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Figure 1: DeepGlobe Challenges: Example road extraction, building detection, and land cover classification training images
superimposed on corresponding satellite images.

Abstract

We present the DeepGlobe 2018 Satellite Image Under-
standing Challenge, which includes three public competi-
tions for segmentation, detection, and classification tasks
on satellite images (Figure 1). Similar to other chal-
lenges in computer vision domain such as DAVIS[21] and
COCO[33], DeepGlobe proposes three datasets and corre-
sponding evaluation methodologies, coherently bundled in
three competitions with a dedicated workshop co-located
with CVPR 2018.

We observed that satellite imagery is a rich and struc-
tured source of information, yet it is less investigated than
everyday images by computer vision researchers. However,
bridging modern computer vision with remote sensing data
analysis could have critical impact to the way we under-
stand our environment and lead to major breakthroughs in
global urban planning or climate change research. Keep-
ing such bridging objective in mind, DeepGlobe aims to
bring together researchers from different domains to raise
awareness of remote sensing in the computer vision com-
munity and vice-versa. We aim to improve and evaluate

state-of-the-art satellite image understanding approaches,
which can hopefully serve as reference benchmarks for fu-
ture research in the same topic. In this paper, we analyze
characteristics of each dataset, define the evaluation crite-
ria of the competitions, and provide baselines for each task.

1. Introduction

As machine learning methods dominate the computer vi-
sion field, public datasets and benchmarks have started to
play an important role for relative scalability and reliabil-
ity of different approaches. Driven by community efforts
such as ImageNet [45] for object detection, COCO [33] for
image captioning, and DAVIS [21] for object segmentation,
computer vision research had been able to push the limits of
what we can achieve, by using the same annotated datasets
and common training/validation conventions. Such datasets
and corresponding challenges increase the visibility, avail-
ability, and feasibility of machine learning models, which
brought up even more scalable, diverse, and accurate algo-
rithms to be evaluated on public benchmarks.
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We observe that satellite imagery is a powerful source of
information as it contains more structured and uniform data
compared to traditional images. Although computer vision
community has been accomplishing hard tasks on everyday
image datasets using deep learning and in contrast to pub-
lic datasets released for everyday media, satellite images are
only recently gaining attention from the community for map
composition, population analysis, effective precision agri-
culture, and autonomous driving tasks.

To direct more attention to such approaches, we present
DeepGlobe 2018, a Satellite Image Understanding Chal-
lenge, which (i) contains three datasets structured to solve
three different satellite image understanding tasks, (ii) orga-
nizes three public challenges to propose solutions to these
tasks, and (iii) gathers researchers from diverse fields to
unite all expertises to solve similar tasks in a collaborative
workshop. The datasets created and released for this com-
petition may serve as (iv) fair and durable reference bench-
marks for future research in satellite image analysis. Fur-
thermore, since the challenge tasks involve “in the wild”
forms of classic computer vision problems (e.g., image
classification, detection, and semantic segmentation), these
datasets have the potential to become valuable testbeds for
the design of robust vision algorithms, beyond the area of
remote sensing.

The three tracks for DeepGlobe are defined as follows:

• Road Extraction Challenge: In disaster zones, espe-
cially in developing countries, maps and accessibility
information are crucial for crisis response. We pose the
challenge of automatically extracting roads and street
networks remotely from satellite images as a first step
for automated crisis response and increased map cov-
erage for connectivity.

• Building Detection Challenge: As evidenced by re-
cent catastrophic natural events, modeling population
dynamics is of great importance for disaster response
and recovery. Thus, modeling urban demographics is
a vital task and detection of buildings and urban areas
are key to achieve it. We pose the challenge of au-
tomatically detecting buildings from satellite images
for gathering aggregate urban information remotely as
well as for gathering detailed information about spatial
distribution of urban settlements.

• Land Cover Classification Challenge: Automatic
categorization and segmentation of land cover is es-
sential for sustainable development, agriculture [11],
forestry [17, 16] and urban planning [20]. Therefore,
we pose the challenge of classifying land types from
satellite images for economic and agricultural automa-
tion solutions, among the three topics of DeepGlobe,
probably as the most studied one in the intersection of
remote sensing and image processing.

