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Abstract

Deep neural networks (DNNs) are revolutionizing the way complex systems are de-
signed, developed and maintained. As part of the life cycle of DNN-based systems, there
is often a need to modify a DNN in subtle ways that affect certain aspects of its behav-
ior, while leaving other aspects of its behavior unchanged (e.g., if a bug is discovered and
needs to be fixed, without altering other functionality). Unfortunately, retraining a DNN
is often difficult and expensive, and may produce a new DNN that is quite different from
the original. We leverage recent advances in DNN verification and propose a technique for
modifying a DNN according to certain requirements, in a way that is provably minimal,
does not require any retraining, and is thus less likely to affect other aspects of the DNN’s
behavior. Using a proof-of-concept implementation, we demonstrate the usefulness and
potential of our approach in addressing two real-world needs: (i) measuring the resilience
of DNN watermarking schemes; and (ii) bug repair in already-trained DNNs.

1 Introduction

Deep neural networks (DNNs) are quickly becoming the state of the art in many domains in
computer science. In fields such as computer vision [30], speech recognition [20], game play-
ing [41], and many others, DNNs have been repeatedly demonstrating excellent performance,
often matching or even surpassing that of other, hand-crafted solutions. As a result of their
empiric success, DNNs are changing the way software is being designed [18], and are rapidly
being adopted by users in academia and industry.

The increasing pervasiveness of DNNs is causing a growing need for modifying already-
trained DNNs, as part of their operation and maintenance. One notable example where this
occurs is the Machine Learning as a Service (MLaaS ) paradigm [38], where vendors release
almost-fully-trained DNNs, which clients then fine-tune for their own needs. The motivation
for this paradigm is that training modern DNNs often requires particular expertise, as well
as considerable computing resources, which clients do not always posses. Another example
where modifying an existing DNN might occur is in patching [44]: when a bug is discovered
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in an existing DNN, a user might wish to modify it in a way that removes the undesirable
behavior, but which leaves unaffected as many of the DNN’s other behaviors as possible. In
these cases, retraining the DNN might produce a DNN that is very different from the original,
which is undesirable; and so techniques for modifying an existing DNN without retraining may
be preferable.

These two examples, and others, share the same main characteristics: an existing DNN
needs to be changed in a small way, which alters some behaviors but keeps others unchanged.
Existing approaches for addressing this need are heuristic-based, and are not guaranteed to
produce the desired results (e.g., [27, 28, 44]).

Here, we propose a novel approach for tackling this challenge, based on neural network
verification [21, 24]. DNN verification is an emerging field, aimed at proving DNN correctness.
Existing techniques allow users to specify properties that involve the DNN’s inputs and outputs,
and then either prove that these properties hold or provide a counter-example. Here, we show
how to reduce the problem of making changes to the DNN itself into a DNN verification problem.
Specifically, we propose a method for constructing a new DNN, and then pose a verification
query on that DNN that is satisfiable if and only if the original DNN can be modified in the
desired way. Due to the soundness of the underlying DNN verification techniques that we use,
our technique affords formal guarantees about the modified DNN — specifically, that it is as
close as possible to the original, and that it satisfies the specified constraints.

We demonstrate the applicability of our approach in two domains of interest:

Authentication of Ownership. As part of the MLaaS paradigm, when vendors allow clients
access to an almost-fully-trained network, they are typically interested in collecting fees and
royalties from each client. This business model compensates the vendor for designing and
training the network, which are not simple tasks. In order to accomplish this, vendors now seek
to imprint their DNNs with watermarks — secret inputs, known only to the vendors, for which
the DNN reacts in unexpected ways [1]. The idea is that even if the network is modified by the
client, it will still react unexpectedly to the watermark inputs. This would give vendors a way
to recognize, and then claim ownership, over the networks they had trained.

DNN watermarking holds promise, but raises a concern: if users are expected to make
modifications to the DNN in order to adjust it to their needs, could they (accidentally or inten-
tionally) remove the watermarks? In order to address this concern, we require techniques for
generating resilient watermarks, i.e. watermarks that are difficult to remove without excessively
changing the DNN (and potentially damaging its functionality in the process).

We show how our proposed verification-based technique can be used to measure the resilience
of watermarks within a DNN. Our approach can thus be used to assess individual DNNs before
their release, and also to compare and rank different watermarking schemes, according to the
resilience of the watermarks that they produce.

Minimality of Changes. Modifying an already-trained DNN is a complex task, which may be
required under various circumstances — for example, when verification shows that a desirable
property is violated. We show how our approach can be used in order to remove such violations.
Specifically, we propose to maintain a list of points on which the DNN is known to produce
a faulty result, and find a modification to the DNN that simultaneously corrects the behavior
on all of these points. After each iteration, the network is verified; and if the property is still
violated, meaning that additional faulty inputs are discovered, these inputs are added to the
list of points, and the process is repeated. When the process converges, we are guaranteed that
we have found the minimal modification to the DNN that satisfies the property at hand.

