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Abstract

There is renewed interest in simulating language emergence among deep neu-
ral agents that communicate to jointly solve a task, spurred by the practical aim
to develop language-enabled interactive AIs, as well as by theoretical questions
about the evolution of human language. However, optimizing deep architectures
connected by a discrete communication channel is technically challenging. We
introduce EGG, a toolkit that simplifies the implementation of emergent-language
communication games. EGG’s modular design provides a set of building blocks
that the user can combine to create new games, easily navigating the optimization
and architecture space. We hope that the tool will lower the technical barrier, and
encourage researchers from various backgrounds to work in this exciting area.

1 Introduction

Studying the languages that emerge when neural agents interact with each other recently became
a vibrant area of research (Havrylov and Titov, 2017; Lazaridou et al., 2016, 2018; Kottur et al.,
2017; Bouchacourt and Baroni, 2018; Lowe et al., 2019). Interest in this scenario is fueled by the
hypothesis that the ability to interact through a human-like language is a prerequisite for genuine AI
(Mikolov et al., 2016; Chevalier-Boisvert et al., 2019). Furthermore, such simulations might lead to
a better understanding of both standard NLP models (Chaabouni et al., 2019) and the evolution of
human language itself (Kirby, 2002).

For all its promise, research in this domain is technically very challenging, due to the discrete nature
of communication. The latter prevents the use of conventional optimization methods, requiring
either Reinforcement Learning algorithms (e.g., REINFORCE; Williams, 1992) or the Gumbel-
Softmax relaxation (Maddison et al., 2016; Jang et al., 2016). The technical challenge might be
particularly daunting for researchers whose expertise is not in machine learning, but in fields such
as linguistics and cognitive science, that could contribute to this interdisciplinary research area.

To lower the starting barrier and encourage high-level research in this domain, we introduce the EGG
(Emergence of lanGuage in Games) toolkit. EGG aims at (1) providing reliable building bricks for
quick prototyping, (2) serving as a library of pre-implemented games, and (3) providing tools for
analyzing the emergent languages.

Notable features of EGG include: (a) Primitives for implementing single-symbol or variable-length
communication (with vanilla RNNs (Elman, 1990), GRUs (Cho et al., 2014), LSTMs (Hochreiter
and Schmidhuber, 1997), and Transformers (Vaswani et al., 2017)), (b) Training with optimization
of the communication channel through REINFORCE or Gumbel-Softmax relaxation via a common
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interface; (c) Simplified configuration of the general components, such as check-pointing, optimiza-
tion, Tensorboard support, etc.; (d) A simple CUDA-aware command-line tool for hyperparameter
grid-search. EGG is implemented in PyTorch (Paszke et al., 2017) under the MIT license.

2 EGG’s architecture

In the first iteration of EGG, we concentrate on a simple class of games, involving a single, unidirec-
tional (Sender → Receiver) message. In turn, messages can be either single-symbol or multi-symbol
variable-length sequences. Our motivation for starting with this setup is two-fold. First, it corre-
sponds to classic signaling games (Lewis, 1969), it already covers a large portion of the literature
(e.g., 5 out of 6 relevant studies mentioned in Introduction) and it allows exploring many interesting
research questions. Second, it constitutes a natural first step for further development; in particular,
the majority of components should remain useful in multi-directional, multi-step setups.

Design principles As different training methods and architectures are used in the literature, our
primary goal is to provide EGG users with the ability to easily navigate the space of common design
choices. Building up on this idea, EGG makes switching between Gumbel-Softmax relaxation-
based and REINFORCE-based training effortless, through the simple choice of a different wrapper.
Similarly, one can switch between one-symbol communication and variable-length messages with
little changes in the code.

We aim to maintain EGG minimalist and “hackable” by encapsulating the user-implemented agent
architectures, the Reinforce/GS agent wrappers and the game logic into PyTorch modules. The user
can easily replace any part.

Finally, since virtually any machine-learning experiment has common pieces, such as setting the
random seeds, configuring the optimizer, model check-pointing, etc., EGG pre-implements many of
them, reducing the necessary amount of boilerplate code to the minimum.

EGG design EGG, in its first iteration, operates over the following entities. Firstly, there are two
distinct agent roles: Sender and Receiver. Sender and Receiver are connected via a one-directional
communication channel from the former to the latter, that has to produce the game-specific output.

The next crucial entity is Game. It encapsulates the agents and orchestrates the game scenario:
feeding the data to the agents, transmitting the messages, and getting the output of Receiver. Figure 1
illustrates EGG’s game flow in a specific example. Game applies a user-provided loss function,
which might depend on the outputs of Receiver, the message transmitted, and the data. The loss is
minimized by Trainer. Trainer also controls model checkpointing, early stopping, etc.

The Trainer and Game modules are pre-implemented in EGG. In a typical scenario, the communica-
tion method (single or multiple symbol messages) will be implemented by EGG-provided wrappers.
As a result, what is left for the user to implement consists of: (a) the data stream, (b) core (non-
communication-related) parts of the agents, (c) the loss. The data interface that is expected by
Trainer is an instance of the standard PyTorch data loader utils.data.DataLoader.

To implement Sender, the user must define a module that consumes the data and outputs a tensor.
On Receiver’s side, the user has to implement a module that takes an input consisting of a message
embedding and possibly further data, and generates Receiver’s output.

