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Fig. 1. Renderings of objects captured and modeled by our system. The input to our method consists of synchronized and calibrated multi-view video. We
build a dynamic, volumetric representation of the scene by training an encoder-decoder network end-to-end using a differentiable ray marching algorithm.

Modeling and rendering of dynamic scenes is challenging, as natural scenes
often contain complex phenomena such as thin structures, evolving topology,
translucency, scattering, occlusion, and biological motion. Mesh-based re-
construction and tracking often fail in these cases, and other approaches (e.g.,
light field video) typically rely on constrained viewing conditions, which
limit interactivity. We circumvent these difficulties by presenting a learning-
based approach to representing dynamic objects inspired by the integral
projection model used in tomographic imaging. The approach is supervised
directly from 2D images in a multi-view capture setting and does not re-
quire explicit reconstruction or tracking of the object. Our method has two
primary components: an encoder-decoder network that transforms input
images into a 3D volume representation, and a differentiable ray-marching
operation that enables end-to-end training. By virtue of its 3D represen-
tation, our construction extrapolates better to novel viewpoints compared
to screen-space rendering techniques. The encoder-decoder architecture
learns a latent representation of a dynamic scene that enables us to produce
novel content sequences not seen during training. To overcome memory
limitations of voxel-based representations, we learn a dynamic irregular grid
structure implemented with a warp field during ray-marching. This structure
greatly improves the apparent resolution and reduces grid-like artifacts and
jagged motion. Finally, we demonstrate how to incorporate surface-based
representations into our volumetric-learning framework for applications
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where the highest resolution is required, using facial performance capture
as a case in point.
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1 INTRODUCTION
Polygon meshes are an extremely popular representation for 3D
geometry in photo-realistic scenes. Mesh-based representations ef-
ficiently model solid surfaces and can be paired with sophisticated
reflectance functions to generate compelling renderings of natural
scenes. In addition, there has been significant progress recently in
optimization techniques to support real-time ray-tracing, allowing
for interactivity and immersion in demanding applications such as
Virtual Reality (VR). However, little of the interactive photo-real
content available today is data-driven because many real-world phe-
nomena are challenging to reconstruct and track with high fidelity.
State-of-the-art motion capture systems struggle to handle complex
occlusions (e.g., running hands through one’s hair), to account for
reflectance variability (e.g., specularities in the sheen of a moving
object), or to track topological evolution in dynamic participating
media (e.g., smoke as it billows upward). Where solutions exist,
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they are typically specialized to an individual phenomenon [Atche-
son et al. 2008; Hawkins et al. 2005; Roth and Black 2006; Xu et al.
2014], and are often aimed at either image generation [Buehler et al.
2001; Kalantari et al. 2016] or 3D reconstruction [Goesele et al. 2007;
Nießner et al. 2013], but not both. Since mesh-based representations
rely heavily on the quality of reconstruction to produce compelling
renderings, they are ill-suited to handle such cases. Nonetheless,
these kinds of phenomena are necessary to create compelling ren-
derings of much of our natural world.

To address limitations posed by inaccurate geometric reconstruc-
tions, great progress has been made in recent years by relaxing
the physics-inspired representation of light transport, and instead
leveraging machine learning to bridge the gap between the rep-
resentation and observed images of the scene. In Lombardi et al.
[2018], this technique was used to great effect in modeling the hu-
man face, where it was demonstrated that a neural network can be
trained to compensate for geometric reconstruction and tracking
inaccuracies through a view-dependent texture. Similar approaches
have also been shown to be effective for modeling general far-field
scenes [Overbeck et al. 2018]. An extreme variant of this technique
is screen-space rendering, where no geometry of the scene is used at
all [Karras et al. 2018; Wang et al. 2018]. Although these approaches
have been shown to produce high quality renderings of complex
scenes, they are limited to viewpoints available to the system at
training time. Since their neural architectures are not 3D aware, the
methods do not extrapolate to novel viewpoints in a way that is
consistent with the real world. The problem is exacerbated when
modeling near-field scenes, where variation in viewpoint is more
common as a user interacts with objects in the scene, compared with
far-field captures where there is less interactivity and the viewer is
mainly stationary.
An important insight in this work is that if both geometry and

appearance variations can be learned simultaneously, phenomena
explainable by geometric variations may be modeled as such, lead-
ing to better generalization across viewpoints. The challenge, then,
is to formulate this joint learning such that good solutions can
be found. Directly optimizing over a mesh-representation using
gradient-based optimization is prone to terminating in poor local
minima. This is the case even when a model of both appearance and
geometry are known a priori, and is exacerbated when these models
are also unknown. One of the main reasons for this difficulty is the
local support of the gradients of mesh-based representations. To ad-
dress this, we propose using a volumetric representation consisting
of opacity and color at each position in 3D space, where rendering
is realized through integral projection. During optimization, this
semi-transparent representation of geometry disperses gradient in-
formation along the ray of integration, effectively widening the
basin of convergence, enabling the discovery of good solutions.
Although the volumetric representation has the ability to repre-

sent 3D geometric phenomena in a geometrically faithful way, it can
easily over-fit from image-supervision for a typical density of view-
points. As such, additional regularization is necessary to achieve
good results. In this work, we show that a neural-network decoder is
sufficient to encourage discovery of solutions that generalize across
viewpoints. At first glance, this may appear surprising given the de-
coder network typically has enough capacity to reproduce solutions