For evaluation purposes, we created a proof-of-concept implementation of our approach as
a Python framework. As its underlying DNN verification backends, our tool uses the Marabou
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DNN verification engine [26], and the Gurobi LP solver [19]. We then used our implementation
to measure the resilience of a recently-proposed watermarking scheme [1], and also to correct
faulty behavior of a DNN for an airborne collision avoidance system [23, 24]. Our results clearly
indicate the usefulness of our approach to real-world examples.

The rest of this paper is organized as follows. In Section 2 we provide the necessary back-
ground on DNNs, DNN watermarking, and DNN verification. Next, in Section 3 we introduce
our technique for reducing the minimal DNN modification problem into a DNN verification
problem. In Section 4 we describe how to apply our technique in the context of watermark
resilience and DNN patching. Section 5 then describes our implementation and evaluation of
the approach. We discuss related work in Section 6, and conclude in Section 7.

2 Background

2.1 Neural Networks

A deep neural network is comprised of an input layer, an output layer, and multiple hidden
layers in between. Each layer consists of multiple nodes (also called neurons), each of which is
connected to nodes from the preceding layer. Each edge that connects two neurons is assigned
a predetermined weight. An example appears in Fig. 1. Weight selection is performed during
the DNN’s training phase, which is beyond our scope here — see, e.g., [16].

Input #1

Input #2

Input #3

Input #4

Output #1

Output #2

Output #3

Hidden
layer #1

Hidden
layer #2

Input
layer

Output
layer

Figure 1: An example of a simple deep neural network. The network has an input layer of size
4, two hidden layers of size 5 each, and an output layer of size 3. The edge weights are omitted.

The neural network is evaluated by assigning values to the input nodes, and then iteratively
propagating these values through the network, computing the values of additional layers one
at a time. Eventually, the values of the output layer are computed, and these constitute the
network’s output. The value of each hidden node in the network is computed by calculating a
weighted sum of node values from the preceding layer, and then applying a non-linear activation
function [16] to this weighted sum. For simplicity, we focus here on the Rectified Linear Unit
(ReLU) activation function [35], although our technique is directly applicable to additional
functions as well. When the ReLU activation function, ReLU(x) = max (0, x), is applied to
a node, its value is computed as the maximum between 0 and the weighted sum computed
according to the values of nodes from the previous layer.

More formally, let N be a DNN. We denote the number of layers in N by n, and use si
to denote the dimension of layer i (i.e., the number of neurons that it contains). Layer 1
is the input layer, layer n is the output layer, and layers 2, . . . , n − 1 are the hidden layers.
We use vi,j to denote the value of the j’th node of layer i, and use Vi to denote the column
vector [vi,1, . . . , vi,si ]

T . When evaluating N we are given V1, and need to compute Vn. This
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computation is performed by using the predefined weights and biases to compute the layer
assignments one by one, each time applying the activation functions (ReLUs, in our case) to
each node. Each layer 2 ≤ i ≤ n is associated with a weight matrix Wi of size si × si−1, and
also a bias vector Bi of size si. The entry of Wi at the j’th row and k’th column, denoted
Wi[j, k], represents the weight assigned to the edge from neuron vi−1,k to neuron vi,j . Each
hidden layer (2 ≤ i ≤ n− 1) is computed as

Vi = ReLU(WiVi−1 +Bi),

with the ReLU function being applied element-wise. This rule is applied repeatedly for each
layer until Vn−1 is calculated. The final, output layer is computed similarly, but without an
activation function:

Vn = WnVn−1 +Bn

For simplicity, in the rest of the paper we assume that the bias vector Bi is 0, unless otherwise
stated.

DNNs are often used as classifiers, assigning to each input a label from a finite set of possible
labels L = {l1, . . . , lsn}. In this case, each neuron in the output layer corresponds to one possible
label, and the label whose neuron is assigned the highest value is the label to which the input
is classified. Thus, an input V1 is classified to label li if and only if vn,i > vn,j for every j 6= i
(draws are resolved arbitrarily). We sometimes use the equivalent phrasing,

N(V1) = arg max
1≤i≤sn

{vn,i}

A small, running example appears in Fig. 2. Our example has 3 layers, each of size 2. The
weights are depicted over the edges (all biases are assumed to be 0). For a given input V1 = 〈3, 4〉
the second layer assignment is computed as

V2 = 〈ReLU(1 · 3− 2 · 4),ReLU(2 · 3− 1 · 4)〉 = 〈0, 2〉

and the output layer is computed as

V3 = 〈1 · 0− 1 · 2,−1 · 0 + 1 · 2〉 = 〈−2, 2〉

Observe that, by definition, the ReLU activation functions are not applied to the output layer.
This implies that input 〈3, 4〉 is classified to label 2, because v3,2 > v3,1.

