.g., a faithful implementation of the IMPALA [13] system
like the one provided by TorchBeast [26]), it is helpful to have support for (dynamically) batched RPCs.
In a batched RPC, one or more callers call the same function at approximately the same time, with
each caller sending and expecting a return value of tensor data. The specified function on the server is
then invoked only once, but with each argument extended by an additional batch dimension. Then
the return value is required to have the same batch dimension size, and the caller associated with the
ith input slice will receive the ith output slice. This functionality can be especially useful for building
a model server which serves a ML model on an accelerator like a GPU. An early version of such a
dynamic batching feature appeared in the source code release of IMPALA [13], while batched RPCs for
TensorFlow 2 are directly available as part of SEED RL [4].

Various modes of batched RPC are possible, e.g., callers could supply batched arguments themselves;
the server could decide whether to wait or run with the current list of inputs based on a timeout or
arbitrary user logic. moolib provides a simple version of batched RPCs with possible extensions in the
future.

3.4 All-reduce operations

Figure 2: Illustration of the first half of forest all-
reduce. Here, different colors indicate different trees,
all of which operate in parallel. The color of each
node is the color of the tree it is a root of. Data
travels from the leaves, through every node, to the
root. In the second half of the algorithm, data
travels back from the root to each node (not shown).

In order to reduce gradient tensors, i.e., retrieve
the local gradients from each peer, compute their
sum or average, and send the result to each peer,
moolib uses a method we call forest all-reduce.
In certain other situations, moolib uses tree all-
reduce. We begin by describing these algorithms.

Tree all-reduce works by first constructing a binary
tree, with each peer represented as a node in the
tree. Then, starting from the leaves, data is sent
up the tree, the reduce operator is applied on
each step, until it reaches the root. Thereafter,
the final result is sent back towards the leaves to
distribute the result. The time complexity at any
given step of the algorithm is assumed to scale
with the maximum data that any peer sends or
receives in that step. Summed over all steps, we
get the time complexity of the entire algorithm.
This corresponds well with the assumptions that
peers have individual network interfaces that can

4moolib has helper functions to produce unique identifiers (uids). In practise, we found a combination of hostname,
process id and a random human-readable slug like Python’s coolname to be most helpful. An example would be
learnmachine7:4020365:mega-dragon.
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Figure 3: Comparison of Moolib vs NCCL all-reduce, reducing 128MB CUDA floating-point data over
an increasing number of machines using InfiniBand interconnect.

operate in parallel and that network bandwidth
is the limiting factor. Let N be the data size that we wish to all-reduce, and P be the number of peers.
Since any node in a binary tree has at most 2 children, and the depth of the binary tree is blog2(P )c,
we can calculate the worst-case time complexity as 2N(blog2(P )c.

The forest all-reduce method works by splitting the data up into T chunks, and performing one tree
reduction per chunk, in parallel. We will initially assume that T = P . The topology of each tree is
unique.

In the case of T = P , each peer is the root of one tree and a leaf in half of the trees. The total number
of steps to finish the algorithm is still blog2(P )c, but the bandwidth required for a single data transfer
is now N

T . Since a given peer is a leaf of T
2 trees, it needs to send N

T ·
T
2 = N

2 data in the first step.
The amount of data received by any node in this step is the same, as there are T

2 leaves, T
4 parents of

leaves, each one receives data from 2 children, and N
T ·

T
4 · 2 = N

2 . In the next step, since the trees are
binary, the number of nodes halves and so does the required bandwidth. This proceeds until it reaches
the root node, requiring a total time of N

2 + N
4 + N

8 + · · · ≈ N(1 − 1
2D

) ≈ N , where D = log2(P ) is
the depth of the tree. Once data has reached the root node, it needs to travel back towards the leaves
to distribute the results, doubling the required time to 2N , which means the time complexity of the
algorithm is constant with regards to the number of peers, and scales only with the size of the data.

When reducing tensor-like data where individual chunks can be reduced, moolib employs forest
all-reduce. For other kinds of data, e.g., serialized Python objects, moolib uses tree all-reduce instead.

3.5 Other Utilities
In addition to the components listed above, moolib also provides utilities to facilitate specific aspects
of distributed RL agent implementations, including the EnvPool, the Batcher and the Broker.