found through a direct solve of the volume’s entries. We conjec-
ture that the decoder network introduces spatial regularity into the
gradients of the volume’s entries (i.e., opacity and color), leading
to more generalizable solutions without diminishing the volumet-
ric representation’s capacity. Additionally, the decoder network is
paired with an encoder network that produces a low-dimensional
latent space that encodes the state of the scene at each frame, en-
abling joint reconstruction of sequences rather than just individual
frames. Analogous to non-rigid structure from motion [Torresani
et al. 2008], this architecture can leverage a scene’s regularity across
time to improve viewpoint generalization further. This latent code
can be used to generate novel renderings of the scene’s content by
traversing the latent space, enabling realistic modifications of the
recording, or even completely new sequence animation, without
requiring object/scene/content specific solutions.
Despite these advantages of the volumetric representation, its

main drawback is limited resolution. Using voxel-based data struc-
tures to represent a scene typically requires an order of magnitude
more memory than its mesh-based counterpart to achieve similar
levels of resolution. Furthermore, much of this memory is dedicated
to modeling empty space or the inside of objects; neither of which
have an impact on the rendered result. This limitation stems from
the regular grid structure this representation exhibits. To overcome
this limitation, we employ a warping technique that indirectly es-
capes the restrictions imposed by a regular grid structure, allowing
the learning algorithm to make the best use of available memory.
Using this technique, we demonstrate significantly higher fidelity
than using only a conventional voxel data structure. Furthermore,
as our representation is 3D based, we can naturally combine it with
surface-based reconstruction and tracking methods when appropri-
ate. This allows us to reach the highest levels of fidelity on objects
in the scene for which state-of-the-art reconstruction and tracking
work well, while also maintaining a complete model of the scene.

In summary, we propose a novel volumetric representation that
is object/scene agnostic, can generalize well to novel viewpoints,
reconstructs dynamic scenes jointly, facilitates novel content gen-
eration, requires only image-level supervision and is end-to-end
trainable. The resulting models afford real-time rendering and sup-
port on-the-fly adjustments, suitable for interactive applications in
VR. In §2 we cover related work, followed by an overview of our
approach in §3. Details of the encoder and decoder architectures
are covered in sections §4 and §5 respectively. Rendering through
integral projection is discussed in §6 and details of the learning
problem are covered in §7. We evaluate this architecture on a num-
ber of challenging scenes and present ablation study on various
design choices in our construction in §8. We conclude in §9 with a
discussion and directions of future work.

2 RELATED WORK
Our approach is driven by learning and rendering techniques span-
ning multiple domains, from volumetric reconstruction and de-
formable volumes to neural rendering and novel view synthesis.
The following paragraphs discuss similarities and differences to
previous works in these areas.
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Fig. 2. Pipeline of our method. We begin with a multi-view capture system, from which we choose a subset of the cameras as input to our encoder. The
encoder produces a latent code z which is decoded into a volume that gives an RGB and α value for each point in space, as well as a warp field used to
index into the RGBα volume. The decoder may optionally use an additional control signal (e.g., head pose) c. We then use an accumulative ray marching
algorithm to render the volume. The final output in image space is an RGB image with associated alpha mask and estimated background. We composite these
components together and minimize the L2 loss between the rendered and target images w.r.t. network parameters.

2.1 Classical Surface and Volumetric Reconstruction
Point- and surface-based reconstruction techniques have a long his-
tory in computer vision (see [Furukawa and Hernández 2015] for a
review). Following successful efforts in stereo matching [Scharstein
and Szeliski 2002], most of the subsequent literature has focused
on the multi-view case, including extensions of photometric consis-
tency [Furukawa and Ponce 2010] and depth map fusion [Merrell
et al. 2007; Zach et al. 2007]. Despite some attempts at handling more
complex materials or semi-transparent surfaces [Fitzgibbon and Zis-
serman 2005; Szeliski and Golland 1999], many popular multi-view
stereo (MVS) methods, such as COLMAP [Schönberger and Frahm
2016; Schönberger et al. 2016], still struggle with thin structures and
dense semi-transparent materials (e.g., hair and smoke).
Volumetric reconstruction methods side-step this problem of

explicit correspondence matching, beginning with Voxel Color-
ing [Prock and Dyer 1998; Seitz and Dyer 1997, 1999] and Space
Carving [Bonet and Viola 1999; Broadhurst et al. 2001; Kutulakos and
Seitz 2000]. These methods recover occupancy and color in a voxel
grid from multi-view images by evaluating the photo-consistency of
each voxel in a particular order. Our method is similar to these clas-
sical voxel-based techniques in spirit, but rather than using a strict
photometric consistency criterion, we learn a generative model that
tries to best match the input images. Since we do not assume that
objects in a scene are composed of flat surfaces, this approach also
allows us to overcome the typical limitations of MVS methods and
capture rich materials and fine geometry.

