
Maelstrom: Mitigating Datacenter-level Disasters by Draining
Interdependent Traffic Safely and Efficiently

Kaushik Veeraraghavan Justin Meza Scott Michelson Sankaralingam Panneerselvam
Alex Gyori David Chou Sonia Margulis Daniel Obenshain Ashish Shah

Yee Jiun Song Tianyin Xu∗

{kaushikv, jjm, sdmich, sankarp, gyori, davidchou, frumious, danielo, ahish9, yj, tianyin}@fb.com

Facebook Inc. ∗UIUC

Abstract
We present Maelstrom, a new system for mitigating and
recovering from datacenter-level disasters. Maelstrom
provides a traffic management framework with modular,
reusable primitives that can be composed to safely and ef-
ficiently drain the traffic of interdependent services from
one or more failing datacenters to the healthy ones.

Maelstrom ensures safety by encoding inter-service
dependencies and resource constraints. Maelstrom uses
health monitoring to implement feedback control so that
all specified constraints are satisfied by the traffic drains
and recovery procedures executed during disaster mitiga-
tion. Maelstrom exploits parallelism to drain and restore
independent traffic sources efficiently.

We verify the correctness of Maelstrom’s disaster mit-
igation and recovery procedures by running large-scale
tests that drain production traffic from entire datacenters
and then retore the traffic back to the datacenters. These
tests (termed drain tests) help us gain a deep understand-
ing of our complex systems, and provide a venue for con-
tinually improving the reliability of our infrastructure.

Maelstrom has been in production at Facebook for
more than four years, and has been successfully used to
mitigate and recover from 100+ datacenter outages.

1 Introduction

1.1 Motivation

Modern Internet services are composed of hundreds
of interdependent systems spanning dozens of geo-
distributed datacenters [7, 23]. At this scale, seemingly
rare natural disasters, such as hurricanes blowing down
power lines and flooding [32, 46], occur regularly. Fur-
ther, man-made incidents such as network fibercuts, soft-
ware bugs and misconfiguration can also affect entire
datacenters [25, 37, 41]. In our experience, outages that
affect one or more datacenters cannot be addressed by
traditional fault-tolerance mechanisms designed for indi-
vidual machine failures and network faults as co-located
redundant capacity is also likely impaired.

In a disaster scenario, mitigation is almost always the
first response to reduce user-visible impact, before root
causes are discerned and systems are recovered. In our
experience, outages affecting physical infrastructure take
a long time to repair as they often involve work by on-site
maintenance personnel. Software failures can be hard to
debug and fix, and thus it is hard to guarantee a resoluton
time [9, 25, 26, 60].

The basic idea of disaster mitigation is to quickly drain
traffic—redirect requests originally sent to failing dat-
acenters and reroute them to healthy datacenters. Our
assumption when draining traffic is that a disaster af-
fects only a fraction of our overall infrastructure—this
assumption is reasonable because most natural disasters
(e.g., hurricanes and earthquakes) are locality based. For
software failures caused by bugs and misconfiguration,
we adopt a locality-based staged rollout strategy, par-
tially driven by our ability to use Maelstrom to quickly
drain traffic from an affected datacenter.

We find that most failures are not instantaneous and
thus can be detected and mitigated in time. For instance,
we had about one week of notice before Hurricane Flo-
rence made landfall in North Carolina on September 15,
2018. This advance notice allowed us to plan and execute
mitigations were Facebook’s Forest City datacenter to be
affected. Further, it is far more likely that a failure affects
parts of a datacenter or certain infrastructure components
(e.g., several network backbone cables) than resulting in
total loss of a physical datacenter. In all these cases, de-
veloping the mechanism to quickly redirect user traffic
as well as inter-service traffic, which we term “draining
traffic”, is key to disaster readiness.

The conceptually simple idea of draining traffic turns
out to be rather challenging in practice. In our experi-
ence, disasters often trigger failures that affect multiple
interdependent systems simultaneously. Ideally, every
system should be implemented with a multi-homed de-
sign [28], where any traffic can be sent to and served
by any datacenter. However, we observe that most
of today’s Internet services are composed of a number

of heterogeneous systems including singly-homed and
failover-based systems with complex, subtle dependen-
cies, and distinct traffic characteristics [12, 32, 46, 53].

The most challenging aspect of mitigation is to en-
sure that dependencies among systems are not violated.
For instance, in a distributed caching system, if we drain
cache invalidation traffic before redirecting read traffic
from clients, we risk serving stale data. Or, in a web
service, if we drain intra-datacenter traffic between web
servers and backend systems before redirecting user re-
quests, we risk increasing response latency due to cross-
datacenter requests. Hence, we need a disaster mitigation
systems that can track dependencies among services, and
also sequence operations in the right order.

Different systems may require customized mitigation
procedures due to their distinct traffic characteristics,
e.g., draining stateless web traffic requires a different
procedure from draining stateful database traffic. With-
out unified, holistic tooling, each system might end up
maintaining their own, incompatible disaster mitigation
scripts that cannot be composed or tuned for scenarios
with varying levels of urgency. As shown in §5.3, drain-
ing systems sequentially can significantly slow down the
mitigation process, and prolong the impact of a disaster.

Disaster mitigation and recovery strategies also need
to monitor shared resources, such as network bandwidth
and datacenter capacity. Naı̈vely redirecting all traffic
from one datacenter to another could overwhelm the net-
work and trigger cascading failures.

1.2 Maelstrom for Disaster Mitigation & Recovery

We present Maelstrom, a system used for mitigating and
recovering from datacenter-level disasters1 at Facebook.
Maelstrom safely and efficiently drains traffic of interde-
pendent systems from one or more failing datacenters to
the healthy ones to maintain availability during a disas-
ter. Once the disaster is resolved, Maelstrom restores the
datacenter to a healthy state.

Maelstrom offers a generic traffic management frame-
work with modularized, reusable primitives (e.g., shift-
ing traffic, reallocating containers, changing configura-
tions, and moving data shards). Disaster mitigation and
recovery procedures are implemented by customizing
and composing these primitives. Inter-system dependen-
cies specify the order of executing the primitives, and re-
source constraints control the pace of executing individ-
ual primitives. This design is driven by two observations:
1) while each system has its own procedures for mitiga-
tion and recovery, these procedures share a common set
of primitives, and 2) different procedures share similar

1Maelstrom does not target machine-level failures (which should be
tolerated by any large-scale system), or software bugs and misconfigu-
ration that can be immediately reverted.

high-level flows—draining traffic while maintaining sys-
tem health and SLAs. Therefore, it is feasible to build a
generic system to satisfy the needs of a wide variety of
systems with heterogeneous traffic characteristics.

To ensure safety, Maelstrom coordinates large-scale
traffic shifts by respecting inter-system dependencies and
resource constraints. Dependencies are rigorously en-
coded and maintained. We employ critical path analy-
sis to identify bottlenecks and decrease time to mitigate
disasters. Maelstrom implements a closed feedback loop
to drain traffic as fast as possible without compromising
system health. In order to mitigate disasters efficiently,
Maelstrom exploits parallelism to drain independent traf-
fic sources, which significantly speeds up execution of
the mitigation and recovery procedures.

We find that Maelstrom makes disaster mitigation
and recovery significantly easier to understand and rea-
son about, in comparison to monolithic, opaque scripts.
Maelstrom also incorporates extensive UI support to dis-
play the mitigation and recovery steps, and their runtime
execution states, to assist human proctoring and interven-
tion in disaster scenarios (cf. §3).

1.3 Drain Tests for Verifying Disaster Readiness

We employ Maelstrom to run different types of large-
scale tests that simulate real-world disasters. We find
that annual, multi-day failure drills such as DiRT [32]
and GameDay [46] are useful to verify that entire data-
centers can be shutdown and restarted. However, besides
these annual tests, we desire a regimen of continuous
tests that can be executed at daily and weekly frequen-
cies to ensure that our mitigation and recovery keep up
with rapidly-changing systems and infrastructure.

We present our practical approach, termed drain tests,
to address the challenge. A drain test is a fully auto-
mated test that uses Maelstrom to drain user-facing and
internal traffic from our datacenters in the same way as
if these datacenters are failing. Running drain tests on a
regular basis enables our systems to always be prepared
for various disaster scenarios by maintaining and exer-
cising the corresponding mitigation procedures. Drain
tests also force us to gain a deep understanding of our
complex, dynamic systems and infrastructure, and help
us plan capacity for projected demand, audit utilization
of shared resources, and discover dependencies (cf. §3).

Drain tests operate on live production traffic and thus
could be disruptive to user-facing services, if not done
carefully. It has taken us multiple years to reach our
current state of safety and efficiency. Our original tests
only targeted one stateless system: our web servers. The
first set of drain tests were painful—they took more than
10 hours to run, experienced numerous interruptions as
we uncovered dependencies or triggered failures that re-
sulted in service-level issues. As we built Maelstrom

and began using it to track and encode dependencies,
drain tests gradually became smooth and efficient. Af-
ter a year, we extended drain tests to two more services:
a photo sharing service and a real-time messaging ser-
vice. Currently, Maelstrom drains hundreds of services
in a fully automated manner, with new systems being on-
boarded regularly. We can drain all user-facing traffic,
across multiple product families, from any datacenter in
less than 40 minutes.

1.4 Contributions

Maelstrom has been in operation at Facebook in the past
4 years, and has been used to run hundreds of drain tests
and has helped mitigate 100+ disasters. The paper makes
the following contributions:

• Maelstrom is the first generic framework that can drain
heterogeneous traffic of interdependent systems safely
and efficiently to mitigate datacenter-level disasters.

• We introduce drain tests as a novel reliability engineer-
ing practice for continuously testing and verifying the
disaster-readiness of Internet services.

• We share the lessons and experience of running regu-
lar drain tests, as well as mitigating real disasters at a
large-scale Internet service.

2 Background
This section provides an overview of Facebook’s infras-
tructure and traffic management primitives which are
similar to other major Internet services [10, 23, 36, 55].

2.1 Infrastructure Overview

As Figure 1 shows, user requests to www.Facebook.com
are sent to an ISP which maps the URL to an IP ad-
dress using a DNS resolver. This IP address points to
one of the tens of edge locations (also known as Point-
of-Presence or PoPs) distributed worldwide. A PoP con-
sists of a small number of servers, typically co-located
with a peering network [47,59]. A PoP server terminates
the user’s SSL session and then forwards the request on
to an L4 load balancer (Edge LB) which forwards the re-
quest on to a particular datacenter. A user request can be
served from any of our datacenters.

We group machines in a datacenter into logical clus-
ters such as frontend clusters composed of web servers,
backend clusters of storage systems, and generic “ser-
vice” clusters. We define a service as the set of sub-
systems that support a particular product.

