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In Sect. 1 we describe how we leverage scalable GP
regression to run SCBO and cEI with large sampling
budgets. The value and scalability of our implementa-
tion is demonstrated by an experiment in Sect. 2. We
summarize the hyperparameters of SCBO in Sect. 3 and
give additional details on how we shrink and expand
the trust region. We prove a consistency result for SCBO
in Sect. 4. In Sect. 6 we show results for all baselines
on the physics test problems where the objective and
constraints have been transformed in the same fash-
ion as in SCBO. Finally, Sect. 7 provides details on all
benchmarks.

1 Gaussian process regression

As usual, the hyperparameters of the Gaussian process
(GP) model are fitted by optimizing the log-marginal
likelihood. The domain is rescaled to [0, 1]d and the
function values are standardized to have mean zero and
variance one before fitting the GP. We use a Matérn-
5/2 kernel with ARD and a linear mean function that
we optimize using L-BFGS-B. The use of the linear
mean function is important for the high-dimensional
problems as it helps making progress early in the opti-
mization run. Following Snoek et al. [2012], a horseshoe
prior is placed on the noise variance. We also learn a
signal variance of the kernel.

Scaling BO to large number of evaluations is challeng-
ing due to the computational costs of inference. To
compute the posterior distribution for n observations,
we need to solve linear systems with an n × n ker-
nel matrix. This is commonly done via a Cholesky
decomposition which has a computational complexity
of Θ(n3) flops. When there are m constraints, the cost
increases to Θ(mn3) flops and thus may not scale to
the large sampling budgets that we consider in this
work. Thus, we leverage the parallelism of modern
GPUs that allows to ’batch’ several GP models which
is provided in the GPyTorch package [Gardner et al.,
2018]. Relying only on fast matrix vector multiplication
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(MVM), we can solve linear systems with the kernel
matrix using the conjugate gradient (CG) method and
approximate the log-determinant via the Lanczos pro-
cess Dong et al. [2017], Ubaru et al. [2017]. GPyTorch
extends this idea to a batch of GPs by computing fast
MVMs with a 3D tensor representing a kernel matrix
of size (m+ 1)× n× n, where m+1 is the number of
batched GPs. The MVMs are further sped up by a
compiled CUDA kernel constructed via KeOPS [Charlier
et al., 2018]. To the best of our knowledge, SCBO is
the first Bayesian optimization algorithm to leverage
batch GPs and KeOPS. Note that we also applied these
ideas to scale cEI of Schonlau et al. [1998] to a large
numbers of samples.

2 Achieving Efficiency via Batch GPs

Next we describe an experiment that demonstrates that
the Cholesky decomposition, which is commonly used
in GP regression, does not scale to the large sampling
budgets that are required for the demanding bench-
marks that we study in this work. We consider training
GPs with a different number of training points. The
true function is standardized and we assume observa-
tions are subject to normally distributed noise with
mean zero and variance 0.01. We compare the com-
putational cost of the Cholesky decomposition to the
efficient batch GP implementation of GPyTorch, both
in single precision. Table 1 provides run times for train-
ing, predictions, and sampling. We use 50 gradient
steps for training. All computations were performed on
an NVIDIA RTX 2080 TI. The two rightmost columns
also show the error for the mean and variance predic-
tions. We see that batch GPs achieve a large speed-up
while preserving a high accuracy. For example, with
the batch GP implementation fitting one GP with 1000
points takes 2.33 seconds, while fitting 100 GPs in a
batch only takes 11.15 seconds. Moreover, the Cholesky
approach becomes impractical in the large-data regime:
training 100 GPs with 8000 points takes 37 minutes,
compared to just about 2 minutes for the batch GP
implementation!
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Data size Cholesky decomposition Scalable batch GPs Prediction error
#GPs Training points Training Prediction Sampling Training Prediction Sampling Mean MAE Variance MAE
1 1000 0.60 s 0.06 s 0.07 s 2.09 s 0.04 s 0.39 s 1.41e-03 4.44e-03
1 2000 1.03 s 0.08 s 0.09 s 2.17 s 0.05 s 0.39 s 2.12e-03 5.23e-04
1 4000 3.67 s 0.16 s 0.14 s 2.26 s 0.06 s 0.41 s 2.22e-04 4.19e-06
1 8000 22.87 s 0.49 s 0.32 s 4.73 s 0.13 s 0.45 s 3.94e-04 6.75e-05
10 1000 5.98 s 0.47 s 0.58 s 2.49 s 0.22 s 1.16 s 4.74e-02 1.00e-01
10 2000 10.13 s 0.76 s 0.77 s 3.61 s 0.31 s 1.30 s 5.00e-02 6.14e-02
10 4000 35.96 s 1.53 s 1.26 s 7.81 s 0.35 s 0.95 s 3.42e-04 9.89e-05
10 8000 227.30 s 4.72 s 2.88 s 17.73 s 0.70 s 1.08 s 5.24e-05 7.07e-06
50 1000 24.48 s 2.40 s 2.96 s 7.37 s 0.50 s 2.77 s 5.03e-03 3.38e-02
50 2000 49.02 s 3.72 s 3.88 s 9.65 s 0.90 s 3.12 s 4.06e-03 1.64e-03
50 4000 184.61 s 7.90 s 6.40 s 21.15 s 1.75 s 3.57 s 1.49e-04 2.10e-05
50 8000 1134.58 s 25.37 s 14.36 s 66.50 s 3.72 s 4.40 s 5.74e-04 1.15e-04
100 1000 55.94 s 5.09 s 6.11 s 10.41 s 1.03 s 6.85 s 1.85e-03 9.22e-04
100 2000 108.00 s 8.42 s 8.38 s 18.59 s 2.27 s 8.61 s 2.12e-02 2.40e-02
100 4000 365.88 s 16.64 s 12.54 s 44.08 s 3.91 s 8.42 s 4.56e-04 1.25e-04
100 8000 2303.86 s 89.19 s 28.48 s 144.12 s 13.14 s 10.50 s 1.24e-04 2.31e-05