We currently host three public competitions based on the
tasks of extracting roads, detecting buildings, and classify-
ing land cover types in the satellite images. The combined
datasets include over 10K satellite images. Section 2 ex-
plains the characteristics of images, details the annotation
process, and introduces the division of training, validation,
and test sets. Section 3 describes the tasks in detail and pro-
poses the evaluation metric used for each task. Section 4
provides an overview of the current approaches and gives
our preliminary baselines for the competitions.

The results of the competitions will be presented in the
DeepGlobe 2018 Workshop during the 2018 International
Conference on Computer Vision and Pattern Recognition
(CVPR) in Salt Lake City, Utah on June 18th, 2018. As of
May 15st, 2018, more than 950 participants have registered
in DeepGlobe competitions and there are more than 90 valid
submissions in the leaderboard over the three tracks.

2. Datasets
In this Section, we will discuss the dataset and imagery

characteristics for each DeepGlobe track, followed by an
explanation of the methodology for the annotation process
to obtain the training labels.

2.1. Road Extraction

There have been several datasets proposed in the liter-
ature for benchmarking algorithms for semantic segmenta-
tion of overhead imagery. Some of these can be enumer-
ated as the TorontoCity[54] dataset, the ISPRS 2D semantic
labeling dataset [3], the Mnih dataset [39], the SpaceNet
dataset [2] and the ISPRS Benchmark for Multi-Platform
Photogrammetry [4].

The satellite imagery used in DeepGlobe for the road ex-
traction challenge is sampled from the DigitalGlobe +Vivid
Images dataset [1]. It covers images captured over Thai-
land, Indonesia, and India. The ground resolution of the im-
age pixels is 50 cm/pixel. The images consist of 3 channels
(Red, Green and Blue). Each of the original geotiff images
are 19′584 × 19′584 pixels. The annotation process starts
by tiling and loading these images in QGIS[7]. Based on
this tiling, we determine useful areas to sample from those
countries. For designating useful areas, we sample data uni-
formly between rural and urban areas. After sampling we
select the corresponding DigitalGlobe tiff images belong-
ing to those areas. These images are then cropped to extract
useful subregions and relevant subregions are sampled by
GIS experts. (A useful subregion denotes a part of the im-
age where we have a good relative ratio between positive
and negative examples.) Also, while selecting these sub-
regions, we try to sample interesting areas uniformly, e.g.,
those with different types of road surfaces (unpaved, paved,
dirt roads), rural and urban areas, etc. An example of one
image crop is illustrated in the left panel of Figure 1. It is
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Figure 2: Road labels are annotated on top of the satellite
image patches, all taken from DeepGlobe Road Extraction
Challenge dataset.

important to note that the labels generated are pixel-based,
where all pixels belonging to the road are labeled, instead
of labeling only the centerline.

The final road dataset consists of a total of 8′570 im-
ages and spans a total land area of 2′220km2. Of those,
6′226 images (72.7% of the dataset), spanning a total of
1′632km2, were split as the training dataset. 1′243 images,
spanning 362km2, were chosen as the validation dataset
and 1′101 images were chosen for testing which cover a
total land area of 288km2. The split of the dataset to
training/validation/testing subsets is conducted by random-
izing among tiles to aim for an approximate distribution of
70%/15%/15%. The training dataset consists of 4.5% pos-
itive and 95.5% negative pixels, the validation dataset con-
sists of 3% positive and 97% negative pixels and the test
dataset consists of 4.1% positive and 95.9% negative pix-
els. We selected a diverse set of patches to demonstrate
road labels annotated on the original satellite images in Fig-
ure 2. As shown, the urban morphology, the illumination
conditions, the road density, and the structure of the street
networks are significantly diverse among the samples.