2.2 Volumetric Reconstruction with Ray Potentials
A number of more recent works on volumetric reconstruction have
explored the concept of ray potentials, i.e., cost functions between
the first surface struck by a ray and the color (or other property) of
the corresponding pixel. Ulusoy et al. [2015], Savinov et al. [2016],
and Paschalidou et al. [2018] formulate graph-based energy or infer-
ence objectives using ray potentials as constraints. A differentiable
ray consistency criterion that inspired our work is developed by Tul-
siani et al. [2018, 2017], who use an encoder-decoder architecture
to predict voxel occupancy probabilities from RGB images. A loss

on ray potentials evaluated in this volume is then backpropagated
to the underlying convolutional architecture.

A fundamental difference between our work and previous works
using ray potentials is that we model voxel transparency rather
than occupancy probability, as we are focused on rendering rather
than reconstruction. This explicit image formation process allows
us to reconstruct and render dynamic scenes of semi-transparent
materials, such as smoke.

2.3 Deformable Volumes
Non-rigidly deforming objects pose challenges to both optimization-
and learning-based approaches. Over the years, significant efforts
have been spent on their reconstruction and tracking from RGB-D
sensors: the DynamicFusion method of Newcombe et al. [2015]
produces a base 3D template surface using a Truncated Signed
Distance Function (TSDF) representation, and a time-dependent
warp to fuse a sequence of depth frames. Zollhöfer et al. [2014] and
Innmann et al. [2016] also deform a 3D template surface with an
as-rigid-as-possible regularizer.
Our rendering model is based on classical volume ray march-

ing [Ikits et al. 2004; Levoy 1988], but we introduce the concept of a
warp field to it: instead of directly sampling color and opacity along
the ray, we first sample a 3Dwarp field encoding the location (within
a template voxel grid) from which color and opacity are sampled.
In 2D, similar techniques have been used to learn warps that align
images [Dai et al. 2017; Jaderberg et al. 2015; Shu et al. 2018]. In
our work, the warp field is not only used to model motion but also
increases the effective resolution of the voxel grid by simulating a
dynamic non-uniform sampling grid.

2.4 Neural Rendering
Deep learning-based rendering has become an active area of explo-
ration, with some methods relying on volumetric representations.
Nguyen-Phuoc et al. [2018] use a convolutional neural network ap-
plied on a voxel grid to produce an image, but their method requires
correspondence between the images and the voxel reconstruction.
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DeepVoxels [Sitzmann et al. 2018] automatically learns a 3D fea-
ture representation for novel view synthesis but is limited to static
objects and scenes, and the employed architecture does not lend
itself to real-time inference. Martin-Brualla et al. [2018] use neural
networks to fill holes and generally improve the quality of a textured
geometric representation. Kim et al. [2018] use a U-net architec-
ture to convert an image of rasterized attributes to realistic images,
similar to pix-to-pix [Isola et al. 2017]. Our method shares many
similarities with these approaches but has one important difference:
machine learning is only used to generate an RGBA volume, which
is then rendered with a ray marching algorithm with no learned
parameters. This is important as it gives us an interpretable volume,
which may lead to better viewpoint generalization.

In our evaluation of hybrid rendering approaches, we employ
the Deep Appearance Model of Lombardi et al. [2018] that provides
a textured mesh representation. The method learns a Variational
Autoencoder (VAE) model representing the dynamic mesh and view-
dependent texture of a specific person’s face. While we also evaluate
our model on human faces, our method does not require precise
mesh tracking or other forms of pre-processing. Instead, it is trained
end-to-end, using only raw images as supervision. Volumetric rep-
resentations such as ours are also able to better represent complex
surfaces like hair that are difficult to model using meshes.

2.5 Novel View Synthesis
Novel view synthesis aims to produce RGB images of novel views
given a set of input RGB images. Typically, these methods use a
geometric proxy to assist in reprojecting 3D points back into the
input images and some blending is performed to produce a final
pixel color. Buehler et al. [2001] and Davis et al. [2012] use heuristics
to blend contributions of different images based on the rays from
the geometric proxy to each camera. Hedman et al. [2018] uses neu-
ral networks to determine blending weights, which can overcome
inaccurate geometric proxies. Zhou et al. [2018] skip the geometric
proxy altogether and use a neural network to compute blending
weights of each image projected along a set of planes. Penner and
Zhang [2017] compute a soft volumetric representation using MVS
depth maps to perform novel view synthesis. Unlike most novel
view synthesis techniques, our method operates on sequences and
creates an animatable model.
To compute geometric proxies, a multi-view stereo method is

often employed. While free-viewpoint video methods [Collet et al.
2015; Prada et al. 2016] rely on a sophisticated combination of multi-
view stereo techniques (including silhouettes and MVS) to recon-
struct many kinds of objects, our method creates novel views of
dynamic scenes with a single generative framework. In addition, our
model’s latent embedding of the scene allows us to generate novel
animations more flexibly by producing new embedding sequences.

3 OVERVIEW
We present an end-to-end pipeline for rendering images from novel
views with only image supervision that leverages an internal 3D
volumetric representation. There are two main parts to the method:
an encoder-decoder network that converts input images into a 3D
volume V(x), and a differentiable raymarching step that renders an

image from the volume V given a set of camera parameters. The
method can be thought of as an autoencoder whose final layer is a
fixed-function (i.e., no free parameters) volume rendering operation.