3 Optimizing the communication channel in EGG

EGG supports two widely adopted strategies for learning with a discrete channel, Gumbel-Softmax
relaxation (used, e.g., by Havrylov and Titov (2017)) and REINFORCE (used, e.g., by Lazaridou
et al. (2016)). Below, we briefly review both of them.

Gumbel-Softmax relaxation is based on the Gumbel-Softmax (GS) distribution (Maddison et al.,
2016; Jang et al., 2016), that allows to approximate one-hot samples from a Categorical distribution.
At the same time, GS admits reparametrization, hence allows backpropagation-based training. As a
result, if Receiver and the game loss are differentiable w.r.t. their inputs, we can get gradients of all
game parameters, including those of Sender, via conventional backpropagation.
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Figure 1: Example of EGG’s game flow when using REINFORCE. White boxes (Sender and Re-
ceiver) represent the user-implemented agent architectures. The colored boxes are EGG-provided
wrappers that implement a REINFORCE-based scenario. SymbolGameReinforce is an instance of
the Game block, which sets up single-symbol Sender/Receiver game optimized with REINFORCE.

Figure 2: MNIST game: Defining and instantiating the user-defined parts of the agents’ architecture.

(a) Single-symbol communication, Gumbel-
Softmax relaxation.

(b) Single-symbol communication, REIN-
FORCE.

(c) Variable-length communication, Gumbel-
Softmax relaxation.

(d) Variable-length communication, REIN-
FORCE.

Figure 3: MNIST game: The user can choose different communication wrappers to switch between
training regimes (Gumbel-Softmax or REINFORCE) and communication type (single-symbol or
variable-length messages).

Figure 4: MNIST game: Once the agents and the game are instantiated, the user must pass them to
a Trainer, which implements the training/validation loop, check-pointing, etc.
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REINFORCE is a standard Reinforcement Learning algorithm (Williams and Peng, 1991). The
gradient estimate is found by sampling messages and outputs. A standard trick to reduce the variance
of the estimate is to subtract an action-independent baseline from the optimized loss (Williams,
1992). EGG uses the running mean baseline.

Importantly, REINFORCE allows us to optimize agents even if the loss is not differentiable (e.g.,
0/1 loss). However, if the loss and Receiver are differentiable, this can be leveraged by a “hybrid”
approach: the gradient of Receiver’s parameters can be found by backpropagation, while Sender is
optimized via REINFORCE. This is a special case of gradient estimation using stochastic computa-
tion graphs (Schulman et al., 2015), and it is also supported in EGG.

4 Implementing a game

In this Section we walk through the main steps to build a communication game in EGG. We illustrate
them through a MNIST (LeCun et al., 1998) communication-based autoencoding task: Sender ob-
serves an image and sends a message to Receiver. In turn, Receiver tries to reconstruct the image. We
only cover here the core aspects of the implementation, ignoring standard pre- and post-processing
steps, such as data loading. The full implementation can be found in an online tutorial.

We start by implementing the agents’ architectures, as shown in Figure 2. Sender gets an input image
to be processed by its pre-trained vision module, and returns its output after a linear transforma-
tion. The way Sender’s output will be interpreted depends on the type of the used communication
(discussed below). Receiver gets an input from Sender and returns an image-sized output with pixels
valued in [0, 1]. Again, depending on the type of channel, the Receiver input will have a different
semantics.

In the case of one-symbol communication, Sender’s output is interpreted as logits of a distribution
over the message vocabulary. Hence, the output dimensionality defines the size of the vocabulary.
In the case of variable-length messages, Sender’s output specifies the initial hidden state of an RNN
cell. This cell is then “unrolled” to generate a message, until the end-of-sequence symbol (eos) is
produced or maximum length is reached. Receiver’s input is an embedding of the message: either
the embedding of the single-symbol message, or the last hidden state of the RNN cell.

Once Sender and Receiver are defined, the user wraps them into EGG-implemented wrappers which
determine the communication and optimization scenarios. Importantly, the actual user-specified
Sender and Receiver architectures can be agnostic to whether single-symbol or variable-length com-
munication is used; and to whether Gumbel-Softmax relaxation- or REINFORCE-based training
is performed. In Figure 3 we illustrate different communication/training scenarios: (a) single-
symbol communication, trained with Gumbel-Softmax relaxation, (b) single-symbol communica-
tion, trained with REINFORCE, (c) variable-length communication, trained with Gumbel-Softmax
relaxation, (d) variable-length communication, trained with REINFORCE. After defining the Game
instance, the user has only to pass it to core.Trainer, as shown in Figure 4, and start training.

5 Some pre-implemented games

EGG contains implementations of several games. They (a) illustrate how EGG can be used to ex-
plore interesting research questions, (b) provide reference usage patterns and building blocks, (c)
serve as means to ensure reproducibility of studies reported in the literature. For example, EGG in-
corporates an implementation of the signaling game of Lazaridou et al. (2016) and Bouchacourt and
Baroni (2018). Finally, EGG provides a pre-implemented game that allows to train agents entirely
via the command line and external input/output files. We hope this will lower the learning curve for
those who want to experiment with language emergence without previous coding experience.

6 Conclusion and future work

We introduced EGG, a toolkit for research on emergence of language in games. We outlined its main
features design principles. We briefly reviewed how training with a discrete communication channel
is performed. Finally, we walked through the main steps for implementing a MNIST autoencoding
game using EGG.
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In future, we want to support multi-direction and multi-step communication scenarios. We also
want to add more advanced tooling for analyzing the properties of the emergent languages (such as
compositionality Andreas, 2019). Finally, we will continue to extend the set of implemented games.
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