2.2. Building Detection

DeepGlobe Building Detection Challenge uses the
SpaceNet Building Detection Dataset. Previous compe-
titions on building extraction using satellite data, PRRS
2008 [10] and ISPRS [3, 5], were based on small areas (a
few km2) and in some cases used a combination of opti-

cal data and LiDAR data. The Inria Aerial Image Labeling
covered 810km2 area with 30cm resolution in various Eu-
ropean and American cities [35]. It addressed model porta-
bility between areas as some cities were included only in
training data and some only in testing data. SpaceNet was
the first challenge that involved large areas including cities
in Asia and Africa.

The dataset includes four areas: Las Vegas, Paris, Shang-
hai, and Khartoum. The labeled dataset consists of 24′586
200m × 200m (corresponding to 650 × 650 pixels) non-
overlapping scenes containing a total of 302′701 building
footprints across all areas. The areas are of urban and sub-
urban nature. The source imagery is from the WorldView-3
sensor, which has both a 31cm single-band panchromatic
and a 1.24m multi-spectral sensor providing 8-band multi-
spectral imagery with 11-bit radiometric resolution. A GIS
team at DigitalGlobe (now Radiant Solutions) fully anno-
tated each scene, identifying and providing a polygon foot-
print for each building to the published specification, which
were extracted to best represent the building footprint (see
the central panel of Figure 1 for an example). Any par-
tially visible rooftops were approximated to represent the
shape of the building. Adjoining buildings were marked
as a single building. The dataset was split 60%/20%/20%
for train/validation/test. As per the nature of human-based
building annotation, some small errors are inevitable espe-
cially for rural areas. We leave the analysis of annotater
disagreement for future work.

Each area is covered by a single satellite image, which
constitutes an easier problem to solve compared to data
where different parts are covered by images having different
sun and satellite angles, and different atmospheric condi-
tions. Atmospheric compensation process can process im-
ages to create data that reflects surface reflectance there-
fore reducing effects of atmosphere, but different shadow
lengths and different satellite orientation can possibly cre-
ate problems for detection algorithms if models are used
to classify images acquired at different time with different
sun/satellite angles.

The SpaceNet data[9] is distributed under a Creative
Commons Attribution-ShareAlike 4.0 International License
and is hosted as a public dataset on Amazon Web Services
and can be downloaded for free.

2.3. Land Cover Classification

Semantic segmentation started to attract more research
activities as a challenging task. The ISPRS Vaihingen and
Potsdam [3] and the Zeebruges data [22] are popular public
datasets for this task. The ISPRS Vaihingen dataset con-
tains 33 images of different size (on average 2′000× 2′000
pixels), with 16 fully annotated images. ISPRS Potsdam
contains 38 images of size 6′000 × 6′000 pixels, with 24
annotated images. Annotations for both datasets have 6
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classes. Vaihingen and Potsdam are both focused in urban
city area, with classes limited to urban targets such as build-
ings, trees, cars. Zeebruges is a 7-tiles dataset (each one
of size 10′000 × 10′000) with 8 classes (both land cover
and objects), acquired both by RGB images at 5cm resolu-
tion and a LiDAR point cloud). Dstl Kaggle dataset [47]
covered 1km2 of urban area with RGB and 16-band (in-
cluding SWIR) WorldView-3 images. Besides urban areas,
another important application of land cover classification is
humanitarian studies focusing more on rural areas at mid-
resolution (∼ 30m/pixel). For similar problems Landsat
data is (i.e., crop type classification[31]). Still, the low res-
olution of Landsat data limits the information it can provide.

The DeepGlobe Land Cover Classification Challenge is
the first public dataset offering high-resolution sub-meter
satellite imagery focusing on rural areas. Due to the variety
of land cover types and to the density of annotations, this
dataset is more challenging than existing counterparts de-
scribed above. DeepGlobe Land Cover Classification Chal-
lenge dataset contains 1′146 satellite images of size 2′448×
2′448 pixels in total, split into training/validation/test sets,
each with 803/171/172 images (corresponding to a split of
70%/15%/15%). All images contain RGB data, with a pixel
resolution of 50 cm, collected from the DigitalGlobe Vivid+
dataset as described in Section 2.1. The total area size of the
dataset is equivalent to 1′716.9km2.