Table 1: Computational cost for GP training, prediction, and sampling. The standard approach using the
Cholesky decomposition in single precision is compared to a fast implementation using batch GPs. We take 50
gradient steps for training and predict/sample on 5000 test points. The mean and variance MAE between the
two approaches is shown in the two rightmost columns.

3 Details on SCBO

In all experiments we use the following hyperparameters
for SCBO that were adopted from TURBO [Eriksson et al.,
2019]: τs = max(3, dd/10e), τf = dd/qe, Lmin = 2−7,
Lmax = 1.6, Linit = 0.8, and perturbation probability
pperturb = min{1, 20/d}, where d is the number of
dimensions and q is the batch size. Note that τs = 3
is used by [Eriksson et al., 2019], while we find that
SCBO achieves better performance if we expand the
trust region less frequently. Recall that we assume
the domain has been scaled to the unit hypercube
[0, 1]d. A success occurs if at least one evaluation in
the batch improves on the incumbent. In this case,
we increment the success counter and reset the failure
counter to zero. If no point in the batch improves the
current best solution, we set the success counter to
zero and increment the failure counter. The discretized
candidate set of size r is also generated following the
approach of Eriksson et al. [2019] and we use r =
min(200d, 5000) for all experiments. In particular, we
first create a scrambled Sobol sequence within the
intersection of the trust region and the domain [0, 1]d.
We use the value in the Sobol sequence with probability
pperturb for a given candidate and dimension, and the
value of the center otherwise.

4 Global Consistency of SCBO

We prove that SCBO converges to a global optimum as
the number of samples tends to infinity.

Theorem 1. Suppose that SCBO with default parame-
ters is used in a multi-start framework under the fol-
lowing conditions:

1. The initial points {yi} for SCBO are chosen such
that for any δ > 0 and x ∈ [0, 1]d there exists
ν(x, δ) > 0 such that the probability that at least
one point in {yi} ends up in a ball centered at x
with radius δ is at least ν(x, δ).

2. The objective and constraints are bounded.

3. There is a unique global minimizer x∗.

4. SCBO considers any sampled point an improvement
only if it improves the current best solution by at
least some constant γ > 0.

Then, SCBO with noise-free observations converges to
the global minimizer x∗.

Note that condition (1) is met if the initial set is chosen
uniformly at random. Conditions (2) and (3) hold
almost surely under the prior for our domain and are
common assumptions in global optimization [e.g., see
Regis and Shoemaker, 2007, Spall, 2005]. Condition (4)
is a straightforward design decision of the algorithm.

Proof. First observe that SCBO will take only a finite
number of samples for any trust region due to condi-
tions (2) and (4). Thus, SCBO will restart infinitely
often with a fresh trust region and hence there is an
infinite subsequence {xk(i)} of initial points. This sub-
sequence satisfies condition (1) by design. Thus, global
convergence follows from the proof of global conver-
gence for random search under condition (3) [e.g., see
Spall, 2005].