Within a datacenter, an L7 web load balancer (Web
LB) forwards the user request to a web server in a fron-
tend cluster. This web server may communicate with tens
or hundreds of services, and these services typically need
to further communicate with other services and back-
ends, to gather the data needed to generate a response.

W
eb

	LB

Frontend	Cluster

PoP

DNS

Frontend	Cluster

Se
rv
ic
e	
LB

Service	Cluster

Datacenters

Datacenters

Datacenters

Datacenters

PoPs Datacenters Inside	a	datacenter

Edge	weight Cluster	weight

Service	Cluster

Ed
ge

LB

PoP

Ed
ge

LB

PoP

Ed
ge

LB

Figure 1: An overview of Facebook’s infrastructure. The configurable
edge and cluster weights determine how user requests are routed from
PoPs to particular datacenters, and then on to particular clusters.

Traffic Affinity State Strategy

Stateless — — reroute
Sticky X — reroute → tear down
Replication — X customized
Stateful X X master promotion

Table 1: Traffic type, property, and mitigation strategy (cf. §2.3).

We employ a set of service load balancers (Service LBs)
to distribute requests amongst service and backend clus-
ters. The web server handling the user request is also
responsible for returning the response to the PoP which
then forwards it on to the end user.

2.2 Traffic Management Primitives

The PoP server parses each request URI and maps it to
a service. Our traffic management system assigns each
service a virtual IP (VIP). Traffic for each VIP is con-
trolled by two configurable values: edge weight and clus-
ter weight. Edge weights specify the fraction of requests
that the PoP should forward to each of the datacenters.
Cluster weights specify the fraction of requests that each
cluster is capable of handling.

Since PoPs and frontend clusters are stateless, a user
request can be sent to any PoP and forwarded to any fron-
tend web server. This property allows us to program-
matically reconfigure edge and cluster weights to reroute
traffic in disaster scenarios. For instance, if a network
fiber-cut disconnects a datacenter from the rest, we push
out a configuration change to all PoPs that sets the edge
weight for the disconnected datacenter to 0; this results
in the traffic originally sent to the failing datacenter being
routed to the other datacenters.

Internal service traffic (e.g., RPC traffic) within and
across datacenters are controlled by L7 service load bal-
ancers based on configurable knobs in a similar vein.

2.3 Traffic Types

Table 1 categorizes the traffic types of different systems
based on affinity and state properties, as well as the com-
mon strategies for draining them during disasters.

• Stateless. The vast majority of web traffic is stateless,
consisting of users’ web requests directed from PoPs
to one or more datacenters. Stateless traffic can be
drained by rerouting it away from a failing datacenter,
or from particular sets of clusters, racks, or machines.

• Sticky. Interactive services (e.g., messaging) improve
user experience by pinning requests to particular ma-
chines that maintain the state for a user in a session.
Sticky traffic can be drained by rerouting incoming
session requests and tearing down the established ses-
sions to force them reconnect to other machines.

• Replication. In a disaster, we may need to alter or even
stop replication traffic from egressing or ingressing the
failing datacenter for distributed storage systems. The
replicas can be re-created in other datacenters to serve
reads. This requires configuration changes or other
heavyweight changes that influence resource sharing,
such as intra- and inter-datacenter networks.

• Stateful. For master-slave replication based systems,
the mitigation for a master failure is to promote a sec-
ondary to be the new master. This may require copying
states from the failing datacenter to the new. The state
copy requires careful control based on the network ca-
pacity to transfer data out to healthy machines.

3 Maelstrom Overview
Maelstrom is a disaster mitigation and recovery system.
During a datacenter-level disaster, operators2 use Mael-
strom to execute a runbook that specifies the concrete
procedure for mitigating the particular disaster scenario
by draining traffic out of the datacenter; after the root
causes are resolved, a corresponding recovery runbook
is used to restore traffic back.

Maelstrom provides a generic traffic management
framework. A runbook can be created via Maelstrom’s
UI by composing a set of tasks. A task is a specific oper-
ation, such as shifting a portion of traffic, migrating data
shards, restarting container jobs, and changing configu-
rations. Tasks can have dependencies that determine the
order of execution—a task should not be started before
its dependent tasks are completed. Figure 2 shows an
example of a runbook and its corresponding tasks. We
elaborate the runbook-based framework in §4.2.

Every service maintains its own service-specific run-
books for disaster mitigation. Taking our interactive mes-
saging service as an example, the runbook for draining
the service’s sticky traffic (upon software failures in a
datacenter) includes two tasks in order: 1) redirecting
new session requests to the other datacenters, and 2) ter-
minating established sessions in the failing datacenter to

2In this paper, we use “operators” as a general term for anyone help-
ing with operations, including Software Engineers, Site Reliability En-
gineers, Production Engineers, and System Administrators.

Ta
sk

s

Monitoring Metadata

A B E

C D

Scheduler

Executor

Traffic Shift Task Job Update Task

X Y Z
Stage

Runbook UI

Traffic Shift
Config Change

Job Update
Shard Shift

U V W

Task

Dependency

Figure 2: Maelstrom executes runbooks, each specifying the procedure
for mitigating a particular disaster scenario. A runbook is composed of
interdependent tasks (e.g., traffic shift and job updates). These tasks are
scheduled by Maelstrom’s scheduler based on their dependencies, and
are executed in multiple stages by Maelstrom’s executor. Maelstrom
monitors and displays the runtime status tasks in the Runbook UI.

force them reconnect. A recovery runbook can be used
to restore messaging traffic back to the datacenter.

If an entire datacenter is down (e.g., due to network
fibercuts that disconnect it from our infrastructure), a
datacenter evacuation runbook will be used to drain traf-
fic of all the services in the datacenter. A datacenter
evacuation runbook is composed of service-specific run-
books, where each runbook drains or restores the traffic
for a particular service deployed in a datacenter. These
service-specific runbooks are aggregated through exter-
nal dependencies that link tasks in different runbooks.

Runbooks are executed by Maelstrom’s runtime en-
gine consisting of two main components: 1) the sched-
uler that schedules tasks to execute based on the pol-
icy specified in the runbook (including dependencies and
conditions), and 2) the executor that is responsible for
executing each individual task. A task can be executed
in multiple stages based on its implementation (cf. §4.3).

As shown in Figure 2, Maelstrom is equipped with a
UI that monitors and visualizes the runtime information
of a runbook, including the state of every task, their de-
pendencies, and the associated health metrics. We keep
improving the UI with an operator-centric methodology.
Each disaster provides a learning opportunity for us to in-
teract with the operators and to improve usability. Our UI
design focuses on helping operators understand the miti-
gation and recovery status, and on efficiently controlling
the runbook execution.

At Facebook, we use Maelstrom to run different types
of tests with different frequencies. Besides weekly drain
tests, we also run storm tests at a quarterly cadence. The
primary difference between a drain test and a storm test
is that a drain test is focused on draining user traffic out
of a datacenter as fast as possible without user perceiv-
able impact. In contrast, a storm test extends beyond user

traffic to drain all RPC traffic amongst services, stops
data replication, and applies network ACLs to isolate the
tested data center. Thus, a storm test is a more rigorous
endeavor that verifies that all of Facebook’s products and
systems can function correctly despite the total loss of a
datacenter. From our understanding, storm tests are akin
to Google’s DiRT [32] and Amazon’s GameDay [46] ex-
ercises. In this paper, we focus on drain tests as a new
type of large-scale, fully-automated test for production
services, which can be run on a daily or weekly basis.

3.1 Drain Tests

Maelstrom requires runbooks to always keep updated
with our rapidly-evolving software systems and physical
infrastructure. However, maintaining up-to-date infor-
mation (e.g., service dependencies) is challenging due to
the complexity and dynamics of systems at scale, akin to
the observations of other cloud-scale systems [5, 32, 37].

Drain tests are our practical solution to continuously
verify and build trust in the runbooks. A drain test is a
fully automated test that uses Maelstrom to drain user-
facing and internal service traffic from our datacenters
in the same way as if these datacenters are failing. Inter-
nal services include various asynchronous jobs, data pro-
cessing pipelines, machine learning systems, software
development tools, and many other services that are key
components of our infrastructure.

We run multiple drain tests per week to simulate vari-
ous types of disaster scenarios (e.g., those listed in [22])
on a least-recently-tested datacenter. Tests are scheduled
at different times in a day to cover various traffic patterns
(e.g., peak and off-peak time). We also vary the duration
of each test to understand how the rest of our infrastruc-
ture serve user and service traffic when the disaster is in
effect. Running drain tests brings many benefits:

• verifying that runbooks can effectively mitigate and
recover from various types of disasters and meet our
recovery objectives;

• aid planning by identifying capacity needs during var-
ious disaster scenarios;

• testing the pace at which a service can offload traffic
without overwhelming its downstream systems;

• auditing how shared resources are utilized to identify
resource bottlenecks;

• tease apart complex inter-system dependencies and
continuously discover new dependencies.

A drain test is not expected to have any user-visible
or service-level impact. If this expectation is not met,
we follow up with the engineering teams to understand
why a given disaster scenario was not handled well, and
schedule followup tests to verify fixes.

3.2 Failure Mitigation

Maelstrom was initially built for mitigating disasters of
physical infrastructure. We experience a handful of inci-
dents each year that result in the temporary catastrophic
loss of one or more datacenters, usually due to power or
network outage. We mitigate and recover from these dis-
asters using datacenter evacuation runbooks.

Over time, our practice of rigorously verifying run-
books via drain tests has resulted in its evolution as a
trusted tool for handling a wide variety of failures, in-
cluding service-level incidents caused by software er-
rors including bugs and misconfiguration. These service-
level incidents are an order of magnitude more frequent.
Note that most service incidents are recovered by revert-
ing the buggy code or configuration changes, so traffic
drains are rare. We will discuss how Maelstrom is used
to deal with various failure scenarios in §5.1.

The actual failures and disasters are mitigated using
the same runbooks as drain tests. Drain tests are fully
automated—operators are only paged when the test trig-
gers unexpected issues. During a disaster, operators may
choose to accelerate steps to speed up mitigation.