Each satellite image is paired with a mask image for land
cover annotation. The mask is an RGB image with 7 classes
following the Anderson Classification [14]. The class dis-
tributions are available in Table 1.

• Urban land: Man-made, built up areas with human ar-
tifacts.

• Agriculture land: Farms, any planned (i.e. regular)
plantation, cropland, orchards, vineyards, nurseries,
and ornamental horticultural areas; confined feeding
operations.

Figure 3: Some example land cover class label (right) and
corresponding original image (left) pairs from interesting
areas. Label colors are given in Table 1.

• Rangeland: Any non-forest, non-farm, green land,
grass.

• Forest land: Any land with at least 20% tree crown
density plus clear cuts.

• Water: Rivers, oceans, lakes, wetland, ponds.

• Barren land: Mountain, rock, dessert, beach, land with
no vegetation.

• Unknown: Clouds and others.

class pixel count proportion
Urban 642.4M 9.35%

Agriculture 3898.0M 56.76%
Rangeland 701.1M 10.21%

Forest 944.4M 13.75%
Water 256.9M 3.74%
BarrenBarrenBarrenBarrenBarrenBarrenBarrenBarrenBarrenBarrenBarrenBarrenBarrenBarrenBarrenBarrenBarren 421.8M 6.14%

Unknown 3.0M 0.04%

Table 1: Class distributions in the DeepGlobe land cover
classification dataset.

The annotations are pixel-wise segmentation masks cre-
ated by professional annotators (see the right hand panel
in Figure 1). The images in the dataset were sampled
from full-size tiles to assure that all land cover classes have
enough representation. In our specifications, we indicated
that any instance of a class larger than a roughly 20m×20m
would be annotated. However, land cover pixel-wise clas-
sification from high-resolution satellite imagery is still an
exploratory task, and some small human error is inevitable.
In addition, we intentionally did not annotate roads and
bridges because it is already covered in the road extraction
challenge. Some example labeled areas are demonstrated in
Figure 3 as examples of farm, forest, and urban dominant
tiles, and a mixed tile.

3. Tasks and Evaluations
In this section, we formally define the expected task in

each challenge and explain the evaluation metrics used in
terms of their computation and implementation.

3.1. Road Extraction

We formulate the task of road extraction from satellite
images as a binary classification problem. Each input is a
satellite image. The solution is expected to predict a mask
for the input (i.e., a binary image of the same height and
width as the input with road and non-road pixel labels).

There have been previous challenges on road mask ex-
traction, e.g., the SpaceNet [2]. Their metric was based on
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the Averaged Path Length Similarity (APLS) metric [51]
that measures distance between ground truth road network
represented in vector form with a solution graph also in vec-
tor form. Any proposed road graph G with missing edges
(e.g., if an overhanging tree is inferred to sever a road) is
penalized by the APLS metric, so ensuring that roads are
properly connected is crucial for a high score.

In our case, we use the pixel-wise Intersection over
Union (IoU ) score as our evaluation metric for each image,
defined as Eqn. (1).

IoUi =
TPi

TPi + FPi + FNi
, (1)

where TPi is the number of pixels that are correctly pre-
dicted as road pixel, FPi is the number of pixels that are
wrongly predicted as road pixel, and FNi is the number
of pixels that are wrongly predicted as non-road pixel for
image i. Assuming there are n images, the final score is
defined as the average IoU among all images (Eqn. (2)).

mIoU =
1

n

n∑
i=1

IoUi (2)

3.2. Building Detection

In DeepGlobe, building detection is based on a binary
segmentation task, where the input is a satellite image and
the output is a list of building polygons. Multiple perfor-
mance measures can be applied to score participants. PRRS
2008 [10] challenge used 8 different performance measures.
Our evaluation metric for this competition is an F1 score
with the matching algorithm inspired by Algorithm 2 in the
ILSVRC paper applied to the detection of building foot-
prints [45]. This metric was decided to emphasize the im-
portance of both accurate detection of buildings and the im-
portance of complete identification of building outlines in
an area. Buildings with a pixel area of 20 pixels or less
were discarded, as these small buildings are artifacts of the
image tiling process when a tile boundary cuts a building
into multiple parts.