Note that this result also implies consistency for
the TURBO algorithm of Eriksson et al. [2019].
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5 Additional ablation studies

In this section we provide two additional ablation stud-
ies that investigate the components of SCBO. In Fig. 1
we look at the effect of the copula and bilog transforms
that are used by SCBO. We note that the bilog trans-
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Figure 1: Individual contribution of the copula and
bilog transforms in SCBO. (Left) The bilog transform is
more important on the 30D Keane function. (Right)
The copula transform improves the results on the 5D
Rosenbrock function.

form is more important on the 30D Keane function
and that using both transforms works better than only
using one of them. The Copula transform improves
the performance on the Rosenbrock problem. Even
though bilog slows down the convergence, the final
performance achieved by SCBO is comparable to only
using the Copula transform.

Another important component of SCBO is the perturba-
tion probability from Sect. 3. We see in Fig. 2 that only
perturbing a subset of the dimensions helps SCBO gener-
ate candidates that are closer to the current best point
which improves the performance on the 30D Keane
function.
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Figure 2: Results on the transformed physics problems,
where the transformations of SCBO have been applied
directly to the objective functions and constraints.

6 Results on the Transformed Physics
Problems

Recall that SCBO applies the copula transformation to
the objective function and the bilog transformation
to each constraint. In this section we study on the
four physics benchmarks how the performance of all
baselines is affected by these transformations. Fig. 3
summarizes the performances. We note that the trans-
formations do not lead to noticeable changes in perfor-
mance for the baselines, except for PESC that benefits
on the 3D tension-compression string problem and on
the 4D welded beam design. The performance was
comparable with and without the transformations for
the other test problems.

7 Details on the Benchmarks

In this section we provide additional information for
the test problems. We refer the reader to the original
papers for more details.

7.1 3D Tension-Compression String

The tension-compression string problem was described
by Hedar and Fukushima [2006]. The goal is to min-
imize the weight subject to constraints on minimum
deflection, shear stress, surge frequency, limits on out-
side diameter, and on design variables [Coello and
Montes, 2002]. The first constraint is very sensitive to
changes in the input parameters and cannot be modeled
accurately by a global GP model.

7.2 4D Pressure Vessel Design

This problem was studied by Coello and Montes [2002]
and has four constraints. The original problem does not
specify bound constraints, so we use 0 ≤ x1, x2 ≤ 10,
10 ≤ x3 ≤ 50, and 150 ≤ x4 ≤ 200. This domain
contains the best solution found by Coello and Montes
[2002]. The goal is to minimize the total cost of design-
ing the vessel, which includes the cost of the material,
forming, and welding. The variables describe the thick-
ness of the shell, thickness of the head, inner radius, and
length of the cylindrical section of the vessel. The thick-
ness of the shell and thickness of the head have to be
multiples of 0.0625 and are rounded to the closest such
value before evaluating the objective and constraints.

7.3 4D Welded Beam Design

This problem was considered by Hedar and Fukushima
[2006] and has 5 constraints. The objective is to min-
imize the cost subject to constraints on shear stress,
bending stress in the beam, buckling load on the bar,
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Figure 3: Results on the transformed physics problems, where the transformations of SCBO have been applied
directly to the objective functions and constraints. (Upper left) SCBO and cEI outperform the other methods
on the Tension-compression string problem. (Upper right) SCBO finds the best solutions on the pressure vehicle
design problem, followed by cEI, PESC, and COBYLA. (Lower left) PESC, and cEI are eventually outperformed by
SCBO on the welded beam design problem. (Lower right) SCBO and PESC perform the best on the speed reducer
problem.

end deflection of the beam, and three additional side
constraints.

7.4 7D Speed Reducer

The 7D speed reducer model has 11 black-box con-
straints and was described by Lemonge et al. [2010].
The objective is to minimize the weight of a speed
reducer. The design variables are the face width, the
module of teeth, the number of teeth on pinion, the
length of shaft one between the bearings, the length of
shaft two between the bearings, the diameter of shaft
one, and the diameter of shaft two.