v1,1

v1,2

v2,1

v2,2

v3,1

v3,2

1

2

−2

−1

1

−1

−1

1

V2V1 V3

Figure 2: A small neural network.
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2.2 Neural Network Verification

Let N be a neural network, and let P,Q be predicates that encode some constraints over the
DNN’s inputs and outputs, respectively. DNN verification [21, 24] is a field that seeks to answer
the question: does there exist an input x to the DNN such that P (x) and Q(N(x)) both hold,
where N(x) represents the network’s output when evaluated on input x. Typically, P encodes a
set of inputs of interest, whereas Q encodes the negation of a desired property. If the verification
query is UNSAT, i.e. no such input x exists, then the desired property is said to hold. Otherwise,
the verification tool returns a concrete counter-example x0 for which the property in question
is violated.

Recently there have been multiple tools and approaches suggested for solving the DNN
verification problem: these include Satisfiability Modulo Theories (SMT) based techniques [24,
26], approaches based on mixed integer linear programming [9, 47], abstract interpretation
based techniques [12], and several others (e.g., [21, 36]). The problem is known to be difficult,
and has been shown to be NP-complete even when restricted to simple cases [24] (networks with
piecewise-linear activation functions, and properties P and Q that are conjunctions of linear
constraints). Consequently, most existing approaches have limited scalability, and are highly
sensitive to the size of the DNN being verified.

3 Minimal DNN Modification as a Verification Problem

3.1 Modifying DNNs

In all DNN verification approaches to date (to the best of our knowledge), the goal is to verify
a fixed DNN. In other words, N is given, and a particular input x0 is sought that satisfies
certain constraints. The novelty of our approach is in changing this definition: we assume that
the input point x0 (or multiple inputs) are given, and search for a different DNN N such that
certain constraints hold. More formally, we define the problem as follows:

Definition 1. The DNN Modification Problem. Let N denote a DNN, let X denote a
set of fixed input points X = {x1, . . . , xn}, and let Q denote a predicate over the classifications
N(x1), . . . , N(xn) of the points of X. The DNN modification problem is to find a new DNN,
N ′, such that Q(N ′(x1), . . . , N ′(xn)) holds, and such that the distance between N and N ′ is at
most some δ > 0.

In this definition we did not yet specify how to measure the distance betweenN andN ′. Mul-
tiple measures of distance could be used, but for the motivating problems that we consider (e.g.,
verifying the resilience of watermarks, or finding minimal fixes for erroneous inputs), it makes
sense to require that N and N ′ share the same topology, and to define the distance between N
and N ′ according to the difference in these network’s weights. We note that a DNN modifica-
tion is trivial if the property Q holds for the original network N , i.e. if Q(N(x1), . . . , N(xn))
holds; in that case, N itself is a feasible solution to the modification problem.

Definition 2. DNN Distance. Let N1 and N2 denote two DNNs with identical topology,
i.e. the same number of layers (n1 = n2), and the same number of neurons in every pair of
matching layers (s1i = s2i for all 1 ≤ i ≤ n1). We define the L-distance between N1 and N2,
denoted

∥∥N1 −N2
∥∥
L

, as:

∥∥N1 −N2
∥∥
L

=

 n1∑
i=2

s1i∑
j=1

s1i−1∑
k=1

∣∣W 1
i [j, k]−W 2

i [j, k]
∣∣L1/L
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Intuitively, this definition of distance compares the weight matrices of the two networks,
element-wise; it computes the L-distance between each two corresponding edge weights as the
L-norm of the difference between two vectors.

Fig. 3 shows how these definitions are applied to our toy example from Fig. 2. Network
N2 is obtained from the original network, N1, by slightly modifying its edge weights while
maintaining the same layered structure. The distance between these DNNs is:

∥∥N1 −N2
∥∥
1

= (|−0.5|+ |1|+ |1|+ |−0.5|+ |0.5|+ |0.5|+ 0 + 0) = 4∥∥N1 −N2
∥∥
∞ = max {|−0.5| , |1| , |1| , |−0.5| , |0.5| , |0.5| , 0, 0} = 1
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Figure 3: The DNN from Fig. 2, denoted N1, and a modified version thereof, denoted N2.

Finally, we will typically be interested in finding N ′ that is closest to N . This is formalized
as follows:

Definition 3. The DNN Minimal Modification Problem. Let N denote a DNN, let X
denote a set of fixed input points X = {x1, . . . , xn}, and let Q denote a predicate over the
classifications N(x1), . . . , N(xn) of the points of X. The DNN minimal modification problem
is to find a new DNN N ′ that solves the DNN modification problem (for N,X and Q), such that
for every other N ′′ that solves the modification problem it holds that ‖N ′ −N‖L ≤ ‖N ′′ −N‖L.

We observe that given a decision procedure for solving the modification problem, solving
the minimal modification problem can be performed (up to some small tolerance) by repeatedly
invoking that procedure as part of a binary search, each time limiting the norm of the difference
between the modified network and the original network. If the underlying decision procedure is
sound and complete, it follows that this method for solving the minimal modification problem
is also sound and complete.