A detected building is scored as a true positive if the IoU
(Eqn.3) between the ground truth (GT) building area A and
the detected building area B is larger than 0.5. If a proposed
building intersects with multiple GT buildings, then the GT
building with the largest IoU value will be selected.

IoU =
Area (A ∩B)

Area (A ∪B)
(3)

The solution score is defined by F1 measure (Eqn. 4),
where TP is number of true positives, M is the number
of ground truth buildings and N is the number of detected
buildings.

F1 = 2 ∗ precision ∗ recall
precision + recall

=
2 ∗ TP
M +N

(4)

The implementation and detailed description of scoring
can be found in the SpaceNet Utilities GitHub repo [9]. We
score each area separately and the final score is the average
of scores for each area as in Eqn. 5.

F1 =
F1AOI1 + F1AOI2 + F1AOI3 + F1AOI4

4
(5)

3.3. Land Cover Classification

The land cover classification problem is defined as a
multi-class segmentation task to detect areas of classes
mentioned in Section 2.3. The evaluation is computed based
on the accuracy of the class labels and averages over classes
are considered. The class ‘unknown’ is removed from the
evaluation, as it does not correspond to a land cover class,
but rather to the presence of clouds.

Each input is a satellite image. The solution is expected
to predict an RGB mask for the input, i.e., a colored image
of the same height and width as the input image. The ex-
pected result is a land cover map of same size in pixels as
the input image, where the color of each pixel indicates its
class label.

There have been previous challenges on road mask ex-
traction (e.g., the TiSeLaC [8]), which emphasized the us-
age of temporal information of the dataset. Our challenge,
on the other hand, uses images captured at one timestamp
as the input, thus more flexible in real applications. Other
previous land cover / land use semantic segmentation chal-
lenges as the ISPRS [3] or the IEEE GRSS data fusion
contests [22, 57] also used single shot ground truths and
reported overall and average accuracy scores as evaluation
metrics.

Similar to the road extraction challenge, we use the
pixel-wise Intersection over Union (IoU ) score as our eval-
uation metric. It was defined slightly differently for each
class, as there are multiple categories (Eqn. 6). Assuming
there are n images, the formulation is defined as,

IoUj =

∑n
i=1 TPij∑n

i=1 TPij +
∑n

i=1 FPij +
∑n

i=1 FNij
, (6)

where TPij is the number of pixels in image i that are cor-
rectly predicted as class j, FPij is the number of pixels in
image i that are wrongly predicted as class j, and FNij is
the number of pixels in image i that are wrongly predicted
as any class other than class j. Note that we have an un-
known class that is not active in our evaluation (i.e., the
predictions on such pixels will not be added to the calcula-
tion and thus do not affect the final score). Assuming there
are k land cover classes, the final score is defined as the
average IoU among all classes as in Eqn. (7).

mIoU =
1

k

k∑
j=1

IoUj (7)
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4. State-of-the-art and Baselines

The tasks defined in the previous section have been ex-
plored in different datasets with different methods, some of
which are also shared publicly. In this section we will intro-
duce the state of the art approaches for each task compar-
ing their dataset to DeepGlobe. As a baseline, we will also
share our preliminary results based on current approaches
on each dataset, which sets the expected success figures for
the challenge participants as well as guide them to develop
novel approaches.

4.1. Road Extraction

Automating the generation of road networks is exten-
sively studied in the computer vision and computer graph-
ics world. The procedural generation of streets [13, 23]
creates detailed and structurally realistic models, however
written grammars are not based on the real world. On
the other hand, some inverse procedural modeling (IPM)
approaches [12] process real-world data (images, LiDAR,
etc.) to extract realistic representations. Following the
example-based generation idea, another approach is to use
already existing data resources, such as aerial images [37,
38], or geostationary satellite images [26, 58]. Similar
approaches extract road networks using neural networks
for dynamic environments [53] from LiDAR data [59],
using line integrals [32] and using image processing ap-
proaches [43, 55].