4 Design and Implementation

4.1 Design Principles

Composability. Disaster mitigation and recovery are
rarely done by a single red button, but through pro-
cedures consisting of a series of interdependent tasks.
In our experience, despite the heterogeneity of system-
specific procedures, they share common structures and
can be composed of a common set of primitives. Mael-
strom enables services to implement their own runbooks
by composing various primitives. Composability offers a
number of benefits: 1) it allows Maelstrom to exploit par-
allelism among primitive tasks; 2) enforces modularity
and reusability of mitigation- and recovery-related code,
and 3) makes runbooks easy to understand and maintain.
Separation of policy and mechanism. Maelstrom sep-
arates policies that define how traffic should be drained
and restored in a specific disaster scenario and the mech-
anisms for executing traffic shifts and other related oper-
ations (cf. §2.2).
Safety as a constraint. Disaster mitigation and re-
covery themselves must not create new outages—when
shifting traffic, Maelstrom should avoid cascading fail-
ures that overload the remaining healthy datacenters.
Further, drain tests as a regular operation should not have
any user-visible, service-level impact.
Embracing human intervention. We have learned that
it is critical for a disaster mitigation and recovery sys-
tem to embrace human intervention, even with fully au-
tomated runbooks (cf. §6). Extensive visualization on top

Task Template Parameter Description

TrafficShift {vip type, target, ratio, ...} Shift traffic into or out of a cluster or a datacenter (specified by target):
vip type specifies the traffic, ratio specifies the amount of traffic to shift;

ShardShift {service id, target, ratio, ...} Move persistent data shards into or out of a cluster or a datacenter via our
shard manager (target and ratio have same semantics as in TrafficShift)

JobUpdate {operation, job ids, ...} Stop or restart jobs running in the containers
ConfigChange {path, rev id, content, ...} Revert and/or update configurations in our distributed configuration store

Table 2: Several common templates used to materialize tasks in runbooks, and their descriptions. Note that we have omitted the optional parameters
that provide fine-grained control (e.g., latency and stability optimization) from this table.

of continuous monitoring helps operators understand the
context. The UI design should minimize tedious opera-
tions to let operators focus on critical decision making.

4.2 Runbook Framework

A runbook is created through the Maelstrom UI by spec-
ifying the following information:

• Task specifications. Tasks are materialized by apply-
ing parameters to a library of templates. Table 2 lists
several task templates and their description.

• Dependency graph. We use a directed acyclic graph
(DAG) to represent dependencies amongst the tasks in
a runbook. Every node Ti in the DAG refers to a task
in the runbook. A directed edge T1 → T2 represents
a dependency: Task T1 must precede Task T2, which
means that T2 can only be scheduled for execution af-
ter T1 is completed.

• Conditions. A task can have pre-conditions (checking
if it is safe to start) and post-conditions (determining
if it completed successfully). Pre-conditions are typi-
cally used as safeguards to ensure that the service is in
a healthy state, while a post-condition could check if
the target traffic reaches zero.

• Health metrics. Each task is associated with a num-
ber of service-health metrics, which are visualized in
Maelstrom’s UI to help human operators monitor the
status of task execution.

Each service maintains its service-specific runbook for
disaster mitigation and recovery. We also maintain an
evacuation runbook for each of our datacemters which
aggregates service-specific runbooks. The aggregation
is accomplished by adding dependencies between tasks
from different service-specific runbooks. We run the
evacuation runbooks during each drain test and thus ex-
ercise all the related service-specific runbooks. There-
fore, every drain test covers hundreds of services—we
run tests far more often than we experience real failures.

4.3 Runtime Engine

Maelstrom’s runtime engine is responsible for executing
a runbook. The runtime engine consists of two compo-

nents: 1) a scheduler that determines the order of exe-
cuting tasks by tracking their dependencies, and 2) an
executor that executes each task and validates the results.

• Scheduler. The scheduler generates an optimal sched-
ule of task execution by parallelizing independent
tasks. The scheduler marks a task ready for execu-
tion and sends its specification to the executor, when
and only when all the parent tasks that must precede
this task are completed and all the pre-conditions are
satisfied. Note that this schedule is generated dynam-
ically based on the runtime status of each task, and
it supports operator intervention (e.g., skipping and
stopping tasks).

• Executor. The executor materializes each task based
on the parameters in the specification sent by the
scheduler, and then executes the task. A task is exe-
cuted in multiple steps. For example, a TrafficShift
task for draining 100% web traffic out of a datacen-
ter can be done in one step, or in five steps (with wait
time in between)—each one draining 20%—based on
the desired pacing (cf. §4.7).

Maelstrom models a task as a nondeterministic finite
state machine, with a set of stages S, a set of runtime
inputs, transitions between stages, an initial stage I ∈
S, and a set of exit stages E ⊆ S. A stage accepts
one or more inputs, performs the desired action, and
then optionally invokes a transition to the next stage. A
stage can have multiple outgoing and incoming transi-
tions. Each stage can generate outputs, as inputs for other
stages. The executor starts from I and continues exe-
cuting subsequent stages following the transitions, until
reaching an exit stage. This design allows us to reuse
stages as the basic unit for implementing task templates.

We implement a library of stages that capture com-
mon operations like instructing load balancers to alter
traffic allocation [6,19, 40,51], managing containers and
jobs [12,48,56], changing system configurations [49,52],
migrating data shards [1, 13], etc. We also implement
various helper stages for communication and coordina-
tion, such as Barrier, TimedWait, and ChangeLog.

Pre	
Condition

Drain	New	
Sessions

Post	
Condition

Pre	
Condition

Health	Check

Tear	down	
existing	
sessions

External
dependencies

ChangeLog TrafficShift JobUpdate

.	.	.

No	new	session #	Sessions
<	threshold

Health	Check

.	.	.

Figure 3: A runbook to drain a messaging service’s sticky traffic. The
runbook has two tasks: redirecting new sessions and tearing down ex-
isting sessions—both are executed in multiple steps.

4.4 Executing Runbooks: Putting It All Together

Figure 3 illustrates how Maelstrom executes a service-
specific runbook to drain traffic of a messaging ser-
vice. Maelstrom executes two tasks in order: 1) redi-
recting new incoming session requests away, and 2) tear-
ing down the remaining established sessions so clients
can reconnect to machines in other datacenters. Mael-
strom verifies that all of a task’s parent dependencies
are drained, and pre-conditions are satisfied. The sec-
ond task uses its pre-condition as a safety check to con-
firm that the number of active sessions has dropped be-
low a preset threshold to minimize the impact of tearing
down all existing sessions. Maelstrom marks a task as
completed when the post-condition is met.

Drains are blocked if the pre-/post-condition(s) are not
met, because this signifies that the service is in an unex-
pected state. Maelstrom compares the duration of each
task to the 75th percentile of the execution time of prior
tests/incidents to determine whether the task is stuck in
execution. If so, the operator will be alerted. We prior-
itize safety over speed, and stall subsequent operations
until an operator intervenes—we find stalls to be a rare
event that occurs only once every several dozen tests.
When handling actual failures, Maelstrom allows hu-
man operators to override particular pre-/post-conditions
if they wish—each of these overrides are logged and re-
viewed in postmortems to improve automation.

Maelstrom’s traffic drains and restorations are guided
by a variety of constraints:

• physical and external constraints, including network
over-subscription within a datacenter, cache hit rate,
I/O saturation in backend systems, etc.

• service-specific constraints—different types of traffic
have distinct constraints. For example, draining sticky
traffic is prone to a thundering-herd effect, because
session establishment is resource intensive; draining
stateful traffic leads to master promotion which re-
quires the slave to have caught up with all updates,
or requires state restoration from logs; restoring repli-
cation traffic requires syncing updates with volumes
proportional to down time, and the sync speed is con-

0 5 10 15 20 25 30 35 40 45
Time (seconds)

0.0M

1.0M

2.0M

3.0M

4.0M

5.0M

6.0M

7.0M

8.0M

R
e
q
u
e
st

s
P
e
r

S
e
co

n
d
 (

R
P
S
)

Drain HTTP Drain RPC

HTTPS traffic

RPC traffic

Figure 4: An example of a service dependency that determines the
order of drains. A web service with HTTPS traffic communicates with
backend services via RPC traffic (we say the web service depends on
the backend services). So, the web service’s HTTPS traffic must be
drained before the backend service’s RPC traffic is drained.

strained by the available network bandwidth.

We show how Maelstrom respects these constraints when
draining/restoring traffic of different types in §5.2.1.

4.5 Dependency Management

Broadly, we find that there are three common relation-
ships amongst services that manifest as dependencies:

• Bootstrapping: A service depends on low-level system
components to prepare the execution environment and
setup configuration before serving traffic.

• RPC: A service makes RPC calls to fetch data from
other services.

• State: Traffic can have states. For instance, a service
with sticky traffic may depend on a proxy to coordi-
nate and manage session establishment.

Discovery and sequencing. We employ a combina-
tion of methods to discover the aforementioned depen-
dencies when onboarding a new service to Maelstrom.
First, we design scenario-driven questionnaires to help
service teams reason about their dependencies with up-
stream and downstream services under different types of
failures and disasters. Moreover, we leverage our trac-
ing systems [20,29,50] to analyze how the target service
interacts with other services through RPC and network
communications. Our analysis incorporates our service
discovery systems [16,18] to map the interactions to spe-
cific services. We further analyze the traces and logs
of software components to reason about state-based de-
pendencies based on the causal models of service behav-
ior [17, 35]. Figure 4 illustrates the dependency between
traffic of two services, which enforces the order of drains.

After identifying dependencies, the next challenge is
to sequence drains amongst multiple interdependent sys-
tems in the right order. We tackle this problem by first
organizing services into chains of parent-child dependen-
cies in a disconnected dependency graph (we often do

Service A Service F Service X

Service B Service G Service C

Service C Service C Service Y

Service D Service I

Service A Service F Service X

Service B Service G

Service YService D Service I

Dependency chains Dependency graph

Service C

Figure 5: To build a runbook, we start with independent dependency
chains (left). We identify highly connected components (HCCs), like
Service C, and merge the dependency chains at the HCCs to form a
dependency graph (right).

0 100 200 300 400
Time (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 W

e
b
 T

ra
ff

ic

Web traffic

Error count

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 E

rr
o
r

C
o
u
n
ts

Restore web Restore backend

Figure 6: Restoring web traffic (left y axis) at minute 55 caused a
proportional increase in errors (right y axis) until a backend service
that the web traffic depended on was restored at minute 375.

not have one single complete graph at a time). Next, we
identify common services across chains—the common
services are often highly connected components (HCCs)
that hold the dependency graph, as illustrated in Figure 5.
Draining a HCC service will likely require us to drain its
parents first; once the HCC service is drained, its chil-
dren can likely be drained concurrently.

Continuous verification. We use Maelstrom to em-
pirically verify that independent services can be drained
and restored in parallel. For a new service, we use Mael-
strom to cautiously validate the specified dependencies
via small-scale drain tests, while closely monitoring the
health of all involved services. We gradually enlarge the
radius of the drain tests until all levels of traffic drains
can be performed regularly. We find this process to be
time consuming but worthwhile, as a principled way of
verifying dependencies in a controlled, scalable manner.