3.2 Minimal Modifications as DNN Verification

A straightforward approach for solving the minimal DNN modification problem is to cast it
as an optimization problem, and use an off-the-shelf optimization tool. Specifically, the goal
would be to minimize ‖N −N ′‖L, while maintaining the constraint Q(N ′(x1), . . . , N ′(xn)).
Unfortunately, such an optimization problem is highly non-convex and high-dimensional, and
is hence very difficult to solve.

We illustrate this issue in Fig. 4, again using our running example from Fig. 2. In the
modified network N ′ that is depicted in the figure, we add to the edge weights from the original
network fresh variables, w1, . . . , w8, that represent the modification to the network. In order to
solve the minimal modification problem, we would need to find a minimal assignment for the
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wi variables such that the N ′ satisfies the predicate Q (the exact expression to be minimized
depends on the distance metric in use).

To show that this minimization problem involves solving non-convex, high-degree con-
straints, let X = {〈3, 4〉} and Q(N ′(〈3, 4〉)) = v3,1 ≥ v3,2. Recall that the original network
assigned the label 2 to point 〈3, 4〉, and so our goal here is to modify the network so that it
classifies this point to label 1, instead. The expressions for v3,1 and v3,2 are:

v3,1 = (1 + w5) · ReLU(3(1 + w1) + 4(−2 + w3)) + (−1 + w7) · ReLU(3(2 + w2) + 4(−1 + w4))

v3,2 = (−1 + w6) · ReLU(3(1 + w1) + 4(−2 + w3)) + (1 + w8) · ReLU(3(2 + w2) + 4(−1 + w4))

Both expressions are non-linear, due to the ReLU functions and the multiplication of terms
involving the various w variables. For larger networks, such constraints would become signifi-
cantly more complex.

v1,1

v1,2

v2,1

v2,2

v3,1

v3,2

1 + w1

2 + w
2

−2 + w3

−1 + w4

1 + w5−1 + w
6

−1 + w7

1 + w8

V2V1 V3

Figure 4: The DNN from Fig. 2, with modifications to its edges expressed as variables
w1, . . . , w8.

In order to mitigate this issue and render the DNN modification problem tractable for large
networks, we focus on a restricted version of the problem in which the changes in weights are
limited to a single layer. We argue that under this restriction, the DNN modification problem
reduces into the standard DNN verification problem. The intuition is as follows: let N be a
DNN, and let Wi (for some fixed i, 2 ≤ i ≤ n) be the only weight matrix of N that we wish
to modify. Observe some fixed input point x ∈ X, and let Vi−1 denote the evaluation of layer
i− 1 for this x. In the modified network N ′, layers 1, . . . , i− 1 will be assigned the same values
as in N , i.e, Vk = V ′k for all 1 ≤ k ≤ i − 1. The changes in assignment begin only in layer i,
where it holds that

V ′i = ReLU(W ′iV
′
i−1) = ReLU((Wi +Wε)V

′
i−1)

where Wε represents the change in weights for layer i. We note that Wi and V ′i−1 are fixed; the
only variables here are the entries of Wε. This means that, for this particular input point x,
we can construct a new DNN, denoted N̄ , whose input neurons are the entries of Wε, followed
by a layer that computes ReLU((Wi +Wε)V

′
i−1), and then feeds into layers i+ 1, . . . , n of the

original network.

We again illustrate this using our running example — see Fig. 5. The figure depicts the
modified network N ′ (left), and the new network N̄ constructed from N ′ for the specific input
point x = 〈3, 4〉. The input neurons of N̄ are the entries of Wε = [w1, w2, w3, w4], and its
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outputs are

v3,1 = +ReLU(3(1 + w1) + 4(−2 + w3))− ReLU(3(2 + w2) + 4(−1 + w4))

= +ReLU(3w1 + 4w3 − 5)− ReLU(3w2 + 4w4 + 2)

v3,2 = −ReLU(3(1 + w1) + 4(−2 + w3)) + ReLU(3(2 + w2) + 4(−1 + w4))

= −ReLU(3w1 + 4w3 − 5) + ReLU(3w2 + 4w4 + 2)

Which precisely represent the outputs of the modified network N ′ for input V1 = 〈3, 4〉. Still
focusing on the DNN modification problem with X = {〈3, 4〉}, Q(N ′(〈3, 4〉)) = v3,1 ≥ v3,2 and
some δ > 0 in L∞ norm, we could then pose a DNN verification query with input and output
predicates (a similar encoding can be used for L1 norm):

P =

4∧
i=1

−δ ≤ wi ≤ δ Q = v3,1 ≥ v3,2 (1)

The resulting DNN verification problem is SAT if and only if the DNN modification problem is
SAT; and in that case, the satisfying assignment returned by the underlying verification engine
can be used in constructing the modified DNN. As previously mentioned, a DNN minimal
modification query can be reduced to multiple DNN modification queries (as part of a binary
search), and can thus be solved using this technique as well.
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1 + w1

2 + w
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−2 + w3
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−1

1

V2V1 V3
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−5

2

v2,1

v2,2

v3,1

v3,2

3

3

4

4

1

−1

−1

1

1
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V2V1 V3

Figure 5: The modified network, N ′, on the left; and the network N̄ used in the reduction to
a DNN verification problem, on the right. The dashed nodes represent additive bias values,
added to the weighted sums of v2,1 and v2,2.