Similar to the experiments of [26] and [37], we explored
our baseline approach to follow some state-of-the-art deep
learning models [19, 24, 28, 44]. In contrast to those ap-
proaches, our dataset is more diverse, spanning three coun-
tries with significant changes in topology and climate; and
significantly larger in area and size. The best results were
obtained by training a modified version of DeepLab [24] ar-
chitecture with ResNet18 backbone and Focal Loss [49]. In
order to provide a baseline to evaluate the network, we only
added simple rotation as data augmentation, and we did not
apply any post-processing to the results, only binarizing all
results at a fixed threshold of 128. With this setup, we ob-
tained an IoU score of 0.545 after training 100 epochs. Two
example results are given in Figure 4, showing the satellite
image, extracted road mask, and ground truth road mask
from left to right. The vanishing roads suggest that post-
processing techniques other than simple thresholding would
yield more connected roads.

4.2. Building Detection

Building detection and building footprint segmentation
has been subject of research for long time. Early work
was based on pan-sharpened images and was using land
cover classification to find vegetation, shadows, water and
man-made areas followed by segmentation and classifica-

Figure 4: Example results of our road extraction method
with an IoU score of 0.545, with satellite image (left), ex-
tracted road mask (middle), and the ground truth (right).

tion of segments into building/non-building areas [10]. Re-
searchers sometimes transformed pixels into HSV color
space, which alleviates effects of different illumination on
pitched roofs. In [41] the author used shadow information
and vegetation/shadow/man-made classification combined
with graph approach to detect buildings.

Mnih [40] used two locally connected NN layers fol-
lowed by a fully connected layer. He also took into account
omission noise (some objects are not marked in the ground
truth data) by modifying loss function and mis-registration
noise (such noise exists if the ground truth is not based on
image, but on some other data, such as OSM [6] or survey
data) by allowing for translational noise. Vakalopoulou et
al. [50] used convolutional layers of AlexNet to extract fea-
tures that were used as input to SVM classifier which was
classifying pixels into building/non-building classes. Saito
and Aoki [46] used CNN based approaches for building and
road extraction. Liu et al. [34] used FCN-8 segmentation
network analyzing IR, R and G data with 5 convolutional
layers and augmentation with a model based on nDSM (nor-
malized Digital Surface Model) and NDVI. Inria competi-
tion solutions described in [29] used U-Net or SegNet ap-
proaches to segmentation.

The current approach to building detection on our dataset
uses the top scoring solutions from the SpaceNet Building
Detection Round 2 result. The final results from the 2017
competition are shown in Table 2. It is important to note that
top algorithms performed best in Las Vegas and worst in
Khartoum, the visible structural organization and illumina-
tion variance in different urban morphologies are probable
causes for this performance loss in the Khartoum data. The
winning algorithm by competitor XD XD used an ensemble
of 3 U-Net models [44] to segment an 8-band multi-spectral
image with additional use of OpenStreetMap [6] data and
then to extract building footprints from the segmentation
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Total Individual City Scores
Rank Competitor Score Las Vegas Paris Shanghai Khartoum

1 XD XD 0.693 0.885 0.745 0.597 0.544
2 wleite 0.643 0.829 0.679 0.581 0.483
3 nofto 0.579 0.787 0.584 0.520 0.424

Table 2: Final results from SpaceNet Building Detection Challenge Round2 (2017), as a baseline for building detection.

output. An ensemble classifier was trained on each of the 4
AOIs individually . This segmentation approach produced
high scores for IoU with an average larger than 0.8, while
the IoU threshold for the competition is 0.5. The algorithm
struggles with small objects and in locations where build-
ings are very close to each other. The detailed descriptions
of the algorithms can be found in [25, 42]. Figure 5 shows
the high performance of the algorithm in Las Vegas and in
the bottom left you can see the algorithm has problems ex-
tracting close buildings in Paris.

Building detection can be followed by building footprint
extraction, which can be used with DSM information to cre-
ate 3D models of buildings [5, 15, 27]. 3D models can
be combined with material classification and images taken
from oblique angles to create accurate and realistic models
for large scenes [30].

