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Abstract

Automated detection of abusive language on-
line has become imperative. Current sequen-
tial models (LSTM) do not work well for long
and complex sentences while bi-transformer
models (BERT) are not computationally ef-
ficient for the task. We show that classi-
fiers based on syntactic structure of the text,
dependency graphical convolutional networks
(DepGCNs) can achieve state-of-the-art perfor-
mance on abusive language datasets. The over-
all performance is at par with of strong base-
lines such as fine-tuned BERT. Further, our
GCN-based approach is much more efficient
than BERT at inference time making it suitable
for real-time detection.

1 Introduction

Abusive language usage in online social media is
a grave issue affecting the interactions of users
online. In a study conducted by Pew Research Cen-
ter1, 60% of Internet users have personally experi-
enced harassment online. Social media websites,
like Twitter and Facebook, allow users to report ha-
rassing content. However, due to the sheer volume
of data, timely human curation of all reported con-
tent is not possible. Besides, there is also a need to
filter these abusive content proactively. Therefore,
there is an increased interest in automated detection
and moderation of abusive speech in text (Waseem
and Hovy, 2016; Vidgen et al., 2019).

Abusive speech is defined as an attack targeted
towards a particular individual or entity belonging
to a protected group (protected group may include,
but are not always limited to, religious, gender or
racial minorities) (ElSherief et al., 2018). Thus,
abusive speech identification can be cast as a re-
lation extraction problem in which the goal is to
detect a "hate" or "attack" relation that links the

∗This work was done while the author was at Facebook.
1https://pewrsr.ch/2XzABRo

speaker to a protected group (the object of the at-
tack).

Current state-of-the-art methods in abusive
language detection use either n-gram features
(Waseem and Hovy, 2016; Davidson et al., 2017)
or employ sequential deep learning models like
CNN or LSTM (Zhang et al., 2018b; Badjatiya
et al., 2017). These methods do not work well to
capture semantic word meanings or long-range at-
tack in text (such as long clauses or complex scop-
ing shown in online attacks). Large pre-trained
language models like BERT (Devlin et al., 2019)
achieve high accuracy after fine-tuning on super-
vised tasks. However, these methods are compu-
tationally expensive and are, thus, unfit to be used
for real-time detection.

Clark et al. (2019) observed that some attention
heads of the pre-trained BERT model are learn-
ing syntactic dependencies between words such as
direct objects of verbs etc. It is similar to a de-
pendency parser that represents the structure of
syntactic dependence between words in the sen-
tence. Recently, Burnap and Williams (2016) and
Alorainy et al. (2019) also showed that including
syntactic dependency as features improves clas-
sifier performance in abusive language detection
tasks. However, adding features can only provide
weak supervision compared to encoding these de-
pendence explicitly in the model. On the other
hand, Zhang et al. (2018a) leveraged the depen-
dency path between the subject and object of the
sentence to achieve state-of-the-art results on rela-
tion extraction task on the TACRED dataset. They
encoded the dependency parse graph using efficient
graph convolution operations (Kipf and Welling,
2017).

However, a direct usage of Zhang et al. (2018a)’s
method is not straightforward for abusive language
datasets due to the complexity of the possibilities
for expressing an attack in text. An attack may be
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expressed directly by either using explicit slurs or
curses, or attacking a protected group explicitly.
In other instances, the attack can be implicit such
as sexist posts denigrating genders to stereotypical
roles. These implicit attacks need nuanced under-
standing of the semantic context. However, parse
structures of the text can still be useful for cap-
turing longer-range dependencies than sequential
models. For instance, in Fig 1, the sequential dis-
tance between the attack mentally ill and the target
Protected Group is five, while the distance in the
parse tree is only two.

are essentially just mentally ill gay people.Transgenders<PG>

Women constantly say they have “haters”.

I’m not sexist but women get upset with other women for stupid reasons.<PG>

<PG>

<PG>

<Y>

Figure 1: Dependency parse for a sample hate tweet.
The target <PG> is closer to the attack word, ill in the
parse tree. <PG> and <Y> replaces the targeted pro-
tected group and attack in the actual tweet.

An additional challenge in applying Zhang et al.
(2018a)’s method to noisy social media text is that
the text often does not have an explicit subject
and object, in which case there is no dependency
path between them. Or, especially in social media
text, subject and object may be present but remain
undetected by a parser trained on general purpose
text.