Formally, we model a volume that maps 3D positions, x ∈ R3, to
a local RGB color and differential opacity at that point,

V : R3 → R4, V(x) =
(
Vrgb(x),Vα (x)

)
, (1)

where Vrgb(x) ∈ R3 is the color at x and Vα (x) ∈ R is its differ-
ential opacity in the range [0,∞], with 0 representing full trans-
parency. The purpose of a semi-transparent volume is two-fold:
first, it is a softening of a discrete volume representation which
enables gradients to flow for learning; second, it allows us to model
semi-transparent objects or bundles of thin structures that appear
translucent at limited resolutions, like hair.
Fig. 2 shows a visual representation of the pipeline. We first

capture a set of synchronized and calibrated video streams of a
performance from different viewpoints. Next, an encoder network
takes images from a subset of the cameras for each time instant and
produces a latent code z that represents the state of the scene at
that time. A volume decoder network produces a 3D volume given
this latent code, V(x; z), which yields an RGBα value at each point x.
Finally, an accumulative ray marching algorithm renders the volume
from a particular point-of-view. We train this system end-to-end by
reconstructing each of the input images and minimizing the squared
pixel reconstruction loss over the entire training set. At training
time, we run through the entire pipeline to train the weights of the
encoder-decoder network. At inference time, we produce a stream
of latent codes z (either the sequence of latent codes produced by
the training images or a novel generated sequence) and decode and
render in real time.

4 ENCODER NETWORK
The main component of our system that enables novel sequence
generation is the encoder-decoder architecture, where the scene’s
state is encoded using a consistent latent representation z ∈ R256.
A traversal in this latent space can be decoded into a novel sequence
of volumes that can then be rendered from any viewpoint (see §5 for
details). This is in contrast to methods that rely on specialized mesh
constructions per frame which only allow for playback [Collet et al.
2015] or limited control over the generative process [Prada et al.
2016]. Moreover, this representation allows for conditional decoding,
where only part of the scene’s state is modified on playback (i.e.,
expression during speech, view-dependent appearance effects, etc.).
The encoder-decoder architecture naturally supports this capability
without requiring specialized treatment on the decoder side so long
as paired samples of the conditioning variable are available during
training.
To build the latent space, the information state of the scene at

any given time is codified by encoding a subset of views from the
multi-camera capture system using a convolutional neural network
(CNN). The architecture of the encoder is shown in Fig. 3. Each
camera view is passed through a dedicated branch before being
concatenated with those from other views and further encoded
down to the final shape. Although using all camera views as input
is optimal from an information-theoretic perspective, we found that
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Fig. 3. Encoder architecture. Inputs are images from a subset of K-cameras,
passed through camera-specific CNNs. The latent variable z is concatenated
with the L-dimensional conditioning variable c before being passed to the
decoder (see §5).

using K = 3 views worked well in practice, while being much more
memory and computationally efficient. To maximize coverage, we
select a subset of cameras that are roughly orthogonal, although our
system is not especially sensitive to the specific choice of views. In
practice, we used the frontal, left and right-most camera views and
downsampled the images by a factor of 8 to size 334 × 512 pixels.
To generate plausible samples during a traversal through the la-

tent space, the generative model needs to generalize well between
training samples. This is typically achieved by learning a smooth
latent space. To encourage smoothness, we use a variational archi-
tecture [Kingma and Welling 2013]. The encoder outputs parame-
ters of a diagonal 256-dimensional Gaussian (i.e., µ and σ ), whose
KL-divergence from a standard Normal distribution is used as reg-
ularization. Generating an instance involves sampling from this
distribution using the reparameterization trick, and decoding into
the volumetric components described in §5.
In addition to encouraging latent space smoothness, the varia-

tional architecture also ensures that the decoder makes use of the
conditioning variable when it is trained jointly with the encoder, as
described in §7. Specifically, since the variational bottleneck maxi-
mizes the non-informative latent dimensions [Higgins et al. 2017],
information pertaining to the conditioning variable is projected out
of the latent space, leaving the decoder no choice but to use the
conditioning variable in its reconstruction.
This method of conditioning can be applied using any auxil-

iary information available to the user for controlling the rendered
output. In §8 we show experiments demonstrating this for a few
types of conditioning information. Of particular importance is view-
conditioning, which allows view-dependent effects, such as specu-
larity, to be rendered correctly. When viewed in VR, the auxiliary
information in the form of a view-vector can be obtained from the
relative orientation of the headset in the virtual scene.

5 VOLUME DECODERS
In this section we discuss parameterizing the RGBα volume func-
tion V using different neural network architectures which we call
volume decoders. We discuss possible representations for the vol-
umes (voxel grids and multi-layer perceptrons) and a method for
increasing the effective resolution by using warping fields. Finally,
we discuss view-conditioning for modeling view-dependent appear-
ance.
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Fig. 4. Voxel grid decoders. (a) Convolutional and (b) Linear basis decoders.
L denotes the size of the conditioning variable.

5.1 MLP Decoders
One possible model for the volume function V(x; z) at point x with
state z, is an implicit one with a series of fully connected layers with
non-linearities. A benefit of this approach is that we’re not restricted
by voxel grid resolution or storage space. Unfortunately, in practice
an MLP requires prohibitive size to produce high-quality reconstruc-
tions. We must also evaluate the MLP at every step along each ray
in the ray-marching process (see §6), imposing an equally restrictive
upper bound on the MLP complexity for real-time applications.