Figure 6 illustrates how a previously unknown depen-
dency was discerned in a drain test. This issue was
caused by an out-of-order restore, where a backend ser-
vice was drained while its dependent web traffic was re-
stored. This made the error count proportional to the
web traffic, as the web service was trying to query the
unavailable backend. The error rate went down to zero
after the operator also restored the backend service. Af-
ter this test, the dependency was added into the runbook,
together with improved monitoring of the error count.

Critical path analysis. Maelstrom performs auto-
mated critical path analysis after each drain test as well
as each disaster mitigation and recovery event. Critical
path analysis helps us optimize mitigation time by iden-
tifying bottlenecks in our dependency graphs.

When adding a new dependency into an existing run-
book, we run drain tests to check if the new dependency
is on the critical path or not. If it is, we engage with
the service team responsible for that dependency to op-
timize drain and recovery performance as necessary. We
also actively examine dependencies on slow, heavy tasks
(e.g., data shard migration) to try to move these depen-
dencies off the critical path. If a dependency lengthens
the critical path, the service team evaluates whether the
dependency is providing value given its failure mitiga-
tion cost.

Maelstrom allows a dependency to be tagged as weak,
while by default all dependencies are strong. Strong de-
pendencies affect correctness, and thus are expected to
be respected in most failure scenarios. Weak dependen-
cies affect a system’s performance and reliability SLA.
Drain tests respect both strong and weak dependencies.
During a disaster, operators can override weak depen-
dencies to stabilize a system or speed up mitigation. For
instance, in case of a fibercut disconnecting a datacenter,
an operator might move all user traffic to a different dat-
acenter in a single step which minimizes user impact, but
might affect the hit rate of any underlying caching sys-
tems, and possibly push backend storage systems to their
limits. We curate weak dependencies by analyzing the
dependencies on the critical path as discussed above. We
also perform experiments that intentionally break weak
dependencies in a controlled fashion to assess the corre-
sponding service-level impact.

4.6 Preventing Resource Contention

Safely draining traffic with Maelstrom involves ensuring
that shared resources (e.g., server compute capacity and
network bandwidth) do not become overloaded during a
drain. Our approach to reducing the effect of resource
contention is guided by the following three principals:

• Verifying capacity. We verify that the shared infras-
tructure has enough capacity to absorb the spikes in
utilization caused by draining with Maelstrom through
regular testing. Since Facebook has full monitoring
and control of its backbone network, we can observe
how draining affects peak network capacity utiliza-
tion. When bottlenecks arise during tests, we work
with teams to update our routing policies, traffic tag-
ging and prioritization schemes, or bandwidth reserva-
tion configuration so we can drain services safely. At
the network level, we provision multiple diverse paths

both intra- and inter-datacenters, and plan 75% utiliza-
tion for our switches [38].

• Prioritizing important traffic. To handle the event of
a widespread failure where shared resources cannot
support demand, we have a prioritization scheme for
how we drain traffic from a datacenter. We prioritize
draining user-facing traffic as soon as possible to limit
the user-perceivable impact of a failure, and then drain
stateful service traffic. This ensures that the effect of
the drain on an end user are minimized and also mini-
mizes the overhead of state migration.

• Graceful degradation. Finally, we plan for systems to
degrade gracefully in the case of resource overload.
Some systems employ PID controllers to reduce the
complexity of serving requests (e.g., by incrementally
turning off ranking algorithm complexity to reduce
server compute capacity). Other systems are able to
respond automatically to resource contention by per-
forming large-scale traffic redirection, while safely ac-
counting for the effect of traffic changes.

4.7 Pacing and Feedback Control

Maelstrom implements a closed feedback loop to pace
the speed of traffic drains based on extensive health mon-
itoring. The drain pace is determined by the step size
(traffic fraction to reduce) and wait time before the next
step. The runbook uses past drain parameters from test-
s/incidents as a starting value for step size and wait time.
When running an actual drain, these parameters are fur-
ther tuned to be more aggressive or conservative based
on the health of underlying systems.

Our pacing mechanism seeks to balance safety and
efficiency—we wish to drain as fast as possible with-
out overloading other datacenters. Specifically, Mael-
strom breaks down a drain operation into multiple steps,
and for each step, tunes the weights such that no traffic
shift breaches the health metrics of any datacenter. For
instance, when draining web traffic from 100% to 0%,
Maelstrom typically does not drain in one step (which
could have ripple effect such as significant cache misses).
Instead, the drain takes multiple steps (with specified
wait time in between), gradually increasing the traffic
shift proportion, in order to allow cache and other sys-
tems to warm up with smoothly increasing load without
getting overwhelmed. The health metrics are also dis-
played in Maelstrom’s UI, so operators can audit opera-
tions and intervene as needed.

Maelstrom reads the health data maintained as time
series. In our experience, a few key metrics from each
service can provide good coverage of their health, and
we infrequently need to add new metrics.

We use drain tests to experiment with various starting
speeds. Based on the empirical mapping from speed to
health metric impact, we tune the default value to the

maximal speed without compromising health or safety.

4.8 Fault Tolerance

Maelstrom is designed to be highly fault tolerant in
the presence of both component and infrastructure fail-
ures. We deploy multiple Maelstrom instances in geo-
distributed datacenters so at least one instance is avail-
able even when one or more datacenters fail. We also
have a minimal version of Maelstrom that can be built
and run on any of our engineering development servers.

We verify the correctness of runbooks by leverage
continuous tests that validate the invariants in every ser-
vice’s runbook including checking for circular depen-
dencies, reachability (no inexistent dependencies), du-
plication, ordering (every drain step is undone with a re-
store), and configuration (mandatory parameters are al-
ways set). If a test fails, the service’s oncall engineers
will be notified to review the service’s tests, dependen-
cies, health indicators, etc. If all tests pass, but other cor-
rectness violations manifest during a drain test (e.g., due
to insufficient tests), the disaster-recovery team will arbi-
trate between services to ensure that problems are fixed
and continuous tests are updated. As discussed in §4.4,
live locks (e.g., due to failures of task execution or con-
dition checks) are prevented by tracking the execution
time of tasks and comparing it with the 75th percentile
of prior runtimes.

Maelstrom stores its metadata and runtime state in a
highly-available, multi-homed database system. Both
task and stage level state is recorded so both the sched-
uler and executor can be recovered in case of failure.
Maelstrom also records the state of each task (waiting,
running, or completed) into the database so it can re-
sume at the last successful step of a drain or recovery
procedure. For a running task, Maelstrom records the
runtime state of each stage and transition in the database
based on the state machine it generated. Hence, if there is
a crash of Maelstrom (including both the scheduler and
the executor), we can use standard recovery techniques
to read the last committed state from the database to ini-
tialize Maelstrom and resume the execution.

Maelstrom also relies on a highly-available time-series
database to provide it with health monitoring data [43].
Our monitoring database continuously provides data
even in the presence of failures by varying the resolution
of data points.

5 Evaluation
Maelstrom has been in use at Facebook for more than
four years, where it has been used to run hundreds of
drain tests, and helped mitigate and recover from 100+
datacenter-level failures and service-level incidents.

Our evaluation answers the following questions:

• Does Maelstrom enable us to mitigate and recover
from real disasters safely and efficiently?

• Does Maelstrom provide a safe and efficient method-
ology for regular drain tests?

• How quickly does Maelstrom drain and restore differ-
ent types of traffic?

5.1 Mitigating Disasters

Power and network outages. Maelstrom is one of our
primary tools to mitigate and recover from disasters im-
pacting physical infrastructure whether caused by power
outages or backbone network failures, resulting in the to-
tal or partial unavailability of datacenters. Taking the net-
work as an example, a single fibercut almost never dis-
connects a datacenter; usually, one link is lost, and net-
work flows reroute over alternate paths. This rerouting
procedure often takes tens of seconds, and could impact
users. On the other hand, a single-point-of-failure link,
such as a trans-Atlantic or trans-Pacific optical cable, can
get cut occasionally [38]—these incidents are severe in
both magnitude and duration-to-fix, thus requiring data-
center drains.

A recent incident caused by fibercuts led to the loss of
over 85% of the capacity of the backbone network that
connects a datacenter to our infrastructure. This inci-
dent was immediately detected as we experienced a dip
in site egress traffic. The disaster was mitigated by the
site operators using Maelstrom to drain all user and ser-
vice traffic out of the datacenter in about 1.5 hours, with
most user-facing traffic drained in about 17 minutes. The
remaining network capacity was used to replicate data
to the storage systems resident in that datacenter (which
helps efficiently redirect user traffic back, once the fiber
is repaired). It took several hours to repair the backbone
network, at which point we used Maelstrom to restore all
traffic back to the datacenter.

Note: when a datacenter is drained, users may expe-
rience higher latency, as they are redirected to a remote
datacenter, or experience reconnection (only for sticky
services). Draining faster could reduce the amount of
time during which users experience increased latency.
We are continually working to decrease dependencies
and optimize constraints to enable faster drains.
Software failures. Maelstrom is also used to respond to
service-level incidents caused by software errors, includ-
ing bugs and misconfiguration [25, 26, 37, 57, 58]. These
incidents are typically triggered in two ways:

• software errors in ongoing rollouts. Despite the wide
adoption of end-to-end testing, canaries, and staged
rollout, bugs or misconfiguration can still make their
way into production systems.

• latent software errors. A software release or configu-
ration change might trigger latent bugs or misconfigu-

ration residing in production systems.

In both cases, any error or disruption ought to trigger an
alert and inform operators. The operators need to decide
between two options: reverting the offending change(s),
or fixing forward after diagnosing the problem.

Unfortunately, neither of these options is trivial. First,
it may take time to identify the offending change (or
changes) due to the challenge of debugging large-scale
distributed systems. Second, rollback to an early version
may cause other issues such as version incompatibility,
which can result in other failures. Third, it takes time to
diagnose, code up a fix, test it thoroughly, and then de-
ploy it into production [60]. During this time, the error
continues to manifest in production.

Maelstrom provides a pragmatic solution for reducing
the impact of failures by moving diagnosis and recovery
out of the critical path—it simply drains service-specific
traffic from the failing datacenters when failures are de-
tected. We find that this mitigation approach is robust
when paired with a locality-based, staged rollout strat-
egy for all software and configuration changes.

Maelstrom was used to mitigate a recent service in-
cident where a configuration change was rolled out to
all instances of our search aggregator deployed in one of
our datacenters. The configuration change inadvertently
triggered a new code path and exposed a latent bug in the
aggregator code (a dangling pointer). All the instances
in the datacenter immediately crashed due to segfaults.