Thus, we propose an adaption of the Zhang et al.
(2018a) model that learns dependency-aware text
representations useful for abusive language detec-
tion task. Our contributions are as follows:

• In this work, we leverage the dependency
parse of the sentence to induce a graph on the
text. We then augment the text embeddings of
the words with their syntactic neighbors using
efficient graph convolution operations (Kipf
and Welling, 2017). Further, we propose a
classifier based on this dependency graphical
convolutional network, DepGCN, to detect
abusive language online.

• We evaluate our method on the benchmark
Twitter hate speech datasets. Our model out-
performs the current state-of-the-art (Waseem
and Hovy, 2016; Davidson et al., 2017)
for abusive language detection and performs
at par with strong baselines like fine-tuned
BERT (Devlin et al., 2019).

• Further analysis shows that our DepGCN

model is much more scalable than BERT and
is complementary to the sequential models.

2 Methods

In this section, we first describe our approach to
use syntactic dependencies to induce a graph on the
text. We then convolve over this dependency graph
using a graph convolutional framework (DepGCN)
to compute a text embedding useful for abusive
language detection task.

2.1 Graph representation of Text

We use the dependency parse tree to induce a graph
on a sentence. Specifically, a graph G =< V,E >
is represented as a collection of vertices V and as a
set of edges E between these vertices. To compute
the graphical representation of the sentence, we
treat each word as a vertex, with syntactic depen-
dencies between words corresponding to an edge.
Now, for this graph G, A represents the Adjacency
matrix where Aij = 1 if there is a dependency re-
lation between word i and j and 0 otherwise. We
also connect each word to itself such that Ai,i =
1; ∀i ∈ V . Although syntactic dependencies are
directed, we treat these dependency edges as undi-
rected, resulting in a symmetric matrix2.

Graph Convolution Networks (GCN) are re-
cently proposed to compute vertex embeddings
in a graph by convolving over each vertex’s local
neighborhood (Kipf and Welling, 2017). The con-
volution operation for vertex i in layer k in GCN is
defined as follows,

hk+1
i = σ

 |V |∑
j=1

ÃijW
khkj + bk

 (1)

= σ


∑

j∈N (i)∪i
Wkhkj

di
+ bk

 (2)

where Ã = D−1/2AD1/2 is the normalized Adja-
cency matrix with D being the degree matrix. hk+1

i

represents the vertex embeddings at layer k + 1,
with h0i being initialized with the vertex features.
In our case, we use pretrained word embeddings
as the initial features. Wk, bk are learnable weight
and bias parameters of layer k and σ represents
the ReLU function. N (i) represents the vertex

2Similar to (Zhang et al., 2018a), we observed a perfor-
mance dip when using each edge direction as a separate graph.



i’s neighborhood while di =
∑
Di represents the

vertex degree.
Now, assume that Wk = I with bk = 0 and

σ(.) as an identity function. The updated vertex
embedding at layer k + 1 will be,

hk+1
i =

∑
j∈N (i)∪i

hkj

di
(3)

Thus, it is easy to verify that the convolution opera-
tion updates the vertex embeddings at layer k + 1
to be the average embeddings of the vertex’s neigh-
borhood and the vertex itself from the previous
layer, k. In our dependency graph, applying graph
convolution operation will augment each word’s
embedding with its syntactic neighbors. Thus, con-
volution helps to contextualize the word embed-
dings, where the word’s syntactic relationships de-
fine the context. Notice that it is different from the
sequential models (like LSTM or CNN), where the
adjacent words in the sentence define the context.

Consider the sample tweet in Figure 1, in the
first DepGCN layer, the attack ill will be aug-
mented with its surrounding adverbs mentally and
just (eq. (4)). In turn, these updated embeddings of
ill will be propagated when computing embeddings
of the noun people in addition to the subject <PG>
in the next layer.

hill = fgcn(hmentally, hjust, hill) (4)

hpeople = fgcn(hill, h<PG>, hpeople) (5)

However, in sequential models with a fixed window,
the attack ill will be too far from the subject <PG>.

Further, by stacking such k convolution layers,
we can propagate the vertex embeddings to its k-
hop neighborhood (Kipf and Welling, 2017). For
our experiments, we did not see any further im-
provements after two layers. This could be because,
as we are dealing with a short text, the resulting
parse tree is shallow 3.