4.3. Land Cover Classification

Land Cover Classification from satellite imagery is a
very active research problem in remote sensing. Earlier
work mostly focus on image classification, where each im-
age is only classified to one label. Yang and Newsam[56]
used Bag-of-Visual-Words and SVM to classify a dataset of
2′100 images containing 21 classes each with 100 images
of size 256 × 256 pixels. The best accuracy reported[56]
was 81.19%, and the data was released as UC Merced
dataset[56], which later became a popular dataset for land
cover image classification. Scott et al.[48] applied DCNN-
based approach on the UCM dataset and obtained a best
accuracy of 98.5% with ResNet-50.

Compared to image-level classification problem, pixel-
wise classification, or semantic segmentation, started to
attract more research activities as a challenging task, for
which deep learning pipelines are becoming the state of
the art [60]. Volpi and Tuia [52] proposed to use an
downsample-upsample CNN-based architecture and ob-
tained an F1 score of 83.58% on Vaihingen and 87.97%
on Potsdam. Audebert et al. [18] trained a variant of the
SegNet architecture with multi-kernel convolutional layer,
and achieved 89.8% on Vaihingen. Marmanis and col-
leagues [36] achieved similar performances using an en-
semble of CNNs models trained to recognized classes and
using edges information between classes. Authors in [22]
performed a comparison of several state of art algorithms on

Figure 5: Results from SpaceNet baseline. From top left,
clockwise: Vegas, Vegas, Khartoum, Paris. In all panels, the
blue outline represents the ground truth, the green outlines
are true positives, the red are false positives.

the Zeebruges dataset, including kernel-based, fine-tuned
VGG models and CNN trained from scratch.

We also performed pixel-wise classification on our
DeepGlobe land cover data, by designing a CNN architec-
ture based on DeepLab [24] using ResNet18 backbone with
atrous spatial pyramid pooling (ASPP) block and batch nor-
malization. We used data augmentation by integrating ro-
tations and also weighted classes based on class distribu-
tions (see Table 1). This approach achieved an IoU score
of 0.433 at epoch 30 with a 512×512 patch size.

Example results are demonstrated in Figure 6, our result
on the left, satellite image in the middle, and ground truth on
the right. Note that the results and the IoU scores reported
are the direct segmentation results from our model without
post-processing. Harder distinctions like farms, rangelands,
and forests are well-conceived by our model (third and last
rows). Small structures not annotated in the ground truth,
such as little ponds (top-left), and narrow beaches (second
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Figure 6: Some result patches (left) produced by our land
cover classification baseline approach, paired with the cor-
responding satellite image (middle) and the ground truth
(right).

row left and fourth row right) are also correctly classified by
our model. Such cases, however, decreases the IoU score.
Although the granularity of the segmentation looks superior
to the ground truth (left of first two rows), applying a CRF
or a clustering approach would improve the IoU scores.

5. Conclusions
We introduced the DeepGlobe Satellite Image Under-

standing Challenge. DeepGlobe 2018 provides datasets,
challenges, and a CVPR 2018 workshop structured around
the three tasks of understanding roads, buildings, and land
cover types from satellite images. In this paper, we analyzed
the datasets and explained the evaluation metrics for the
public challenges. We also provided some baselines com-
pared to the state-of-the-art approaches. Based on the cur-
rent feedback, we believe that the DeepGlobe datasets will
become valuable benchmarks in satellite image understand-
ing, enabling more collaborative interdisciplinary research
in the area, that can be fairly compared and contrasted us-
ing our benchmark, leading to new exciting developments
at the intersection of computer vision, machine learning, re-
mote sensing, and geosciences.
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Torresani, Nikhil Naik, Bedrich Benes, Adam van Etten,
Begum Demir, Matt Leotta, and Pau Kung.

The last word is spared to workshop sponsors for their
support in DeepGlobe. Thank you Facebook, DigitalGlobe,
IEEE GRSS, Uber, and CrowdAI as our gold sponsors, VSI
as our silver sponsor, and Kitware as our bronze sponsor.
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