This incident was mitigated by draining service traf-
fic from the datacenter where the misconfigured search
aggregators were deployed. Detecting the incident took
only 2 minutes as it immediately triggered alerts. It took
7 minutes to drain service requests out of the affected
datacenter using Maelstrom. Failure diagnosis (identify-
ing the root cause) took 20 minutes. Thus, Maelstrom re-
duced the duration of service-level impact by about 60%.

5.2 Draining Different Types of Traffic

5.2.1 Service-specific Traffic

Stateless traffic. Figure 7 shows how Maelstrom drains
stateless web traffic of one of our services out of a tar-
get datacenter in a recent drain test. We normalize the
data, because different datacenters have different sizes
((in terms of the magnitude of traffic served) and we want
to highlight the relative trends of each datacenter during
the drain. The runbook for draining web traffic includes a
TrafficShift task which manipulates the edge weights
of the target datacenter by applying a drain multiplier
between [0.0, 1.0]. The drain was executed in multiple
steps indicated by the drain multiplier changes in Fig-
ure 7. Splitting the drain into multiple steps prevents
traffic from shifting too fast and overloading the other
datacenters (cf. §4.7).

0 5 10 15 20 25
Time (minutes)

0.0

0.2

0.4

0.6

0.8

1.0
N

o
rm

a
liz

e
d
 T

ra
ff

ic Target DC

Multiplier

DC-2

DC-3

DC-4

DC-5

Figure 7: Draining stateless traffic. We apply a multiplier (dotted line)
to the edge weight (cf. §2) of stateless traffic in a Target DC to drain
stateless traffic. The long tail of Target DC traffic is from DC-internal
requests that are controlled separately from the edge weight.

0 50 100 150 200
Time (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 T

ra
ff

ic

Sessions (target DC)

Sessions (other DCs)

Drain multiplier

Restarted jobs

0.0

0.2

0.4

0.6

0.8

1.0

%
 R

e
st

a
rt

e
d
 J
o
b
s

st
a
rt

 d
ra

in

50%

Figure 8: Draining sticky traffic. We drain sticky traffic by first apply-
ing a multiplier (dotted line) to the edge weight of a target DC (similar
to stateless traffic). We then restart the jobs in the target DC to force
already-established sessions in the target DC to reconnect in other DCs.

As shown in Figure 7, the traffic follows the changes
of the drain multiplier instantly. Maelstrom can drain
stateless traffic fast. Maelstrom can drain traffic of most
of our web services out of a datacenter in less than 10
minutes without any user-visible, service-level impact.
The 10-minute duration is used as a baseline for draining
web traffic during real disasters (cf. §5.1).

Sticky traffic. Figure 8 shows how Maelstrom drains
sticky traffic for a messaging service. This runbook con-
tains two tasks as described in §4.4: (1) changing edge
weights to redirect new, incoming session requests (at
the 42nd minute), and then (2) tearing down established
sessions by restarting container jobs, if the client can still
connect to the datacenter (at the 75th minute). Figure 8
shows the effects of these two tasks—it took about 25
minutes to reduce the number of sessions down to 50%,
and the remaining time to restart jobs and reset connec-
tions. Note that we need to pace job restarts to avoid
thundering-herd effects caused by computationally ex-
pensive session establishment. During real disasters, we
find that clients’ connections are severed due to network
disconnections or server crashes, so drains are faster.

Replication traffic. Figure 9 shows how Maelstrom
drains and restores replication traffic of a multi-tenant

0 5 10 15 20
Time (hours)

1X

5X

10X

15X

N
e
tw

o
rk

 T
ra

ff
ic

N
e
tw

o
rk

 b
lo

ck
e
d

N
e
tw

o
rk

 u
n
b
lo

ck
e
d

Drain Restore

Figure 9: Draining and restoring replication traffic (normalized by the
average traffic volume before the network block). We drained repli-
cation traffic before the network block, and a surge of replicated data
saturated the network during restoration. This problem has been fixed
by network-aware recovery.

0 10 20 30 40 50
Time (minutes)

0.0M

0.2M

0.4M

0.6M

0.8M

1.0M

R
e
q
u
e
st

 P
e
r

S
e
co

n
d
 (

R
P
S
) Ads

Aggregator-leaf

Classification

Primary shards

0K

10K

20K

30K

40K

50K

#
 P

ri
m

a
ry

 S
h
a
rd

s

Drain

Figure 10: Draining stateful traffic. Maelstrom moves primary data
shards from storage system and simultaneously drains traffic from the
services that access the storage system.

storage system when the target datacenter was subject to
a network partition. Maelstrom drains replication traf-
fic by disabling the replication to the storage nodes in
the target datacenter after first pointing read traffic away
from the replicas. The drain was smooth, but the restora-
tion caused an incident. Upon enabling replication for
recovery, the system attempted to resolve its stale state
as quickly as possible, transferring data from other data-
centers at about 10× the steady-state rate. This saturated
network capacity at multiple layers in our backbone and
datacenter network fabric and triggered production is-
sues in other systems that shared the network. In this
case, we mitigated the issue by draining user-facing traf-
fic depending on these systems out of the datacenter, and
subsequently adopting a network-aware transfer strategy.

Stateful traffic. Figure 10 shows how Maelstrom
drained stateful traffic of three services: an “ads”, an
“aggregator–leaf”, and a “classification” service. All
three services store their data in a multi-tenant stateful
storage system where the data are sharded. The storage
system distributes replicas of each shard in multiple dat-
acenters to ensure high availability. During the drain,
Maelstrom promotes a replica outside of the datacenter
to be the new primary shard, and then shifts traffic to it.

Figure 10 plots the fraction of primary shards in the

Traffic Service # Tasks # Steps Drain Time

Stateless Web service 1 10 10 min
Sticky Messaging 2 1→ 5 3 min→ 61 min
Replication KV store (replica) 1 1 3 min
Stateful KV store (master) 1 24 18 min

Table 3: Time for draining different types of traffic of representative
services at Facebook. The time is collected from our recent drain tests.
For sticky traffic,→ denotes the two tasks for draining the traffic.

Runbook # Tasks # Dep. # Tasks on CP

Mitigation (drain) 79 109 8 (9.6%)
Recovery (restore) 68 93 5 (7.4%)

Table 4: Aggregate statistics of the runbooks that drain and restore all
user-facing traffic in one of our datacenters, respectively. “CP” is an
abbreviation of critical path.

datacenter being drained. From the perspective of the
storage system, each of these services is independent
of the others because their data are sharded separately.
This allows Maelstrom to drain writes and promote their
masters in parallel while respecting shared resource con-
straints. Note that Figure 10 only highlights three ser-
vices for clarity—Maelstrom drains tens of thousands of
shards for hundreds of services in the datacenter.

Timing. Table 3 shows the time for Maelstrom to drain
one representative service that displays each type of traf-
fic pattern. Note that they vary significantly in duration
from 3 minutes for a replication system where a drain is
as simple as redirecting read requests and shutting the in-
stance down, to a sticky service that takes 61 minutes to
drain at its natural pace. Note that we encourage services
to plan for different disaster scenarios but do not force
particular policies for timing or reliability unless the ser-
vice is in the critical path for evacuating a datacenter.

5.2.2 Draining All the Traffic of a Datacenter
Figure 11 shows a drain test that drains a wide variety
of service traffic hosted in the datacenter, including both
user traffic as well as internal service traffic. We see
that no single service constitutes a majority of the traffic.
Maelstrom achieved a high degree of parallelism while
maintaining safety by ordering drains according to the
dependency graph encoded in the runbook (cf. §4.5).

Figure 12 is a complement of Figure 11 that depicts
the normalized utilization of both the target datacenter
that is being drained of traffic, and the other datacenters
that the traffic is being redirected to and then restored
from. We see that once all traffic is drained, the utiliza-
tion of the target datacenter drops to zero. Meanwhile,
the utilization of the other datacenters increase as they
need to serve more traffic. None of the remaining data-
centers were overloaded—traffic is evenly distributed to
the available datacenters.

0 50 100 150 200 250 300
Time (minutes)

0.0M

1.0M

2.0M

3.0M

4.0M

5.0M

6.0M

7.0M

8.0M

R
e
q
u
e
st

s
P
e
r

S
e
co

n
d
 (

R
P
S
)

Drain Restore

...

Facebook

RPC

Instagram

Instagram Beta

Media Cache

Figure 11: Draining and restoring traffic for 100+ production systems
in a datacenter. Each line corresponds to the traffic of a specific service.
“Facebook” refers to the traffic of Facebook’s main web service.

0 50 100 150 200 250 300
Time (minutes)

0

20

40

60

80

100

U
ti

liz
a
ti

o
n

Drain Restore

Target DC

DC-2

DC-3

DC-4

DC-5

DC-6

DC-7

Figure 12: Datacenter utilization when the traffic of an entire datacen-
ter is drained and restored.

Aggregate statistics. Table 4 analyzes the runbooks
used to drain and restore all user-facing traffic and their
dependent services from one of our datacenters. Our goal
is to provide insight into the policies we encode in Mael-
strom. The mitigation runbook consists of 79 tasks with
109 dependencies, of which less than 10% of the tasks
are on the critical path. Note that this minimal critical
path is not an organic outcome but rather the result of
continually optimizing and pruning dependencies over
four years, based on the critical path analysis described
in §4.5. The recovery component has fewer tasks on the
critical path implying that there is higher parallelism dur-
ing recovery than mitigation.

The histogram displayed in Figure 13 shows that there
are 13 different template types in use in this runbook.
Further, we find that TrafficShift is the most frequently
used tempate. This is because most user traffic is deliv-
ered over HTTP to our web servers, and hence manipu-
lated by tuning weighs in our software load balancers.

Figure 14 plots the number of steps per tasks—observe
that most tasks were executed in more than one step, and
several were paced in more than 10 steps, during both the
mitigation and recovery phases.

5.3 Efficiency

We leverage drain tests to estimate how fast we are able
to mitigate a real disaster. In this section, we focus on

1 2 3 4 5 6 7 8 9 A B C D
Task Template ID

0

10

20

30

40

50
#

 T
a
sk

1: TrafficShift

2: Coordination

3: Wrapper

4: EdgeChange

5: SuppressAlarm

6: ConfigChange

...

Figure 13: Histogram of number
of tasks to drain and restore user-
facing traffic.

1 2 4 6 8 10 20
Steps Per Task

0

5

10

15

20

25

#
 T

a
sk

s

Drain

Restore

Figure 14: Histogram of number
of steps per task at runtime when
draining and restoring user-facing
traffic.