2.2 Sentence representation

In the previous section, we computed contextu-
alized word embeddings using syntactic relation-
ships. However, we still need to aggregate these
vertex embeddings to compute a graph-level em-
bedding (sentence in our case). In particular, we

3Our experiments did not show performance gain when
using recent variants of GCN that uses attention (Veličković
et al., 2018) or different aggregators (Xu et al., 2018).

perform masked pooling over the learned word em-
beddings from the last layer (K) to compute a sen-
tence embedding. We only pool over non-terminal
words or intermediary nodes in the dependency
parse tree (i.e. |Ai| > 2). We ignore the leaf
words or words linked to only one other word as
their word embeddings are relatively unchanged
(because of fewer neighbors) after the convolution
compared to other intermediary nodes with more
neighbors. Thus, when we perform pooling over
all the words, leaf words will skew the final result
even though they are not always important.

We tried different variants of pooling (average
and min), but max-pooling performed the best
(eq. (6)) for our case.

hG = max
i∈V ′

(hKi ) s.t.|Ai| = 2 (6)

Further, we feed these sentence embeddings
through fully connected layers followed by a sig-
moid (σ) to compute the final class score (eq. (7))
for the sentence.

cG = σ(fMLP (hG)); cG ∈ RC (7)

Here, C represents the total number of classes. The
final architecture of our dependency graph convo-
lution network (DepGCN) is depicted in Figure 2.

2.3 Embedding variants
As we deal with noisy text, there can be ill-formed
words and grammatically incorrect sentences, po-
tentially leading to incorrect parse trees. To over-
come these potential errors, we feed the initial word
embeddings (h0i ) to a BiLSTM module. The BiL-
STM module helps to aid in word disambiguation
by encoding adjacent words in the sentence.

3 Experiments

In this section, we first describe our experimental
setup, followed by the results. We then present a
detailed error analysis of dependency-based model
vs. a widely-used sequential model for sentence
classification.

3.1 Experimental Setup
We first describe our datasets, followed by compar-
ative baselines.
Datasets: Wiegand et al. (2019) emphasizes the
difficulty of selecting representative datasets for
studying abusive language. At the heart of this dif-
ficulty is the relative rarity of abusive language in
large-scale user-generated text. It is not unusual for
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Figure 2: Overview of our proposed DepGCN model

> 99% of text to be benign. To make experiments
manageable, Waseem and Hovy (2016) bootstrap
data collection with queries that are indicators of
possible hate speech4. As a result of this boot-
strapping, the data collected is not representative
of the underlying text distribution. This data bias
applies to both the benign and the hateful cate-
gories. Davidson et al. (2017) provides an alterna-
tive dataset5, but this too is affected by pre-filtering,
with the result that the dataset also fails to represent
the underlying text distribution. We also discuss
the potential annotator bias (Sap et al., 2019) in
these datasets, later in the Discussion section. Thus,
caution is advised when interpreting the results of
studies on these datasets.

Dataset Categories

Davidson et al. (2017) Hate Offensive Benign
1,430 19,190 4,163

Waseem and Hovy (2016) Racism Sexism Benign
1,939 3,148 11,115

Davidson extended Hate Offensive Benign
1,430 19,190 15,278

Table 1: Dataset Statistics.

For comparability, we experiment with both the
datasets from Davidson et al. (2017) and Waseem
and Hovy (2016). We do not claim that our re-
sults will necessarily transfer to more naturalistic
settings. Table 1 lists the per class distribution in
the collected dataset. Note that the Davidson et al.
(2017) is highly skewed with majority of tweets

4https://bit.ly/3gN2RsD
5https://bit.ly/3dpoTzJ

being offensive. However, it is the opposite in real
world settings. We thus also create a custom dataset
(Davidson ext.) to mimic the real world settings,
by adding benign tweets from Waseem and Hovy
(2016) to Davidson et al. (2017)’s benign tweets.
Baselines: We compare against a variety of state-
of-the-art approaches proposed for computing sen-
tence embeddings. We use these embeddings to
classify the tweets into abusive or not.

N-grams based approaches have shown to
achieve competitive results for abusive language
detection (Waseem and Hovy, 2016). In particu-
lar, the model extracts frequent N-grams from the
tweets and feeds them into a logistic regression
along with additional Twitter-specific features per
tweet. We use tf-idf scores as features for unigram
and bigram words from each tweet.