In the previous example, we reduced the DNN modification problem into the DNN veri-
fication problem for a set X that contained a single point. The reduction when X contains
multiple points is similar; we simply duplicate the DNN that we construct n times, creating
a copy for each x ∈ X, and treat the result as one big DNN that is passed to the underlying
verification engine. This allows us to solve the problem simultaneously for the multiple points.
However, because DNN verification is NP-complete and becomes exponentially more complex
as the size of the DNN increases [24], this renders the problem significantly more difficult to
solve. In Section 3.3 we discuss a method for simplifying the process in some cases.

Finally, we note that the version of the problem in which we only allow changing a single
layer of network is interesting in its own right. Specifically, variants of this approach are key in
transfer learning [13, 14, 51, 53] and natural language processing [6, 37, 42], and have been shown
to reduce overfitting with respect to the modification being made. Single-layer changes have
also been shown to be an effective strategy when modifying object recognition networks [40].
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3.3 Private Case: Modifying the DNN’s Output Layer

Even when the DNN modification problem is limited to changes in a single layer of the DNN,
the existence of many points in the set X can render the resulting DNN verification problem
difficult. However, if the changes are limited to the output layer of the DNN, the resulting
problem is typically easier to solve. Intuitively, the reason is that the deeper the layer that
is being changed, the fewer neurons there are in the resulting DNN verification problem. In
addition, if the distance metric in use is the L∞ norm, changing only the output layer renders
the resulting DNN verification problem completely linear. This means that it can then be solved
using linear programming solvers [47], which tend to scale better than other DNN verification
tools. In case L1 norm is used, the problem still contains fewer neurons, but the absolute values
that are introduced by the L1 distance calculation prevent us from encoding it as a linear
program. In that case, we apply DNN verification tools that support absolute values [26].

In Fig. 6 we demonstrate modifying the DNN’s output layer, using our running example.
Recall that for input V1 = 〈3, 4〉, the output of the original network was V3 = 〈−2, 2〉; and
suppose we wish to modify the network so that v3,1 becomes greater than v3,2. In Fig. 7 we
show how to solve the resulting minimal modification problem, using L∞ norm, by encoding it
as a linear program. Observe that this encoding uses the fact that V2 = 〈0, 2〉.

v1,1

v1,2

v2,1

v2,2

v3,1

v3,2

1

2

−2

−1

1 + w1−1 + w
2

−1 + w3

1 + w4

V2V1 V3

Figure 6: Modifying the output layer of our running example DNN.

Minimize : M

Subject to : M ≥ 0

−M ≤ w1 ≤M
−M ≤ w2 ≤M
−M ≤ w3 ≤M
−M ≤ w4 ≤M
v3,1 = 0 · (1 + w1) + 2 · (−1 + w3)

v3,2 = 0 · (−1 + w2) + 2 · (1 + w4)

v3,1 ≥ v3,2

Figure 7: Encoding the minimal modification problem (for the L∞ norm) as a linear program.
The constraints are those defined in Eq. 1. An optimal solution to this linear program is
w3 = 1, w4 = −1 and w1, w2 = 0.
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4 Applications

4.1 Watermark Resilience

As briefly discussed in Section 1, there is now a growing need to imprint DNNs with watermarks:
secret inputs, known to the creator of the DNN, on which the DNN produces unexpected
outputs. Watermarks are crucial for the MLaaS business model, where a vendor sells a mostly-
trained DNN to clients, who then fine-tune it for their own needs. The key requirement is that
even if the network undergoes some changes, the watermark input will still produce the original,
unexpected output, allowing the vendor to recognize the DNN.

More formally, given a DNN N , a watermark is just an input point x with a specific label
l. Typically, a network will have a finite set of watermarks X. Creating this set of watermarks
is done at time of training — see, e.g., [1] for details. We say that a set X = {x1, . . . , xn} of
watermarks is δ-resilient if for every DNN N ′ such that ‖N −N ′‖ ≤ δ, it holds that N(xi) =
N ′(xi) for all 1 ≤ i ≤ n. Clearly, a watermarking scheme that produces watermarks that are
more resilient is preferable.