5.2 Voxel Grid Decoders
Rather than trying to model the entire volume implicitly with an
MLP, we may instead assume that the volume function can be mod-
eled as a discrete 3D grid of voxels. We produce this explicit 3D
voxel grid as the output tensor of a neural network. Let the tensor
Y ∈ RC×D×D×D represent a D×D×D grid of values inRC , with C
the channel dimensions. Define S(x; Y) : R3 → RC to be an interpo-
lation function that samples from the grid Y by scaling continuous
values in the range [−1, 1] to the grid [1,D] along each dimension,
followed by trilinear interpolation. We can define a volume decoder
for a 3D cube with center at xo and sides of sizeW ,

V(x; z) = S

(
x − xo
W /2

; g(z)
)
, (2)

where g(z) is a neural network that produces a tensor of size
4×D×D×D. Note that we only evaluate the decoder function inside
the volume it covers by computing intersections with its bounding
volume.

In practice, we use either a convolutional architecture or a series
of fully-connected layers to implement g(z). In the former case, we
first apply a fully-connected layer and non-linearity to transform z
into a 1024-dimensional representation and reinterpret the resulting
vector as a 1×1×1 cube with 1024 channels.We experiment with two
convolutional architectures, one with a final size of 323 (achieved
with 5 transposed convolutions and running at 90Hz) and one with
a final size of 1283 (achieved with 7 transposed convolutions and
running at 22Hz). As an alternative, we consider a bottleneck ar-
chitecture capable running at 90Hz consisting of 3 fully-connected
layers with output sizes of 128, 4, and 1283 × 4, respectively, with
the last layer representing the decoded volume. After decoding the
volume, we apply a softplus function to the RGBα values to ensure
they are non-negative. Both decoder variants are illustrated in Fig. 4.

5.3 Warping Fields
On their own, voxel grids are limited because they can only rep-
resent details as small as a single voxel and are computationally
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expensive to evaluate and store at high resolution. Additionally,
they are wasteful in typical scenes where much of the scene consists
of empty space. Common solutions to these problems are spatial
acceleration structures like octrees (e.g., Riegler et al. [2017]), but
it’s difficult to modify these to work in a learning setting. They also
typically require that the distribution of objects within the structure
is known a priori, which is not true in our case as we do not use any
3D training data.

To solve these problems, we propose to use warping fields to both
alter the effective resolution of the voxel volumes as well as model
motion more naturally. In our warping formulation, we produce a
template RGBα volume T(x) and a warp volumeW−1(x). Each point
in the warp volume gives a corresponding location in the template
volume from which to sample, making this an inverse warp as it
maps from output positions to template sample locations. As before,
both template and warp are decoded from a dynamic (per-frame)
latent code z, which we drop from the notation for conciseness.
The choice of inverse warps rather than forward warps allows

representing resolution-increasing transformations by mapping a
small area of voxels in the output space to a larger area in the
template space without requiring additional memory. Thus, the
inverse warp can represent details in the output space with higher
resolution than uniform grid sampling, but remains well-defined
everywhere in the output space, which is necessary for providing
usable gradients during learning.
Formally, we define the inverse warp field,

W−1(x) → y x, y ∈ R3, (3)

where x is a 3D point in the output (rendering) space and y a 3D
point in the RGBα template space. To generate the final volume
value, we first evaluate the value of the inverse warp and then
sample the template volume T at the warped point,

VRGBα (x) = TRGBα (W−1(x)). (4)

5.4 Mixture of Affine Warps
An important piece of including warp fields is determining how
they’re produced. As we show later, the architecture of the warp
field decoder makes a large difference on the quality of the model.
A straightforward approach to decoding warp fields would be

to use deconvolutions to produce a warp field with freely-varying
template sample points at each output point. This parameterization,
however, is too flexible, resulting in overfitting and poor general-
ization to novel views as we show in our experimental results. We
instead take the approach that the basic building block of a warp
field should be an affine warp. Since a single affine warp can’t model
non-linear bending, we use a spatial mixture of affine warps to
produce an inverse warp field.
We write the affine mixture as,

W−1(x) =
∑
i
Ai (x)ai (x), (5)

with Ai (x) = Ri (si ◦ (x − ti )) , ai (x) =
wi (Ai (x))∑
j w j

(
Aj (x)

) , (6)
where Ai (x) is the ith affine transformation, {Ri , si , ti } define the
rotation, scaling, and translation of the ith affine transformation

parameters, ◦ is element-wisemultiplication, andwi (x) is the weight
volume of the ith warp. Note that we sample the spatial mixture
weightwi after warping (“warped weights”). The intuition behind
this is that the warped space represents different parts of the scene,
and the weighting function should be in that space as well. This
can be viewed as an extension of linear blend skinning [Lewis et al.
2000] applied to a volumetric space.
To compute the transformation parameters {Ri , si , ti } and the

weighting volumewi we use 2 fully-connected layers after the en-
coding z. For rotation, we produce a rotation quaternion vector
which is normalized and transformed into a rotation matrix. Before
outputting the values of the weighting volume, we apply exp(·) to
ensure the weights are non-negative. Unlike the voxel volume V,
we clamp samples outside the weighting volumewi to the surface
otherwise the warps can get “stuck” early in training if they land
outside the volume. In practice, we found that a mixture of 16 warps
provides sufficient expressiveness. In all experiments where warp-
ing is used, we learn an additional global warp {Rg, sg, tg} (with
parameters produced by MLP) that is applied to x before the warp-
ing field, and we use a 323 voxel grid to represent the warp field
as we found that the low resolution provides smoothness from the
trilinear interpolation that helps learning.