BERT models have achieved new state-of-the-
art results on multiple natural language tasks such
as question answering and language inference (De-
vlin et al., 2019). We use pre-trained BERTbase
model from the transformers 6 library for our ex-
periments. Preliminary experiments showed that
average pooling from the last four layers of BERT
as the aggregate sentence representation performed
better than the [CLS] token representation from the
final layer. We append a linear layer on top of the
model to compute class-wise scores. Further, we
fine-tune this classifier on our training dataset.

BiLSTM is a sequential model to compute sen-
tence embeddings useful for many downstream
classification tasks (Zhou et al., 2016). We use

6github.com/huggingface/transformers

https://bit.ly/3gN2RsD
https://bit.ly/3dpoTzJ
github.com/huggingface/transformers


the output of the final hidden layer in the BiLSTM
as the sentence embeddings. We follow BERT in
feeding the sentence embeddings to a linear layer
to compute the final class-wise score.
Implementation Details: We initialized h0i of
each word with its Glove embeddings (Pennington
et al., 2014) combined with its POS tag and NER
tag given by the Stanford NLP API. We used Stan-
ford parser7 for extracting the dependency parse
relationship between the words in a tweet. In the
DepGCN model, we used a hidden dimension of
200 in both layers with ReLU non linearity. We
trained with a batch size of 50 and used stochastic
gradient optimizer with a learning rate of 0.3. We
also used a dropout of 0.5 for both GCN layers and
BiLSTM.

For the BERT classifier, we fine-tuned the model
with a batch size of 16 for 6 epochs. We used a
dropout of 0.1 in all layers and used Adam opti-
mizer with a learning rate of 4e-6. For the N-gram
approach, we ignored words which occur in less
than 5 tweets or occur in more than 75% of the
tweets to filter out uninformative words. We used
l2 regularization in the logistic regression model
and performed a grid search over differentC values
where C denotes regularization strength.

We implemented our model and the base-
lines(except N-gram) in PyTorch and run the ex-
periments on an Nvidia Tesla V100 GPU. We used
sklearn library for the N-gram baseline. We per-
formed stratified sampling on the dataset to create
an 80-10-10 split between training, dev, and test
sets. The dev set is used for hyperparameter tuning
while the results are reported on the test set. We
used a weighted cross-entropy loss to counter the
effect of class imbalance for all the baselines and
our proposed approach. We report the class-wise
F1 score with ROCAUC scores for each dataset.

3.2 Performance analysis

Table 2 reports class-wise F1 score with AUC
scores for the Davidson et al. (2017) extended
dataset. As expected, the bag-of-words based N-
gram approach is not competitive with the best ap-
proaches. This result is reasonable, since N-grams
does not take any advantage of semantic similar-
ities between different words. More surprisingly,
the powerful BERT model, even after fine-tuning,
still performs slightly worse than our DepGCN
model for the hate class.

7https://stanford.io/2zALCdz

Approach Hate Offensive Benign AUC

N-grams 0.35 0.88 0.88 0.899
BERT 0.45 0.94 0.96 0.953
BiLSTM 0.31 0.93 0.94 0.895
DepGCN 0.47 0.94 0.96 0.918
BiLSTM + DepGCN 0.49 0.95 0.97 0.945

Table 2: Class-wise F1 score and AUC of different
approaches on the Davidson et al. (2017) extended
dataset.

The sequential model, i.e., BiLSTM, also per-
forms worse than our dependency-based model.
As argued before, sequential models often struggle
to capture long term dependencies between words
while DepGCN alleviates this issue by encoding
syntactic dependencies. Further, if we use BiLSTM
to contextualize the embeddings before feeding it
to our DepGCN model, the results are slightly im-
proved. Note that even a slight improvement in
the hate class is significant as the dataset contains
limited training examples for this class (Table 1) as
compared to the other classes.

Approach Hate Offensive Benign Overall AUC

N-grams 0.46 0.94 0.84 0.89 0.899
BERT 0.42 0.95 0.88 0.91 0.942
BiLSTM 0.52 0.94 0.86 0.90 0.931
DepGCN 0.50 0.94 0.86 0.90 0.926
BiLSTM + DepGCN 0.53 0.94 0.87 0.91 0.937

Table 3: Class-wise F1 score and AUC for different ap-
proaches on the original Davidson et al. (2017) dataset.