Solving the DNN minimal modification problem can thus serve two purposes in the context
of watermarking: (i) given a specific DNN N and a set X of watermarks, it can measure
the resilience of X (i.e., the maximal amount of change the network can withstand without
“forgetting” a watermark); and (ii) given multiple schemes for watermarking DNNs, i.e. for
producing the set X, it can compare the effectiveness of the schemes by checking the resilience
of the resulting watermarks (over some set of benchmark DNNs).

4.2 Minimal Repair

Despite their overall excellent performance, DNN-based systems are as prone to error as any
other system. Specifically, many erroneous behaviors have been observed in various DNNs, e.g.
for image recognition [11, 46] and for airborne collision avoidance [23, 24]. Once such a bug
is discovered, it is not immediately clear how to correct it. One approach would be to retrain
the network, but this may be expensive or impossible for some clients. The approach that we
propose here is simply to identify a minimal change to the DNN that removes the undesirable
behavior. We argue that it is useful to focus on a minimal change here, as such a change is less
likely to change the behavior of the network for other inputs, on which its behavior is currently
acceptable.

Finding minimal repairs for a DNN N can be cast into our formulation, as follows. Given
a set of erroneous points X = {x1, . . . , xn} and their set of correct labels l1, . . . , ln, we seek a
new DNN N ′ such that N ′(xi) = li for all 1 ≤ i ≤ n, and such that ‖N −N ′‖ is minimal.

5 Evaluation

We evaluated our approach using a proof-of-concept implementation as a Python framework.
Our code, together with the benchmarks on which we report in this section, are available
online. 1

5.1 Watermark Removal

In order to apply our approach to measure the resilience of watermarked networks, we trained
a watermarked DNN over the MNIST digit recognition dataset [33]. The DNN was of a modest

1https://github.com/jjgold012/MinimalDNNModificationLpar2020
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size: it had an input layer with 784 nodes, a single hidden layer with 150 nodes, and a final
output layer with 10 nodes. The input and output layers were fully connected, and the hidden
layer had the ReLU activation function applied to its nodes. We used the method proposed
in [1] to create a set X = {x1, . . . , x100} of 100 watermarks, each assigned a label N(xi); an
example appears in Fig. 8.

Tagged as 7 Tagged as 2

Tagged as 1 Tagged as 0

(a) Standard MNIST inputs.

Tagged as 5 Tagged as 4

Tagged as 1 Tagged as 8

(b) Watermark inputs.

Figure 8: Inputs to our MNIST digit-recognition DNN. The inputs on the left are standard,
and are correctly classified by the network. The inputs on the right are the watermarks: the
network was trained in a specialized way to make it assign those particular labels to those
inputs.

Next, we ran a series of experiments to identify modifications to the network that would
remove some, or all, of these watermarks. For simplicity, we focused on changes to the network’s
output layer. As a measure of distance, we used the L1 and L∞ norms, which are popular
distance metrics in the ML community and are supported by many DNN verification tools.

Removing a Single Watermark. We began by measuring the minimal change to the network
required to remove each individual watermark. More specifically, for each watermark x ∈ X
we found the closest network N ′ such that N(x) 6= N ′(x). We note that we did not explicitly
specify N ′(x), i.e. did not require that N ′ classify x in a particular way; we only required that
the new label be different from the original. We ran the experiment once with L1, and once
with L∞; the results are depicted in Fig. 9.

Analyzing these results exposes several interesting properties of the watermark inputs. For
example, we observe that for every single watermark x, the minimally-modified network that
was found classified x to the label that was assigned the second-highest score by the original
network. This result indicates that a resilient watermark should have a significant gap between
the score assigned to its actual label and the score of its second-highest label. We also observe
that some watermarks are significantly more difficult to remove than others; specifically, in
the L∞ case, the more resilient watermarks were approximately 26% more difficult to remove
than others, and in the L1 case — about 67% more difficult. This indicates a very wide range
of watermark resilience; and a DNN trainer may wish to assess the resilience of each selected
watermark before releasing the DNN.

The experiment also exposes some of the differences between the two distance metrics used,
i.e. L1 and L∞. Not surprisingly, the distances in the L1 case are generally larger than those in
the L∞ case: this is because the L∞ norm allows us to change multiple edges “at a flat rate”,
and thus affect the network’s outcome more effectively; whereas L1 distance counts every edge
weight that changes. In Fig. 10 we visualize this on one of the watermarks; we see that indeed,
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Figure 9: The minimal distance to a modified network in which each of the 100 watermarks is
removed.

0

1

2

3

4

5

6

7

8

9

0.32 0.16 0.00 0.16 0.32

(a) L∞ distance

0

1

2

3

4

5

6

7

8

9

35.30 17.65 0.00 17.65 35.30
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Figure 10: The minimal weight changes (to the output layer) required to remove a specific
watermark. Positive change is colored red and negative change is colored blue. There are 1500
edges feeding into the output layer.

when using the L∞ norm, almost all the edges were touched, whereas using the L1 norm caused
the change to occur only in a single edge.