5.5 View Conditioning
In order to model view-dependent appearance, we opt to condition
the RGB decoder network on the viewpoint. This allows us to model
specularities in a data-driven way, without specifying a particular
functional form. To do this, we input the normalized direction of
the camera to the decoder alongside the encoding. Note that for
view-conditionedmodels, we use separate convolutional branches to
produce the RGB values and α values as we only want to condition
the RGB values on the viewpoint.

6 ACCUMULATIVE RAY MARCHING
We formulate a rendering process for semi-transparent volumes
that mimics front-to-back additive blending: As a camera ray tra-
verses a volume of inhomogeneous material, it accumulates color
in proportion to the local color and density of the material at each
point along its path.

6.1 Semi-Transparent Volume Rendering
We generate images from a volume function V(x) by marching
rays through the volume it models. To model occlusions, the ray
accumulates not only color but also opacity. If the accumulated
opacity reaches 1 (for example, when the ray traverses an opaque
region), then no further color can be accumulated on the ray. In
particular, the color Irgb(p) at a pixel p in the focal plane of a camera
with center ro ∈ R3 and image-to-world transformation P−1 is given
by raymarching in the unit direction rd = (P−1p−ro )/∥P−1p−ro ∥ ∈
R3. This leads to the rendering process

Irgb(p) =
∫ tmax

tmin

Vrgb (ro + trd )
dα(t)
dt

dt , (7)

with α(t) = min
(∫ t

tmin

Vα (ro + srd ) ds, 1
)
, (8)
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ALGORITHM 1: Accumulative rendering of ray ro+trd with segment
t ∈[tmin, tmax] intersecting V. (Integration of Eq. (7) with stepsize ∆.)

Irgb=0; Iα =0; t=tmin;
repeat

dα (t ) = min (Iα + ∆Vα (ro + trd ), 1) − Iα
Irgb = Irgb + Vrgb(ro + trd ) dα (t )
Iα = Iα + dα (t )
t = t + ∆

until Iα=1 or t>tmax
return Irgb, Iα

where t∈[tmin, tmax] denotes the segment of the ray that intersects
the volume modeled by V, and min(·, 1) in Eq. (8) ensures that the
accumulated ray opacity is clamped at 1. Furthermore, we set the
final image opacities to Iα (p) = α(tmax).

Algorithm 1 shows the computation of the output color for a ray
intersecting the volume V, and represents the numerical integra-
tion of Eqs. (7–8) using the rectangle rule1. Importantly, this image
formation model is differentiable, which allows us to optimize the
parameters of the volume V to match target images. In practice, we
set the step size to be 1

128
th the size of the volume, which provides

adequate voxel coverage and allows the rendering process to run
at 90Hz in an OpenGL shader at 512 × 600 resolution, enabling
real-time stereo in Virtual Reality.

6.2 Hybrid Rendering
While the semi-transparent volume representation is very versatile,
certain kinds of scene content can be more efficiently represented at
high resolution using surface-based representations combined with
unwrapped texture maps. One example is fine detail in human faces,
for which specialized capture systems are available and commonly
use texture resolutions larger than 10242 [Beeler et al. 2011; Fyffe
et al. 2017; Lombardi et al. 2018].

The volume representation described above offers a natural inte-
gration with such existing mesh-based representations. Rendering
proceeds as described in Algorithm 1 with one modification: we set
tmax to the mesh depth for all rays that intersect the mesh. When-
ever one of these rays reaches tmax, any remaining color throughput
is filled with the color of the mesh at the intersection.

This technique can also be used during learning to avoid expend-
ing representational power in these parts of the scene. As we show
in §8.6, the resulting semi-transparent volume learned using the
hybrid rendering process described above naturally avoids occlud-
ing the mesh in areas where the mesh provides a higher-fidelity
representation.

7 END-TO-END TRAINING
In this sectionwe discuss the details of training ourmethod. Training
the system consists of training the weights θ of the encoder-decoder
network.We discuss the estimation of a per-camera color calibration
matrix and static background image, the construction of our loss
function, and reconstruction priors that improve accuracy.

1We use the rectangle rule twice with samples on the right of each step interval
and backwards differences to discretize the derivative of α (t ).

7.1 Color Calibration
Although we have geometrically calibrated the cameras in our multi-
view system, we have not color calibrated them relative to one-
another.We need to ensure that one radiance value will be converted
to the same pixel value for each of the cameras. To do this, we
introduce a per-camera and per-channel gain д and bias b that is
applied to our reconstructed image before comparing to ground
truth. This allows our system to account for slight differences in
overall intensity in the image.