We obtain a similar trend in the results when
evaluating performance on the original Davidson
et al. (2017) dataset (Table 3). The Benign class
of the original dataset has systematically lower fig-
ures than the corresponding class in the extended
dataset, presumably because the extended data set
has a better representation of the space of possible
benign examples. The Hate class is slightly easier
to detect in the original dataset, even though it con-
tains the same examples as the corresponding class
in the extended dataset. This could be presumably
because the classifiers expend more of their model-
ing capacity on the benign set. The same pattern is
present to a lesser degree for the Offensive class.

BERT becomes more competitive with BiLSTM
on the original dataset. BiLSTM retains a substan-
tial (0.52 > 0.42) advantage over BERT on the
Hate class and is close on Offensive and Benign.
The sequential model, BiLSTM, also performs
slightly better (0.52 > 0.50) than our DepGCN
model for the hate class. One possible explanation

https://stanford.io/2zALCdz


can be that the Davidson et al. (2017) dataset is full
of slurs and direct hate attacks on protected groups.
These direct attacks do not exhibit complex scop-
ing or long-range dependencies and, thus, are well
captured by the sequential models. Also, due to
the heavy usage of slurs and noisy text, BERT per-
forms worse as there might be many OOV tokens
in the dataset.

Approach Racist Sexist Benign Overall AUC

N-grams 0.75 0.71 0.88 0.83 0.881
BERT 0.78 0.81 0.91 0.88 0.945
BiLSTM 0.72 0.71 0.89 0.84 0.917
DepGCN 0.76 0.72 0.88 0.83 0.926
BiLSTM + DepGCN 0.78 0.74 0.90 0.85 0.938

Table 4: Class-wise weighted F1 score and AUC for
different approaches on the Waseem and Hovy (2016)
dataset.

On a more nuanced dataset collected by Waseem
and Hovy (2016), BERT performs the best out of
the competing methods, as shown in Table 4. Our
model performs competitively for racist and benign
tweets while it performs worse for sexist tweets.
This dataset is more nuanced as it contains more
indirect or implied hate attacks (discussed in sec-
tion 3.4) with the usage of fewer slurs. It seems
that BERT is doing a better job of capturing the
semantic meanings of these tweets.

3.3 Time Analysis

We further compare the running time of all the base-
line approaches. Figure 3 shows the comparison at
both training and inference time.

(a) Inference time per 1K tweets (b) Training time/Epoch

Figure 3: Time analysis of variants of our model with
respect to the BERT (Devlin et al., 2019) model.

First, in Figure 3a, we plot the inference time (in
secs) required by each approach per 1000 tweets.
Our proposed DepGCN is the most efficient ap-

proach at inference time closely followed by BiL-
STM. Adding the BiLSTM module before the
DepGCN only increases the inference time slightly.
On the other hand, BERT takes an order of magni-
tude longer than any of these approaches.

Note that, for operational reasons, the inference
time does not take into account the time taken to
extract the tweets’ parse tree. We did the parsing
step ahead of time, once, and reused the results
for each experiment. A real production system
would do this at inference time, adding a small time
cost for each new tweet. State-of-the-art depen-
dency parsers can currently achieve around 1000
sentences per second per CPU core (Chen and Man-
ning, 2014; Kong and Smith, 2014). We estimate
that on modern multi-CPU machines we can keep
the parse cost under 0.05 seconds per 1000 tweets.
This still keeps GCN methods more than competi-
tive with BERT at inference time.

The same trend can be observed at training time
too in Figure 3b. However, the jump from DepGCN
to BiLSTM training time is a little higher than
during inference.

In summary, our parser-based DepGCN ap-
proach is much more efficient than the BERT
model. Also, including BiLSTM module to the
DepGCN model leads to only a slight drop in effi-
ciency.