Phases (Traffic Shift) Time Duration
Maelstrom Sequential

Drain web traffic 10 min ×1
Drain all user-facing traffic 40 min ×6.6
Drain all service traffic 110 min ×6.3
Restore web traffic 50 min ×1
Restore internal service traffic 1.5 hour ×4.3
Restore all service traffic 2 hour ×5.6

Table 5: Time duration of draining and restoring traffic of a datacenter.
The data are collected from a real disaster for which we drained all the
traffic out of the entire datacenter (and restored it after repair).

the scenario where an entire datacenter fails.
Table 5 shows the time taken by Maelstrom to drain

and restore traffic in different phases from and back into
a datacenter. The traffic of Facebook’s main web service,
referred to as web traffic in Figure 11 and Table 5, is used
as the baseline. It takes less than a minute to propagate a
change of drain multiplier (cf. §5.2.1) to Edge LBs when
draining web traffic. Maelstrom typically does not drain
web traffic in one step but gradually adjusts the speed
based on health monitoring. Currently, it takes about 10
minutes to fully drain the web traffic, and 50 minutes to
restore it. Restoration is slow as we wish to minimize
backend overload due to cold caches. Overall, it takes
40 minutes to drain all the user-facing traffic, and 110
minutes to drain all service traffic including the traffic of
internal systems.

We next evaluate whether Maelstrom provides an effi-
cient methodology to mitigate and recover from a data-
center failure. We calculate the time needed to drain and
restore the datacenter sequentially by summing up the
time used by the traffic drain and restoration of every ser-
vice in a runbook. As shown in Table 5, sequential drain
and restoration would take up to 6× longer than Mael-
strom. The results verify the efficiency of Maelstrom and
demonstrate the importance of parallelizing operations.

Note that restoring traffic back to a datacenter encoun-
ters a narrower bottleneck where a single target data-
center is receiving more load, in comparison to draining
traffic from a datacenter to many others. We prioritize
restoring user-facing traffic back into the datacenter as

this minimizes the risk of exposing users to multiple in-
dependent datacenter failures.

6 Experience
Drain tests help us understand interactions amongst
systems in our complex infrastructure. We find drain
tests to be one of the most efficient ways to understand
how a system fits into our infrastructure. A success-
ful drain test is a validation of our tooling which tracks
inter-system dependencies and health monitoring, while
a failed drain test reveals gaps in our understanding. We
find that drain tests are truer validators of inter-service
dependencies than other methods we have experimented
with, such as methods based on log and trace analysis.
Drain tests help us prepare for disaster. Prior to run-
ning regular drain tests, we often encountered delays in
disaster mitigation due to our tools having atrophied as
they did not account for evolving software, configuration
and shared infrastructure components. Drain tests ex-
ercise our tooling continuously and confirm operational
behavior in a controlled manner.
Drain tests are challenging to run. We observe that
infrastructure changes, new dependencies, software re-
gressions, bugs and various other dynamic variables in-
evitably trigger unexpected issues during a drain test. We
strive to continually tune and improve our monitoring
systems to quickly assess impact and remediate issues.
Further, we have focused on communication and contin-
ually educate other teams on our tests and their utility so
our systems are prepared.
Automating disaster mitigation completely is not a
goal. Our initial aspiration was to take humans out of
the loop when mitigating disasters. However, we have
learned that it is prohibitively difficult to encode the an-
alytical and decision making skills of human operators
without introducing tremendous complexity. The current
design of Maelstrom is centered around helping opera-
tors triage a disaster and efficiently mitigate it using our
tools and well-tested strategies. We intentionally expose
runtime states of each task and allow human operators
to override operations. This strategy has proved sim-
pler and more reliable than attempting to automate every-
thing. Our experience with operators confirms that Mael-
strom significantly reduces operational overhead and the
errors that are inevitable in a manual mitigation strategy.
Building the right abstractions to handle failures is
important, but takes time and iteration. We have
evolved Maelstrom’s abstractions to match the mental
model of the teams whose systems are manipulated by
Maelstrom. We find that our separation of runbooks and
tasks allows each service team to focus on maintaining
their own service-specific policies without the need to
(re-)build mechanisms. This separation also allows us to

efficiently onboard new services, and ensure a high qual-
ity bar for task implementation. Lastly, we find that as
new systems are onboarded, we need to create new task
templates and other supporting extensions to satisfy their
needs.

7 Limitation and Discussion
Maelstrom, and draining traffic in general to respond to
outages, is not a panacea. In fact, we find that there is no
single approach or mechanism that can mitigate all the
failures that might affect a large scale Internet service.

Capacity planning is critical to ensure that healthy dat-
acenters and shared infrastructure like backbone and the
datacenter network fabric have sufficient headroom to
serve traffic from a failing datacenter. Drain tests can
help validate capacity plans but shortfalls can still be dif-
ficult to address as it takes time to purchase, deliver, and
turn-up machines and network capacity. If a capacity
shortfall were to exist, it is wholly possible that draining
traffic from a failing datacenter might overwhelm healthy
datacenters and trigger cascading failures. Our strategy
is to work in lockstep with capacity planning, and also
regularly perform drills (storm tests) that isolate one or
more datacenters and confirm that the remaining capac-
ity can serve all our user and service needs.

If an outage is triggered by malformed client requests,
or a malicious payload, redirecting traffic away from a
failing datacenter to healthy ones will spread the failure.
We handle this scenario by applying traffic shifts in mul-
tiple steps; the first step is intentionally small so we can
monitor all systems in the target datacenter and confirm
their health before initiating a large-scale drain.

Traffic drains may not always be the fastest mitigation
strategy. Specifically, outages triggered by buggy soft-
ware or configuration changes might be mitigated faster
by reverting suspect changes. We expect operators to de-
cide which mitigation strategy to use.

8 Related Work
Many prior papers study failures and outages in large
scale systems running on cloud infrastructure [21,25–27,
30, 37, 39, 41, 42, 61]. These papers share several com-
mon conclusions: (1) outage is inevitable at scale when
systems are exposed to a myriad set of failure scenarios,
(2) large-scale, complex systems cannot be completely
modeled for reliability analysis, and thus failure response
cannot be predicted in advance; and (3) the philosophy of
building and operating highly-available services is to an-
ticipate disasters and proactively prepare for them. We
built Maelstrom to mitigate and recover from failures.

Many prior studies have focused on fast recovery [11,
14, 42, 44, 45] and efficient diagnosis [9, 15, 34, 62, 63].
While these studies help resolve the root cause of failures

and outages in a timely manner, our experience shows
that even this speedy resolution exposes users to a frus-
trating experience. We use Maelstrom to mitigate failure
and reduce user-visible impact, which buys us time for
thorough diagnosis and recovery.

Fault-injection testing has been widely adopted to con-
tinuously exercise the fault tolerance of large-scale sys-
tems [2–5,8,24,33,54]. Maelstrom is not a fault-injection
tool like Chaos Monkey [8, 54]. Specifically, Maelstrom
is not designed for simulating machine- or component-
level failures, but rather for responding to disastrous fail-
ures at the datacenter level.

Drain tests are different from annual, multi-day testing
drills such as DiRT [32] and GameDay [46]. Fundamen-
tally, drain tests focus on testing mitigation and recov-
ery for user traffic and services without fully isolating or
shutting down a datacenter. Drain tests are fully auto-
mated and run frequently. In contrast, DiRT and Game-
Day intentionally disconnect or shutdown one or more
datacenters fully and exercise the entire technical and op-
erational spectrum, including detection, mitigation, esca-
lation, and recovery components of a response strategy.
Aside: we also use Maelstrom in our own periodic large-
scale, DiRT-like drills to verify the capability and end-
to-end effectiveness of our disaster response strategies.

Kraken and TrafficShifter [36, 55] leverage live traf-
fic for load testing to identify resource utilization bottle-
necks; TrafficShift [31] can also drain stateless web traf-
fic. Maelstrom uses similar underlying traffic manage-
ment primitives to Kraken (cf. §2), and goes beyond Traf-
ficShift in its capability to drain different traffic types,
track dependencies, and order operations.

Traffic draining has been anecdotally mentioned as a
method for mitigating failures for site reliability [10, 31,
32]. To our knowledge, existing systems only work with
one service or one type of traffic, and cannot drain differ-
ent types of traffic of heterogenous services. Maelstrom
serves as the sole system for draining and restoring all
the services in all the datacenters at Facebook.

9 Conclusion
As our infrastructure grows, we have learned that it is
critical to develop trusted tools and mechanisms to pre-
pare for and respond to failure. We describe Maelstrom
which we have built and improved over the past four
years to handle datacenter-level disasters. Maelstrom
tracks dependencies amongst services and uses a closed
feedback loop to handle outages safely and efficiently.
We propose drain tests as a new testing strategy to iden-
tify dependencies amongst services, and ensure that tools
and procedures for handling failure are always up to date.
Maelstrom has been in production at Facebook for over
four years. It has run hundreds of drain tests and helped
mitigate and recover from more than 100 disasters.

Much of the focus of Maelstrom has been around en-
suring that Facebook stays available when an incident af-
fects an entire datacenter. In practice, we find that many
incidents affect only a subset of hardware and software
systems rather than entire datacenters. Our next focus is
on building tools to isolate outages to the minimal subset
of the systems they affect.

Acknowledgments
We thank the reviewers and our shepherd, Justine Sherry,
for comments that improved this paper. We thank Chun-
qiang Tang for insightful feedback on an early draft.
Much of our work on Disaster Readiness, and drain tests
in particular, would not be possible without the support
of engineering teams across Facebook. We thank the nu-
merous engineers who have helped us understand various
systems, given us feedback on the tooling, monitoring,
and methodology of Maelstrom, and helped us improve
the reliability of our infrastructure.

References
[1] ADYA, A., MYERS, D., HOWELL, J., ELSON, J.,

MEEK, C., KHEMANI, V., FULGER, S., GU, P., BHU-
VANAGIRI, L., HUNTER, J., PEON, R., KAI, L.,
SHRAER, A., MERCHANT, A., AND LEV-ARI, K.
Slicer: Auto-Sharding for Datacenter Applications. In
Proceedings of the 12th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI’16) (Sa-
vannah, GA, USA, Nov. 2016).

[2] ALLSPAW, J. Fault Injection in Production: Making the
case for resilience testing. Communications of the ACM
(CACM) 55, 10 (Oct. 2012), 48–52.

[3] ALVARO, P., ANDRUS, K., SANDEN, C., ROSENTHAL,
C., BASIRI, A., AND HOCHSTEIN, L. Automating Fail-
ure Testing Research at Internet Scale. In Proceedings of
the 7th ACM Symposium on Cloud Computing (SoCC’16)
(Santa Clara, CA, USA, Oct. 2016).

[4] ALVARO, P., ROSEN, J., AND HELLERSTEIN, J. M.
Lineage-driven Fault Injection. In Proceedings of the
2015 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD’15) (Melbourne, Victoria,
Australia, May 2015).