7.2 Backgrounds
In our training data we often have static backgrounds that the
algorithm will try to reconstruct. To ensure that our algorithm
only reconstructs the object of interest, we estimate a per-camera
background image I(bg)rgb . The background image is static across the
entire sequence, capturing only stationary objects that are generally
outside of the reconstruction volume.

We obtain a final image Îrgb from a specific view by raymarching
all pixels p according to Eq. (7) and merging Irgb(p) with its cor-

responding background pixel I(bg)rgb (p) according to the remaining
opacity when exiting the volume,

Îrgb(p) = (1 − Iα (p)) I
(bg)
rgb (p) +

(
дIrgb(p) + b

)
. (9)

This background estimation process greatly reduces the amount of
artifacts in the reconstruction.

7.3 Reconstruction Priors
Without using priors, the reconstructed volumes tend to include
smoke-like artifacts. These artifacts are caused by slight differences
in appearance from different viewpoints due to calibration errors
or view-dependent effects. The system can learn to compensate for
these differences by adding a small amount of opacity that becomes
visible from one particular camera. To reduce these artifacts, we
introduce two priors.
The first prior regularizes the total variation of the log voxel

opacities,

Jtv(Vα ) =
1
N

∑
x

λtv

 ∂∂x logVα (x)
 , (10)

where the sum is performed over all the voxel centers x and N is
the number of voxels. This term helps recover sharp boundaries
between opaque and transparent regions by enforcing sparse spatial
gradients. We apply this prior in log space to increase the sensitivity
of the prior to small α values because the artifacts tend to be mostly
transparent.

The second prior is a beta distribution (Beta(0.5, 0.5)) on the final
image opacities Iα (p). We write the regularization term using the
negative log-likelihood of the beta distribution,

JB (Iα ) =
1
P

∑
p

λB [log (Iα (p)) + log (1 − Iα (p))] , (11)

where p is an image pixel and P is the number of pixels. This prior
reduces the entropy of the exit opacities and is based on the intuition
that most of our rays should strike the object or the background;
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Fig. 5. Warping method evaluation. In this experiment we evaluate different
techniques for warping. We evaluate on three different datasets: a mov-
ing hand, swinging hair, and dry ice smoke. We evaluate models with: no
warping, convolutional warp (using transposed convolutions), convolutional
warp (using trilinear upsampling followed by convolution), no warp affine
mixture, where the spatial weighting volumewi is not warped before evalu-
ating (Eq. (13)), and warp-space affine mixture, as described in Eq. (6). In all
cases, our warp-space affine mixture outperforms the other models.

fewer rays will graze the surface of the object, picking up some
opacity but not saturating.

7.4 Training Hyperparameters
Our full training objective is

ℓ(θ ) =
1
P

∑
p

̂Irgb(p) − I∗rgb(p)
2 +

λKLDKL (z ∥ N(0, 1)) + Jtv(Vα ) + JB (Iα ) , (12)

where I∗rgb(p) is the ground truth image and DKL(z ∥ N(0, 1)) is the
KL divergence between the latent encoding z and a standard normal
distribution used in a variational autoencoder [Kingma and Welling
2013].

We use Adam [Kingma and Ba 2015] to optimize the loss function.
In our experiments, we set λKL = 0.001, λtv = 0.01, and λB = 0.1
and we use a batch size of 16 with a fixed learning rate of 10−4 on
the encoder-decoder network weights (the estimated background
images I(bg) and per-camera gain and bias д,b are given separate
learning rates of 10−1 and 10−3, respectively). We randomly sample
128 × 128 pixels from the image to reduce memory usage. While
raymarching, we compute step sizes in normalized voxel space (i.e.,
[−1, 1]3) as it makes the end of the ray the expected saturation
point at network initialization. We train for about 500,000 iterations,
depending on dataset size, which takes 10 days on a single NVIDIA
Tesla V100.

8 EXPERIMENTS
We perform a number of quantitative and qualitative experiments
to validate our model. For all experiments, we use the convolutional
volume decoder with size 1283. We show that the design choices of
our model provide a good compromise between quality and speed,
and that the model generalizes to new viewpoints. We show results
of our method on objects that are typically hard to reconstruct (e.g.,
fuzz, smoke, and hair) and demonstrate the method combined with

Table 1. View conditioning comparison. Conditioning the decoder on view-
point improves the reconstruction on a set of validation viewpoints.

Face

Train Val.

No view conditioning 51.1 117.8
View conditioning 38.7 85.7

traditional triangle rasterization. Finally, we demonstrate animation
of our models by interpolating in the latent space and driving the
reconstruction from user input.

To capture data, we used a multi-camera capture system consist-
ing of 34 4096 × 2668-resolution 30Hz color cameras placed on a
hemisphere with a radius of approximately one meter. We calibrate
the camera system using an icosahedral checkerboard pattern [Ha
et al. 2017]. The raw images and camera calibration are then used
as the only input to our method.

In our quantitative experiments, we compare mean-squared error
of pixel reconstructions on the training cameras and also on a set of
7 held-out validation cameras. This allows us to test how well our
model extrapolates to novel viewpoints.