3.4 Error Analysis of Sequential vs.
Dependency model

In this section, we present a detailed error analy-
sis of the Sequential (BiLSTM) vs. Dependency
(DepGCN) model. Table 5 shows the confusion ma-
trix of BiLSTM vs DepGCN model on the Waseem
and Hovy (2016) dataset. The parser-based ap-
proach is more conservative in labeling tweets as
benign than the sequential approach. Specifically,
sexist tweets are more probable to be misclassi-
fied as racist (7 for Dep vs. 1 for Seq) and vice
versa. Alternatively, DepGCN tags much more
benign tweets as abusive (Sexist/Racist) (105 for
Dep vs. 36 for Seq), thus creating more false posi-
tives. However, as there is a higher cost involved in
missing an abusive tweet, DepGCNs will be more
effective in real-world scenarios.

We also examined some sample tweets from the
Waseem and Hovy (2016) dataset, which were er-
roneously classified as benign by BiLSTM but not
by DepGCN and vice versa to understand the dif-
ference between these two approaches in depth.



are essentially just mentally ill gay people.Transgenders<PG>

Women constantly say they have “haters”.

I’m not sexist but women get upset with other women for stupid reasons.<PG>

<PG>

<PG>

<Y>

(a) Parse tree of the sexist tweet missed by LSTM.

When they’re all PMSing at the same time LOL I’m not sexist, but I can’t work

with 5 female managers at the same time anymore.<PG>

<Y>

(b) Parse tree of the sexist tweet missed by DepGCN.

How can <PG> say they want equality when they see <PG> as lesser beings?


How can <PG> say they want equality when they see <PG> as lesser beings?


Coref Coref

(c) Parse tree of the racist tweet missed by DepGCN.

How can <PG> say they want equality when they see <PG> as lesser beings?


How can <PG> say they want equality when they see <PG> as lesser beings?


Coref Coref

(d) Coreference resolution of the tweet.

Figure 4: Parse Tree of the sample tweets from Waseem dataset. <PG> replaces the Protected Group mentioned in
the actual tweet.

Racism Sexism Benign

Dep Seq Dep Seq Dep Seq

Racism 7 4 11 3 7 18
Sexism 7 1 11 7 8 18
Benign 35 9 70 25 33 104

Table 5: Confusion matrix for Sequential (BiLSTM
only) vs Dependency Parser (DepGCN) approach for
Waseem and Hovy (2016) dataset.

Sexist tweet missed by LSTM: Following is a sam-
ple sexist tweet that is correctly classified by
the DepGCN approach but missed by the BiL-
STM."I’m not sexist but <PG> get upset with other
<PG> for stupid reasons. <PG> constantly say
they have haters." Figure 4a shows the parse tree
of the tweet by the Stanford parser. It is a difficult
sample to classify as the author of the tweet says
that he is not sexist but is writing offensive remarks
against <PG>. The dependency tree can capture
this long-range dependency and establish negative
relation of "upset," "stupid," and "haters" with the
"<PG>" subject.
Sexist tweet missed by DepGCN: However,
DepGCN fails to capture similar nuanced sexism

in another sample tweet, "And when they’re all
<Y>ing at the same time LOL I’m not sexist, but
I can’t work with 5 <PG> managers at the same
time anymore.". Note that the sentence contains
punctuation error as it is missing punctuation be-
tween the two sentences in the tweet (after time and
before I’m not). This error leads to a wrong parse
tree, as shown in Figure 4b. Thus, our parser-based
model is sensitive to these parsing errors.

Sexist tweet missed by DepGCN: However, even if
the parse tree is correct, establishing dependency
relationships may not be sufficient to capture nu-
anced relationships in the text in some cases. For
instance, the parse tree of the racist tweet, "How
can <PG> say they want equality when they see
<PG> as lesser beings? " shown in Section 3.4 is
correct. However, the parse tree misses the corefer-
ence of pronoun they to belong to <PG>. In these
cases, powerful language models like BERT will
be able to extract these relationships.

These analyses show that both approaches have
their own merits and often perform well for com-
plementary attack types.



4 Related Work

Most of the prior work for detecting abusive speech
on Twitter primarily relies on using statistical fea-
tures like bag-of-words (character or word n-grams)
or tf-idf features for automated detection (Waseem
and Hovy, 2016; Davidson et al., 2017; Nobata
et al., 2016). Bag-of-words approaches are unable
to capture nuanced abusive speech as they fail to
contextualize the word meanings. For instance, de-
pending on the context, the word gay can be used to
denote either ebullience or sexual preference. Only
the latter is a candidate attack.