[5] ALVARO, P., AND TYMON, S. Abstracting the Geniuses
Away from Failure Testing. Communications of the ACM
(CACM) 61, 1 (Jan. 2018), 54–61.

[6] ARAÚJO, J. T., SAINO, L., BUYTENHEK, L., AND

LANDA, R. Balancing on the Edge: Transport Affin-
ity without Network State. In Proceedings of the 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI’18) (Renton, WA, USA, Apr.
2018).

[7] BARROSO, L. A., CLIDARAS, J., AND HÖLZLE, U. The
Datacenter as a Computer: An Introduction to the De-
sign of Warehouse-scale Machines, 2 ed. Morgan and
Claypool Publishers, 2013.

[8] BASIRI, A., BEHNAM, N., DE ROOIJ, R., HOCHSTEIN,
L., KOSEWSKI, L., REYNOLDS, J., AND ROSENTHAL,
C. Chaos Engineering. IEEE Software 33, 3 (May 2016),
35–41.

[9] BESCHASTNIKH, I., WANG, P., BRUN, Y., AND ERNST,
M. D. Debugging Distributed Systems. Communications
of the ACM (CACM) 59, 8 (Aug. 2016), 32–37.

[10] BEYER, B., JONES, C., PETOFF, J., AND MURPHY,
N. R. Site Reliability Engineering: How Google Runs
Production Systems. O’Reilly Media Inc., 2016.

[11] BROWN, A. B., AND PATTERSON, D. A. Undo for Op-
erators: Building an Undoable E-mail Store. In Proceed-
ings of the 2003 USENIX Annual Technical Conference
(USENIX ATC’03) (San Antonio, TX, USA, June 2003).

[12] BURNS, B., GRANT, B., OPPENHEIMER, D., BREWER,
E., AND WILKES, J. Borg, Omega, and Kubernetes:
Lessons learned from three container-management sys-
tems over a decade. Communications of the ACM
(CACM) 59, 5 (May 2016), 50–57.

[13] BYKOV, S., GELLER, A., KLIOT, G., LARUS, J. R.,
PANDYA, R., AND THELIN, J. Orleans: Cloud Comput-
ing for Everyone. In Proceedings of the 2nd ACM Sympo-
sium on Cloud Computing (SoCC’11) (Cascais, Portugal,
Oct. 2011).

[14] CANDEA, G., KAWAMOTO, S., FUJIKI, Y., FRIEDMAN,
G., AND FOX, A. Microreboot – A Technique for Cheap
Recovery. In Proceedings of the 6th USENIX Confer-
ence on Operating Systems Design and Implementation
(OSDI’04) (San Francisco, CA, USA, Dec. 2004).

[15] CHEN, A., HAEBERLEN, A., ZHOU, W., AND LOO,
B. T. One Primitive to Diagnose Them All: Architec-
tural Support for Internet Diagnostics. In Proceedings of
the 12th European Conference on Computer Systems (Eu-
roSys’17) (Belgrade, Serbia, Apr. 2017).

[16] CHESHIRE, S., AND KROCHMAL, M. Dns-based service
discovery. Internet Engineering Task Force (IETF), 6763
(Feb. 2013).

[17] CHOW, M., MEISNER, D., FLINN, J., PEEK, D., AND

WENISCH, T. F. The Mystery Machine: End-to-end
Performance Analysis of Large-scale Internet Services.
In Proceedings of the 11th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI’14)
(Broomfield, CO, USA, Oct. 2014).

[18] DINESH, S. Service Discovery and Config-
uration on Google Cloud Platform, Jan. 2016.
https://medium.com/google-cloud/service-

discovery-and-configuration-on-google-

cloud-platform-spoiler-it-s-built-in-

c741eef6fec2.

[19] EISENBUD, D. E., YI, C., CONTAVALLI, C., SMITH,
C., KONONOV, R., MANN-HIELSCHER, E., CILIN-
GIROGLU, A., CHEYNEY, B., SHANG, W., AND HO-
SEIN, J. D. Maglev: A Fast and Reliable Software Net-
work Load Balancer. In Proceedings of the 13th USENIX
Symposium on Networked Systems Design and Implemen-
tation (NSDI’16) (Santa Clara, CA, USA, Mar. 2016).

https://medium.com/google-cloud/service-discovery-and-configuration-on-google-cloud-platform-spoiler-it-s-built-in-c741eef6fec2
https://medium.com/google-cloud/service-discovery-and-configuration-on-google-cloud-platform-spoiler-it-s-built-in-c741eef6fec2
https://medium.com/google-cloud/service-discovery-and-configuration-on-google-cloud-platform-spoiler-it-s-built-in-c741eef6fec2
https://medium.com/google-cloud/service-discovery-and-configuration-on-google-cloud-platform-spoiler-it-s-built-in-c741eef6fec2

[20] FONSECA, R., PORTER, G., KATZ, R. H., SHENKER,
S., AND STOICA, I. X-Trace: A Pervasive Network Trac-
ing Framework. In Proceedings of the 4th USENIX Sym-
posium on Networked Systems Design and Implementa-
tion (NSDI’07) (Cambridge, MA, USA, Apr. 2007).

[21] FORD, D., LABELLE, F., POPOVICI, F. I., STOKELY,
M., TRUONG, V.-A., BARROSO, L., GRIMES, C., AND

QUINLAN, S. Availability in Globally Distributed Stor-
age Systems. In Proceedings of the 9th USENIX Confer-
ence on Operating Systems Design and Implementation
(OSDI’10) (Vancouver, BC, Canada, Oct. 2010).

[22] GOOGLE CLOUD. Disaster Recovery Cookbook,
2017. https://cloud.google.com/solutions/

disaster-recovery-cookbook.

[23] GOVINDAN, R., MINEI, I., KALLAHALLA, M., KOLEY,
B., AND VAHDAT, A. Evolve or Die: High-Availability
Design Principles Drawn from Googles Network Infras-
tructure. In Proceedings of the 2016 ACM SIGCOMM
Conference (SIGCOMM’16) (Florianópolis, Brazil, Aug.
2016).

[24] GUNAWI, H. S., DO, T., JOSHI, P., ALVARO, P.,
HELLERSTEIN, J. M., ARPACI-DUSSEAU, A. C.,
ARPACI-DUSSEAU, R. H., SEN, K., AND BORTHAKUR,
D. FATE and DESTINI: A Framework for Cloud Recov-
ery Testing. In Proceedings of the 8th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI’11) (Boston, MA, USA, Mar. 2011).

[25] GUNAWI, H. S., HAO, M., LEESATAPORNWONGSA, T.,
PATANA-ANAKE, T., DO, T., ADITYATAMA, J., ELI-
AZAR, K. J., LAKSONO, A., LUKMAN, J. F., MAR-
TIN, V., AND SATRIA, A. D. What Bugs Live in the
Cloud? A Study of 3000+ Issues in Cloud Systems. In
Proceedings of the 5th ACM Symposium on Cloud Com-
puting (SoCC’14) (Seattle, WA, USA, Nov. 2014).

[26] GUNAWI, H. S., HAO, M., SUMINTO, R. O., LAK-
SONO, A., SATRIA, A. D., ADITYATAMA, J., AND ELI-
AZAR, K. J. Why Does the Cloud Stop Computing?
Lessons from Hundreds of Service Outages. In Proceed-
ings of the 7th ACM Symposium on Cloud Computing
(SoCC’16) (Santa Clara, CA, USA, Oct. 2016).

[27] GUNAWI, H. S., SUMINTO, R. O., SEARS, R., GOL-
LIHER, C., SUNDARARAMAN, S., LIN, X., EMAMI,
T., SHENG, W., BIDOKHTI, N., MCCAFFREY, C.,
GRIDER, G., FIELDS, P. M., HARMS, K., ROSS, R. B.,
JACOBSON, A., RICCI, R., WEBB, K., ALVARO, P.,
RUNESHA, H. B., HAO, M., AND LI, H. Fail-Slow
at Scale: Evidence of Hardware Performance Faults in
Large Production Systems. In Proceedings of the 16th
USENIX Conference on File and Storage Technologies
(FAST’18) (Oakland, CA, USA, Feb. 2018).

[28] GUPTA, A., AND SHUTE, J. High-Availability at Mas-
sive Scale: Building Google’s Data Infrastructure for
Ads. In Proceedings of the 9th Workshop on Business In-
telligence for the Real Time Enterprise (BIRTE’15) (Ko-
hala Coast, HI, USA, Aug. 2015).

[29] KALDOR, J., MACE, J., BEJDA, M., GAO, E.,
KUROPATWA, W., O’NEILL, J., ONG, K. W.,
SCHALLER, B., SHAN, P., VISCOMI, B., VENKATARA-
MAN, V., VEERARAGHAVAN, K., AND SONG, Y. J.
Canopy: An End-to-End Performance Tracing And Anal-
ysis System. In Proceedings of the 26th Symposium
on Operating Systems Principles (SOSP’17) (Shanghai,
China, Oct. 2017).

[30] KEETON, K., SANTOS, C., BEYER, D., CHASE, J.,
AND WILKES, J. Designing for Disasters. In Proceed-
ings of the 3rd USENIX Conference on File and Storage
Technologies (FAST’04) (San Francisco, CA, USA, Mar.
2002).

[31] KEHOE, M., AND MALLAPUR, A. TrafficShift: Avoid-
ing Disasters at Scale. In USENIX SRECon’17 Americas
(San Francisco, CA, USA, Mar. 2017).

[32] KRISHNAN, K. Weathering the Unexpected. Communi-
cations of the ACM (CACM) 55, 11 (Nov. 2012), 48–52.

[33] LEESATAPORNWONGSA, T., AND GUNAWI, H. S. The
Case for Drill-Ready Cloud Computing. In Proceed-
ings of the 5th ACM Symposium on Cloud Computing
(SoCC’14) (Seattle, WA, USA, Nov. 2014).

[34] LIU, X., GUO, Z., WANG, X., CHEN, F., LIAN, X.,
TANG, J., WU, M., KAASHOEK, M. F., AND ZHANG,
Z. D3S: Debugging Deployed Distributed Systems. In
Proceedings of the 5th Conference on Symposium on Net-
worked Systems Design and Implementation (NSDI’08)
(San Francisco, CA, USA, Apr. 2008).

[35] MACE, J., ROELKE, R., AND FONSECA, R. Pivot Trac-
ing: Dynamic Causal Monitoring for Distributed Sys-
tems. In Proceedings of the 25th Symposium on Operat-
ing Systems Principles (SOSP’15) (Monterey, CA, USA,
Oct. 2015).

[36] MALLAPUR, A., AND KEHOE, M. TrafficShift: Load
Testing at Scale, May 2017.
https://engineering.linkedin.com/blog/2017/

05/trafficshift--load-testing-at-scale.