In addition, we were also interested to see the effect of removing a watermark on the net-
work’s overall accuracy — as it is likely to assume that a user seeking to remove watermarks will
also attempt to maintain the network’s original performance. After removing each watermark,
we used the MNIST dataset to measure the accuracy of the modified network, and compared it
to the original network’s accuracy. As it turns out, the results (depicted in Table 1) vary widely
between L1 and L∞. We observe that using L1 gives better accuracy result on average, but can
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Number of
water-
marks

Norm
Average
change

Minimal
change

Maximal
change

Average
accuracy

Minimal
accuracy

Maximal
accuracy

0 0 0 0 0.97 0.97 0.97
1 L∞ 0.34 0.3 0.38 0.87 0.86 0.88
1 L1 27.95 21.56 35.91 0.94 0.56 0.97

Table 1: Changes to the DNN’s accuracy after removing a single watermark. The experiments
were performed for each of the 100 watermarks, individually, and then aggregated the results.
The first row shows the baseline accuracy rates.

lead to poor accuracy in extreme cases; whereas the L∞ norm leads to a much more consistent
result (the minimal and maximal accuracy are quite close), although the average accuracy is
lower than that of the L1 case.

Removing Multiple Watermarks. Next, we proceeded to modifying our DNN in a way that
removes multiple watermarks, simultaneously. Specifically, we wanted to change the weights of
the DNN’s output layer in a way that caused the misclassification of an arbitrary number of
watermarks.

As discussed in Section 3.3, the problem of modifying the network’s output layer when
using the L∞ norm is significantly easier than other variants; and indeed, using the Gurobi LP
solver [19] as our backend verification tool, we were able to find modifications that removed as
many as all of the watermarks. In the L1 case, performance became an issue, and so we focused
on removing as many as 5 watermarks simultaneously. The results are depicted in Table 2. We
see that a few watermarks can still be removed while maintaining a reasonable level of accuracy;
but that, at least in the L∞ case, removing all watermarks renders the network quite useless.
We thus conclude that using these particular 100 watermarks is sufficient for this particular
network.

In our experiments we observed that often, removing a particular watermark (or sets thereof)
would result in the removal of other watermarks, whose removal was not part of the experiment.
This indicates some hidden dependencies between the watermarks. For example, in one exper-
iment where we removed 5 watermarks using the L1 norm, a total of 80 (!) watermarks were
removed due to the modification (out of 100 total watermarks), and without any significant re-
duction in the network accuracy. In experiments using the L∞ norm, we also noticed additional
watermarks being removed beyond those that were targeted, but there the network’s accuracy
also tends to drop sharply as the number of removed watermarks increases (as indicated by the
maximal accuracy column in Table 2).

5.2 Removing Undesirable Behavior

In a separate experiment, we evaluated the effectiveness of our approach in correcting undesir-
able behaviors in a real-world DNN. The DNN in question is part of the ACAS Xu system for
Airborne Collision Avoidance [23] — a system that is part of a new standard, currently under
development by the Federal Aviation Administration (FAA). It is intended to read sensor infor-
mation regarding other nearby aircraft, and produce a horizontal turning advisory in order to
avoid a possible collision with these aircraft. One possible implementation of the system that
is being considered includes a family of 45 DNNs [23].

For our experiment, we focused on one of the ACAS Xu DNNs in which a bug has been
discovered using formal verification [24]. Specifically, a property ϕ that specifies certain condi-
tions (on the DNN’s inputs) under which the network should advise a weak turn or no turn at
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Number of
water-
marks

Average
change

Minimal
change

Maximal
change

Average
accuracy

Minimal
accuracy

Maximal
accuracy

0 0 0 0 0.97 0.97 0.97
1 0.34 0.3 0.38 0.87 0.86 0.88
2 0.43 0.3 1.83 0.79 0.76 0.88
3 0.53 0.33 1.79 0.71 0.66 0.88
4 0.68 0.33 1.79 0.64 0.57 0.88
5 0.79 0.33 1.87 0.59 0.47 0.8
6 0.89 0.35 1.83 0.53 0.38 0.78
7 1.05 0.34 1.91 0.48 0.28 0.78
25 1.86 1.45 2.09 9.49 · 10−2 2.7 · 10−3 0.41
50 2.05 1.9 2.15 4.89 · 10−2 2.3 · 10−3 0.2
75 2.13 2.03 2.17 5.95 · 10−2 2.8 · 10−3 0.18
100 2.18 2.18 2.18 5.11 · 10−2 5.11 · 10−2 5.11 · 10−2

(a) Changes in accuracy when solving for minimal L∞ change.

Number of
water-
marks

Average
change

Minimal
change

Maximal
change

Average
accuracy

Minimal
accuracy

Maximal
accuracy

0 0 0 0 0.97 0.97 0.97
1 27.95 21.56 35.91 0.94 0.56 0.97
2 51.12 22.65 145.75 0.9 0.56 0.97
3 73.52 25.83 172.67 0.86 0.53 0.97
4 98.39 25.83 205.22 0.86 0.53 0.97
5 118.09 30.65 260.39 0.86 0.51 0.97

(b) Changes in accuracy when solving for minimal L1 change.