Recently, deep learning models are also pro-
posed that leverage pre-trained word embeddings
(Mikolov et al., 2013; Pennington et al., 2014) to
capture the semantics of the tweets. These models
aggregate individual word embeddings in a context-
aware manner to compute tweet embeddings and
later use them for classification. Earlier studies
have either used the CNN (Gambäck and Sikdar,
2017; Park and Fung, 2017) or RNN (Badjatiya
et al., 2017; Agrawal and Awekar, 2018) to com-
pute these embeddings.

The syntactic structure of the text was also used
to help identify the target group and the intensity of
hate speech (Warner and Hirschberg, 2012; Silva
et al., 2016). The primary difficulty of these works
is that the space of possibly relevant rules is too
large to be comprehensive. Besides, it verges on
the impossible to specify a set of rules that will
cover possible implicit attacks. On the other hand,
Burnap and Williams (2016); Alorainy et al. (2019)
proposed computational models using the depen-
dency labels as features and reported significant
gains over the bag-of-words features. Our model
builds on this work and explicitly models the de-
pendency between words using graph convolution
operations.

5 Discussion

Worse performance of BERT: Our experiments
did not show the superior performance of the BERT
model on the abusive language datasets. We also
noticed that prior literature on comparable tasks
is variable, with some successes for BERT-like
models but few robust trends. There are numerous
reports of difficulties in training these large neu-
ral networks on the small, imbalanced annotated
datasets typical of such tasks (Zampieri et al., 2019;
Liu et al., 2019). The challenges are likely an ef-
fect of over-fitting and lead to inconsistent results.

Remedies include careful hyperparameter tuning,
early stopping, and the use of ensembles. Risch
and Krestel (2020) proposed to use an ensemble of
BERT models to control the variance of these large
models over small datasets. Ensembling is expen-
sive, so there remains a need for computationally
efficient methods that approach the same perfor-
mance. Because GCN has far fewer parameters, it
is less likely to need these countermeasures against
overfitting.

Experiments on the relatively larger abusive lan-
guage dataset of 100K tweets (Founta et al., 2018)
by Lee et al. (2018) highlighted that sequential
models such as RNN perform well but are still
hard to train on this dataset size. Further, Kumar
et al. (2018) concluded that with optimal feature
selection, classifiers like SVM and Random forest
performs at par with neural networks.

Dataset quality and annotator bias: Recent
works have highlighted that majority of the abusive
language datasets suffer from poor quality (Wie-
gand et al., 2019; Vidgen and Derczynski, 2020) or
show evidence that annotator decisions were inap-
propriately affected by surface markers of speaker
race (Sap et al., 2019). We believe that corrections
of these deficiencies and biases in annotation are
essential for research progress in the field. Better
dataset collection, however, is complementary to
our computational approach. We believe our de-
pendency parser-based approach should be able to
perform competitively on future datasets. This is
because the model is designed to be insensitive to
the cues from unrelated single words.

Social media-specific tools: Social media text
tends to be very noisy and thus, NLP tools trained
on general corpus do not perform well on these
datasets. However, our preliminary experiments
with using pre-trained Glove embeddings 8 trained
on the Twitter dataset showed a significant drop
in performance. The performance drop could be
because of the relatively smaller training data size
of social media text used for training such models
that may lead to overfitting. A possible counter
approach can include pretraining these embeddings
on a mix of general news corpus data along with
social media text.

Similarly, our experiments with the training of
Spacy parser9 on our training data showed a drop in
performance. We did not experiment with parsers

8nlp.stanford.edu/projects/glove/
9https://spacy.io/

nlp.stanford.edu/projects/glove/
https://spacy.io/


specially built for Twitter (Kong et al., 2014) but
believe that using Twitter-specific parsers might
improve our results further.

6 Conclusion

In this work, we propose a novel sentence en-
coder that extends the graph convolutional network
(GCN) to an induced graph built from syntactic
dependencies in the text for abusive language de-
tection. Our model achieved state-of-the-art per-
formance on public hate speech twitter datasets,
performing at par with strong baselines such as
fine-tuned BERT.

Our DepGCN model is much more scalable than
BERT and thus, can be efficiently used for real-
time detection. Error analysis reveals that our
model is complementary to the sequential base-
lines. Future work includes using an ensemble
of sequential model with our dependency parser-
based model. We will also extend our approach
to longer text spanning multiple sentences such as
posts/comments on online platforms.
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