[37] MAURER, B. Fail at Scale: Reliability in the Face of
Rapid Change. Communications of the ACM (CACM) 58,
11 (Nov. 2015), 44–49.

[38] MEZA, J., XU, T., VEERARAGHAVAN, K., AND SONG,
Y. J. A Large Scale Study of Data Center Network Re-
liability. In Proceedings of the 2018 ACM Internet Mea-
surement Conference (IMC’18) (Boston, MA, USA, Oct.
2018).

[39] MOGUL, J. C., ISAACS, R., AND WELCH, B. Think-
ing about Availability in Large Service Infrastructures. In
Proceedings of the 16th Workshop on Hot Topics in Oper-
ating Systems (HotOS XVI) (Whistler, BC, Canada, May
2017).

[40] OLTEANU, V., AGACHE, A., VOINESCU, A., AND

RAICIU, C. Stateless Datacenter Load-balancing with
Beamer. In Proceedings of the 15th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI’18) (Renton, WA, USA, Apr. 2018).

https://cloud.google.com/solutions/disaster-recovery-cookbook
https://cloud.google.com/solutions/disaster-recovery-cookbook
https://engineering.linkedin.com/blog/2017/05/trafficshift--load-testing-at-scale
https://engineering.linkedin.com/blog/2017/05/trafficshift--load-testing-at-scale

[41] OPPENHEIMER, D., GANAPATHI, A., AND PATTER-
SON, D. A. Why Do Internet Services Fail, and What
Can Be Done About It? In Proceedings of the 4th Con-
ference on USENIX Symposium on Internet Technologies
and Systems (USITS’03) (Seattle, WA, USA, Mar. 2003).

[42] PATTERSON, D., BROWN, A., BROADWELL, P., CAN-
DEA, G., CHEN, M., CUTLER, J., ENRIQUEZ, P., FOX,
A., KICIMAN, E., MERZBACHER, M., OPPENHEIMER,
D., SASTRY, N., TETZLAFF, W., TRAUPMAN, J., AND

TREUHAFT, N. Recovery-Oriented Computing (ROC):
Motivation, Definition, Techniques, and Case Studies.
Tech. Rep. UCB//CSD-02-1175, University of California
Berkeley, Mar. 2002.

[43] PELKONEN, T., FRANKLIN, S., TELLER, J., CAVAL-
LARO, P., HUANG, Q., MEZA, J., AND VEERARAGHA-
VAN, K. Gorilla: A Fast, Scalable, In-Memory Time Se-
ries Database. In Proceedings of the 41st International
Conference on Very Large Data Bases (VLDB’15) (Ko-
hala Coast, HI, USA, Aug. 2015).

[44] QIN, F., TUCEK, J., SUNDARESAN, J., AND ZHOU,
Y. Rx: Treating Bugs As Allergies — A Safe Method
to Survive Software Failure. In Proceedings of the 20th
Symposium on Operating System Principles (SOSP’05)
(Brighton, United Kingdom, Oct. 2005).

[45] RINARD, M., CADAR, C., DUMITRAN, D., ROY,
D. M., LEU, T., AND WILLIAM S. BEEBEE, J. Enhanc-
ing Server Availability and Security Through Failure-
Oblivious Computing. In Proceedings of the 6th USENIX
Conference on Operating Systems Design and Implemen-
tation (OSDI’04) (San Francisco, CA, USA, Dec. 2004).

[46] ROBBINS, J., KRISHNAN, K., ALLSPAW, J., AND

LIMONCELLI, T. Resilience Engineering: Learning to
Embrace Failure. ACM Queue 10, 9 (Sept. 2012), 1–9.

[47] SCHLINKER, B., KIM, H., CUI, T., KATZ-BASSETT,
E., MADHYASTHA, H. V., CUNHA, I., QUINN, J.,
HASAN, S., LAPUKHOV, P., AND ZENG, H. Engineer-
ing Egress with Edge Fabric: Steering Oceans of Con-
tent to the World. In Proceedings of the 2017 ACM SIG-
COMM Conference (SIGCOMM’17) (Los Angeles, CA,
USA, Aug. 2017).

[48] SCHWARZKOPF, M., KONWINSKI, A., ABD-EL-
MALEK, M., AND WILKES, J. Omega: Flexible, Scal-
able Schedulers for Large Compute Clusters. In Pro-
ceedings of the 8th ACM European Conference on Com-
puter Systems (EuroSys’13) (Prague, Czech Republic,
Apr. 2013).

[49] SHERMAN, A., LISIECKI, P. A., BERKHEIMER, A.,
AND WEIN, J. ACMS: The Akamai Configuration Man-
agement System. In Proceedings of the 2nd Conference
on Symposium on Networked Systems Design and Imple-
mentation (NSDI’05) (Boston, MA, USA, May 2005).

[50] SIGELMAN, B. H., BARROSO, L. A., BURROWS, M.,
STEPHENSON, P., PLAKAL, M., BEAVER, D., JAS-
PAN, S., AND SHANBHAG, C. Dapper, a Large-Scale
Distributed Systems Tracing Infrastructure. Tech. Rep.
dapper-2010-1, Google, Inc., Apr. 2010.

[51] SOMMERMANN, D., AND FRINDELL, A. Intro-
ducing Proxygen, Facebook’s C++ HTTP framework,
Nov. 2014. https://code.facebook.com/posts/

1503205539947302.

[52] TANG, C., KOOBURAT, T., VENKATACHALAM, P.,
CHANDER, A., WEN, Z., NARAYANAN, A., DOWELL,
P., AND KARL, R. Holistic Configuration Management
at Facebook. In Proceedings of the 25th Symposium on
Operating Systems Principles (SOSP’15) (Monterey, CA,
USA, Oct. 2015).

[53] TREYNOR, B., DAHLIN, M., RAU, V., AND BEYER, B.
The Calculus of Service Availability. Communications of
the ACM (CACM) 60, 9 (Sept. 2017), 42–47.

[54] TSEITLIN, A. The Antifragile Organization. Communi-
cations of the ACM (CACM) 56, 8 (August 2013), 40–44.

[55] VEERARAGHAVAN, K., MEZA, J., CHOU, D., KIM,
W., MARGULIS, S., MICHELSON, S., NISHTALA, R.,
OBENSHAIN, D., PERELMAN, D., AND SONG, Y. J.
Kraken: Leveraging Live Traffic Tests to Identify and
Resolve Resource Utilization Bottlenecks in Large Scale
Web Services. In Proceedings of the 12th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI’16) (Savannah, GA, USA, Nov. 2016).

[56] VERMA, A., PEDROSA, L., KORUPOLU, M., OPPEN-
HEIMER, D., TUNE, E., AND WILKES, J. Large-Scale
Cluster Management at Google with Borg. In Proceed-
ings of the 10th European Conference on Computer Sys-
tems (EuroSys’15) (Bordeaux, France, Apr. 2015).

[57] XU, T., JIN, X., HUANG, P., ZHOU, Y., LU, S., JIN,
L., AND PASUPATHY, S. Early Detection of Configura-
tion Errors to Reduce Failure Damage. In Proceedings
of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’16) (Savannah, GA,
USA, Nov. 2016).

[58] XU, T., ZHANG, J., HUANG, P., ZHENG, J., SHENG,
T., YUAN, D., ZHOU, Y., AND PASUPATHY, S. Do
Not Blame Users for Misconfigurations. In Proceedings
of the 24th Symposium on Operating Systems Principles
(SOSP’13) (Farmington, PA, USA, Nov. 2013).

[59] YAP, K.-K., MOTIWALA, M., RAHE, J., PADGETT, S.,
HOLLIMAN, M., BALDUS, G., HINES, M., KIM, T.,
NARAYANAN, A., JAIN, A., LIN, V., RICE, C., ROGAN,
B., SINGH, A., TANAKA, B., VERMA, M., SOOD, P.,
TARIQ, M., TIERNEY, M., TRUMIC, D., VALANCIUS,
V., YING, C., KALLAHALLA, M., KOLEY, B., AND

VAHDAT, A. Taking the Edge off with Espresso: Scale,
Reliability and Programmability for Global Internet Peer-
ing. In Proceedings of the 2017 ACM SIGCOMM Con-
ference (SIGCOMM’17) (Los Angeles, CA, USA, Aug.
2017).

[60] YIN, Z., YUAN, D., ZHOU, Y., PASUPATHY, S., AND

BAIRAVASUNDARAM, L. N. How Do Fixes Become
Bugs? – A Comprehensive Characteristic Study on In-
correct Fixes in Commercial and Open Source Operat-
ing Systems. In Proceedings of the 19th ACM SIGSOFT
Symposium on the Foundations of Software Engineering
(FSE’11) (Szeged, Hungary, Sept. 2011).

https://code.facebook.com/posts/1503205539947302
https://code.facebook.com/posts/1503205539947302

[61] YUAN, D., LUO, Y., ZHUANG, X., RODRIGUES, G.,
ZHAO, X., ZHANG, Y., JAIN, P. U., AND STUMM,
M. Simple Testing Can Prevent Most Critical Failures:
An Analysis of Production Failures in Distributed Data-
intensive Systems. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI’14) (Broomfield, CO, USA, Oct. 2014).

[62] YUAN, D., PARK, S., HUANG, P., LIU, Y., LEE, M. M.,
TANG, X., ZHOU, Y., AND SAVAGE, S. Be Con-
servative: Enhancing Failure Diagnosis with Proactive

Logging. In Proceedings of the 10th USENIX Confer-
ence on Operating Systems Design and Implementation
(OSDI’12) (Hollywood, CA, USA, Oct. 2012).

[63] ZHANG, Y., MAKAROV, S., REN, X., LION, D., AND

YUAN, D. Pensieve: Non-Intrusive Failure Reproduc-
tion for Distributed Systems Using the Event Chaining
Approach. In Proceedings of the 26th Symposium on Op-
erating Systems Principles (SOSP’17) (Shanghai, China,
Oct. 2017).

	Introduction
	Motivation
	Maelstrom for Disaster Mitigation & Recovery
	Drain Tests for Verifying Disaster Readiness
	Contributions

	Background
	Infrastructure Overview
	Traffic Management Primitives
	Traffic Types

	Maelstrom Overview
	Drain Tests
	Failure Mitigation

	Design and Implementation
	Design Principles
	Runbook Framework
	Runtime Engine
	Executing Runbooks: Putting It All Together
	Dependency Management
	Preventing Resource Contention
	Pacing and Feedback Control
	Fault Tolerance

	Evaluation
	Mitigating Disasters
	Draining Different Types of Traffic
	Service-specific Traffic
	Draining All the Traffic of a Datacenter

	Efficiency

	Experience
	Limitation and Discussion
	Related Work
	Conclusion