The EnvPool is an efficient implementation of ‘batched environments’, analogous to the ‘vectorized
environments’ of [20]. Due to limitations of the Python programming language when it comes to
parallelism, running several copies of the environment simultaneously requires using multiple operat-
ing system processes, which in turn requires inter-process communication (IPC). moolib’s EnvPool
implementation is based on semaphores in shared memory, which allows for a very fast handover of
observation and action buffers.

Next, the Broker facilitates peer discovery. In order to communicate, distributed peers within a single
run of a machine learning experiment must solve the problem of discovery, i.e., knowing how to find
each other. Since moolib allows the one-step discovery of all peers known to an already known peer,
discovery of all peers can be achieved by supplying a single central instance which we call the Broker.
Starting an instance of the Broker and pointing all peers to its known address offers a simple way to
allow discovery of all peers in moolib programs. Note that only a single Broker is necessary for any
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number of simultaneous independent experiments within the same network and all associated peers can
then be identified via a common group name.

Finally, to facilitate generating batched trajectories moolib also includes a Batcher class which
concatenates its inputs along a given dimension. This is used to generate sequences along a ‘time’
dimension, as well as to produce minibatches along a ‘batch’ dimension.

4 Experiments

4.1 Scaling Performance
In order to assess the scalability of moolib, we measure the all-reduce speed as we increase the number
of peers participating in the operation and compare to the performance of the Nvidia Collective
Communications Library (NCCL). As seen in Figure 3, moolib is competitive with NCCL, with strong
performance even at a large number of peers while additionally providing ease of use for distributed
machine learning implementations.

4.2 Performance on Atari
In order to validate our example agent implementation, we ran experiments on the Arcade Learning
Environment (ALE; also known as just ‘Atari’) [31]. We use the same model, comparable environment
settings as well as the same V-trace loss as in [13, 26] and compare to the baseline from [26], see
Figures 4 and 5. We match or exceed the performance of the TorchBeast agent on most levels. See
Appendix A.1 as well as the accompanying source code release for details.

Figure 4: moolib’s V-trace example agent on selected Atari games (first half). Here, the x axis is agent
steps (50 million agent steps corresponding to 200 million environment frames due to action repetitions)
while the y axis is undiscounted episode return.
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Figure 5: moolib’s V-trace example agent on selected Atari games (second half). Axes as in Figure 4.

5 Conclusion
We open-source moolib, a library that enables the implementation of distributed reinforcement learning
and other machine learning codebases. Our design aims to be simple, fast, and amenable to new research
needs, while being scalable to a large number of GPUs. Together with this library, we present example
user code which shows how moolib’s components can be used to implement common reinforcement
learning agents as a simple but scalable distributed network of homogeneous peers.

We discussed some aspects of moolib’s components and their implementation, in particular the
Accumulator and the all-reduce operation. We also evaluated moolib on the Atari task suite and
compared its performance to the TensorFlow IMPALA [13] implementation published by its authors as
well as to TorchBeast [26]; moolib performs as least as good as these baselines on most tasks, much
better on some. We also compared moolib’s raw performance with the more specialized NCCL, where
moolib proves to be competitive.
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A Appendix

A.1 Atari settings and hyperparameters
For our experiments on Atari, We use the same architecture as in [13, 26], namely a feed forward
convolutional network with residual connections, followed by a fully connected layer, followed by a
policy and a baseline head. We refer to the accompanying source code for the full details. We also use
the V-trace same loss function as in [13, 26]. A list of hyperparameters can be found in Table 1. A list
of settings for ALE can be found in Table 2. Note that we don’t follow the best-practises layed out in
[32] in order to stay comparable with [26].

Parameter Value

Actor batch size 128
Baseline cost 0.5
Discount rate γ 0.99
Entropy cost 0.0006
Grad norm clipped at 40
Optimizer (Adam) learning rate 0.0006
Optimizer (Adam) β1 0.9
Optimizer (Adam) β2 0.999
Optimizer (Adam) ε 10−8

Total steps 50M agent steps5
Unroll length 20
Learner batch size 32
Reward norm clipped at 1.0

Table 1: Settings for ALE

Setting Value

ALE version Release v0.7
OpenAI Gym version string ALE/game -v5
Observation downsampled to 84× 84
Resizing method bilinear (cv2.INTER_LINEAR)
Frame stacking 4
Action repeats 4
Frame pooling 2
No-ops at start 30
Color mode grayscale
Loss of life ends episode false
Max frames per episode 108K
Action space full (18 actions)
Sticky actions No

Table 2: Settings for ALE

5200M environment frames due to action repeats (frame skip).
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