Table 2: Minimal changes and accuracy degradation when simultaneously removing multiple
watermarks. We sampled a high number of arbitrary sets of watermarks for each category, and
aggregated the results.

all was shown not to hold — and a concrete input x0 on which ϕ is violated was discovered.
We attempted to apply our technique in order to find a minimal modification to the DNN in
question that would correct this behavior, i.e. make the network satisfy ϕ.

Because our goal was to satisfy ϕ, and not just to correct the DNN’s behavior on the concrete
counter-example x0 that had previously been discovered, we applied our technique as part of
the loop described in Algorithm 1.

Algorithm 1 Repair Network (N ,ϕ,x0)

1: S ← {x0}
2: N ′ ← N
3: while true do
4: Use verification to check whether ϕ holds for N ′

5: if ϕ holds for N ′ then
6: return N ′

7: else
8: Add the discovered counter-example to S
9: N ′ ← minimally-modify N so that ϕ holds for all points in S
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Figure 11: Change to the last layer for the ACAS Xu network in question, in L1 norm, in
each iteration of Algorithm 1. The first two iterations change a single edge; the third iteration
changes 2 edges.

The loop in Algorithm 1 terminates when N is successfully modified such that ϕ holds. If
the loop does not converge, the procedure may need to be terminated when a certain timeout
values is reached.

When we ran Algorithm 1 on our ACAS Xu DNN in question, it failed to terminate — we
stopped it after several days, while it was attempting to verify ϕ after the third modification
was applied to the network. Thus, while we were unable to verify that all violations of ϕ was
removed from N , we did obtain a network in which at least some of the original violations
no longer exist. The results are depicted in Fig. 11. When we examined the counter-examples
discovered by the algorithm during its iterations, we observed that they were fairly distant from
each other — indicating that the violation is question was not minor, and possibly explaining
the difficulty in correcting it.

6 Related Work

Correcting DNNs in order to remove undesirable behaviors is a general topic of interest in
the ML community. One line of work [27, 28] suggests to augment a malfunctioning DNN with
decision trees that determine when a patch should be applied. Another line of work [44] corrects
DNNs using an iterative encoding of the problem into a sequence of Max-SMT instances. A key
feature of our verification-based approach that separates it from prior work is that it provides
formal guarantees about the minimality of the discovered changes to the DNN in question.

DNN verification is an emerging field, with many recently-proposed tools and approaches.
These include the use of SMT solving [21, 22, 24, 26], LP and MILP solving [9, 47], symbolic
interval propagation [50], abstraction based techniques [10, 12], and many others (e.g., [3, 8,
29, 31, 34, 36, 39, 43, 52]). Our technique reduces the DNN minimal modification problem into
a DNN verification problem, and can use many of the aforementioned tools and techniques as a
backend. In addition, whereas most work to date has focused on verifying adversarial robustness
properties [2, 4, 17, 25], on verifying hybrid systems with DNN controllers [7, 45], and on DNN
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simplification [15], our work demonstrates that DNN verification engines are applicable also for
analyzing the resilience of DNN watermarking schemes.

DNN watermarking is a general approach for marking DNNs that are to undergo changes,
for which multiple methods have been proposed (e.g., [1, 5, 32, 48, 49]). Our technique can be
used in assessing and comparing the performance of such watermarking approaches.

7 Conclusion and Future Work

With the fast spreading use of DNNs, there is an increasing need to make small modifications to
already-trained networks — e.g., as part of the MLaaS paradigm, or in order to correct erroneous
DNN behavior. By harnessing recent advances in DNN verification, we proposed here a method
for finding the minimal changes required to make a DNN satisfy certain properties. This
technique holds great potential for users who wish to change a DNN, and also for vendors who
wish to ensure that their DNNs maintain some behavior even if modified. We demonstrated the
applicability of our approach in analyzing a DNN watermarking scheme [1], and in attempting
to correct a faulty behavior of a DNN for airborne collision avoidance [23].

In the future we plan to extend our technique so that it can be applied when the changes to a
DNN occur in more than one layer. In order to overcome the highly non-linear and non-convex
nature of the problem, we plan to apply compositional techniques: i.e., to break the DNN down
into smaller DNNs, so that the changes to each smaller DNN will only occur in a single layer.
We will then apply our technique to each smaller DNN separately, and use the results to draw
conclusions regarding changes to the original DNN as a whole. In addition, we plan to identify
and research additional use cases, beyond watermark resilience and bug correction, where our
technique could prove useful.

Acknowledgments. The project was partially supported by grants from the Binational Sci-
ence Foundation (2017662) and the Israel Science Foundation (683/18).
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