7.5 10D Ackley

In this problem we consider the popular 10-dimensional
Ackley function

f(x) = −20 exp

−0.2

√√√√1

d

d∑
i=1

x2i

−
exp

(
1

d

d∑
i=1

cos(2πxi)

)
+ 20 + exp(1)

in the domain [−5, 10]10 subject to the constraints

c1(x) =
∑10
i=1 xi ≤ 0 and c2(x) = ‖x‖2 − 5 ≤ 0. This

function is multi-modal and hard to optimize. Addi-
tionally, the size of the feasible region is small making
this problem even more challenging. The optimal value



David Eriksson1, Matthias Poloczek1

is zero and is attained at the origin.

7.6 30D Keane Bump

For the Keane bump benchmark [Keane, 1994], the
goal is to minimize

f(x) = −

∣∣∣∣∣∣
∑d
i=1 cos4(xi)− 2

∏d
i=1 cos2(xi)√∑d

i=1 ix
2
i

∣∣∣∣∣∣
subject to c1(x) = 0.75 −∏d

i=1 xi ≤ 0 and c2(x) =∑d
i=1 xi − 7.5d ≤ 0 over the domain [0, 10]d. We con-

sider the case d = 30 in our experiment. The Keane
benchmark is notoriously famous for being challenging
for Bayesian optimization as it is hard to model with a
global GP model.

7.7 12D Robust Multi-point Optimization

The goal is to learn a robust controller for the lunar
lander in the OpenAI gym1. The state space for the
lunar lander is the position, angle, time derivatives, and
whether or not either leg is in contact with the ground.
For each frame there are four possible actions: firing a
booster engine left, right, up, or doing nothing. The
original objective was to maximize the average final
reward over m randomly generated terrains, initial posi-
tions, and velocities. We extend this formulation to be
more robust by adding m constraints that no individual
reward is below 200, which asserts that the lunar lan-
der successfully lands in every scenario. Moreover, we
fix the m terrains throughout the optimization process
therefore making the function evaluations deterministic
(that is, without noise).

7.8 60D Rover Trajectory Planning

This problem was considered by Wang et al. [2018].
The goal is to optimize the trajectory of a rover, where
the trajectory is determined by fitting a B-spline to 30
design points in a 2D plane. The reward function is
f(~x) = c(~x)+5, where c(~x) penalizes any collision with
an object along the trajectory by −20. We add the
constraint that the trajectory has to start and end at
the pre-specified start and end locations. Additionally,
we add 15 additional obstacles that are impassable and
introduce constraints ci(x) for each i-th obstacle oi
based on the final trajectory γ(x) as follows:

ci(x) =

−d(oi, γ(x)) if γ(x) ∩ oi = ∅,
max

α∈γ(x)∩oi
min
β∈∂oi

d(α, β) otherwise,

where ∂oi is the boundary of oi. That is, trajectories
that do not collide with the object will be feasible

1https://gym.openai.com/envs/LunarLander-v2

under this constraint with a constraint value equal to
the minimum distance between the trajectory and the
object. Trajectories that collide with the object will be
given a larger constraint value if they intersect close to
the center of the object.

7.9 124D Vehicle Design with 68 Constraints
(MOPTA08)

MOPTA08 is a large-scale multi-disciplinary optimiza-
tion problem from the vehicle industry [Anjos, 2008].
There are 124 variables that describe gages, materi-
als, and shapes as well as 68 performance constraints.
Note that a problem with this many input dimensions
and black-box constraints is out of reach for existing
methods in Bayesian optimization.

7.10 2D Toy problem

This problem was proposed by Hernández-
Lobato et al. [2016]. The goal is to mini-
mize the function f(x) = x1 + x2 subject to
c1(x) = 1.5− x1 − 2x2 − 0.5 sin(2π(x21 − 2x2)) ≤ 0
and c2(x) = x21 + x22 − 1.5 ≤ 0. The objective and
constraints are all smooth low-dimensional functions.
The domain is the unit square [0, 1]2.

7.11 5D Rosenbrock function

The goal is to minimize the Rosenbrock function
f(x) =

∑4
i=1

[
100(xi+1 − x2i )2 + (xi − 1)2

]
subject to

two constraints involving the Dixon-Price2 (DP) func-
tion c1(x) = fDP(x)− 10 ≤ 0 and the Levy3 function
c2(x) = fLevy(x) − 10 ≤ 0. We created this problem
to illustrate a setting where the objective and con-
straints are poorly scaled. SCBO excels on this problem
as the use of the trust region and robust transforma-
tions makes it possible to quickly make progress. The
domain is [−3, 5]5.
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