8.1 Warping Method
To validate our warp representation, we compare against several
variants: a model with no warping, a model with a warp produced
by a convolutional neural network, a model that does not apply the
warp before computing the affine mixture weight, and the proposed
affine mixture warp model (i.e., Eq. (5)).

For the model that does not apply the warp to compute the mix-
ture, we modify Eq. (6) as follows:

with Ai (x) = Ri (si ◦ (x − ti )) , ai (x) =
wi (x)∑
j w j (x)

. (13)

The main difference is that the mixture is done in “world” space
rather than in warped space. Since the mixture weights are not
warped, the decoder must match any motion of the template by
moving the mixture weights.
Fig. 5 shows the results of our warping evaluation on three

datasets: a moving hand, swinging hair, and dry ice smoke, each
approximately 20 seconds long. In each dataset, our affine mixture
model outperforms models with no warp and outperforms models
with a convolutional warp field on the validation cameras. In par-
ticular, the convolutional warp fields completely fail on the “hair
swing” dataset. The results also show that modeling the weighting
volume in warp space is better than in “world” space.

8.2 View-Conditioning
An important part of rendering is being able to model view-
dependent effects such as specularities. To do this, we can condition
the RGB decoder Vrgb on the viewpoint of the rendered view. This
allows the network to change the color of certain parts of the scene
depending on the angle it’s viewed from.
Table 1 shows a quantitative experiment comparing a view-

conditioned model to a non-view-conditioned model for a human
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Fig. 6. Qualitative results. In this figure we show ground truth, reconstructed images, and a visualization of the root-mean-squared error for each pixel for 3
datasets on 3 held-out validation viewpoints.

Table 2. Evaluation of priors and background model. We show training
and validation MSE for the “fuzzy toy” object with and without priors
and using a known background, learned background, and no background
model. Surprisingly, the learned background model with priors outperforms
a known background.

Fuzzy Toy

Background Model Train Val.

Known BG / priors 87.4 197.6
Known BG / no priors 76.1 330.5

Learned BG / priors 115.4 183.7
Learned BG / no priors 94.1 281.7

No BG / priors 208.8 386.7
No BG / no priors 86.6 727.6

face. The results show that the view-conditioned model is better able
to model the scene from novel viewpoints. This happens not only
because the view-conditioned model can represent some of the view-
dependent appearance of the scene, but also because the non-view-
conditioned model incorrectly reconstructs extra semi-transparent
voxels near the surface of the object to explain view-dependent
phenomena.

8.3 Priors and Background Estimation
We impose several priors on the reconstructed volume to help re-
duce the occurrence of artifacts in the reconstruction. In this ex-
periment, we evaluate the effectiveness of background estimation

and the priors on the reconstructed volume quality in terms of
mean-squared-error on the validation viewpoints. We evaluate 3
different scenarios: known background image, learned background
image, and no background model, each scenario evaluated with and
without priors.

Table 2 shows the results of this experiment. For each back-
ground setting, using the priors improves performance on the vali-
dation viewpoints. Surprisingly, learning a background image out-
performed using a known background image, but the improvement
is small.

8.4 Qualitative Results
In this section, we show qualitative results on a number of different
types of objects. We compare our renderings to held-out ground
truth views and also demonstrate hybrid rendering with a mesh
representation.
Fig. 6 shows renderings produced by our method compared to

ground truth images for several validation (held-out) viewpoints.
The renderings demonstrate that our method is able to model dif-
ficult phenomena like fuzz, smoke, and human skin and hair. The
figure also shows typical artifacts produced by our reconstructions:
typically, a very light smokey pattern is added which may be model-
ing view-dependent appearance for certain training cameras. Using
more camera views tends to reduce all artifacts.
Fig. 7 shows how the template volume changes through time

across several frames, compared to the final warped volume that
is rendered. Ideally, object motion should be represented entirely
by the warp field. However, this does not always happen when
representing such changes requires more resolution than is available
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Fig. 7. Warped and template volumes through time. This figure depicts several frames from two sequences, showing (a) the final warped volumes, and (b) the
learned template volumes before warping. For the face sequence, most changes are explained via warping and the face remains static in template space.
However, because tracking is not explicitly enforced, the network may learn to represent motion as different templates if it is more parsimonious to do so, as
can be seen for finger motion in the hand sequence. Note also how in the template, space is allocated to regions requiring texture details while flat regions are
compressed, like the phalanges and the forearm in the hand example.

(e.g., as would be necessary to cleanly separate the rim of the glasses
from the side of the head) or because representing the warp field
becomes too complex.
Fig. 11 visualizes the learned RGBα volumes. While there is no

explicit surface reconstruction objective in our method, we can vi-
sualize isosurfaces of constant opacity, shown in (b). Ideally, fully
opaque surfaces such as the hand in the first row would be repre-
sented by delta functions in Vα (x), but we find that the method
trades off some opacity to better match reconstruction error in the
training views. Note how translucent materials such as the glasses
in the second row, or materials which appear translucent at coarse
resolution, such as hair in the 3rd and 4th rows, are modeled with
lower opacity values but retain a distinct structure particular to the
object.

8.5 Single Frame Estimation
We evaluate the quality of our algorithm using only a single frame
as input. In some ways this should make the problem easier as there
is less information to represent within the model. On the other
hand, our model is less able to exploit regularities and redundancies
of motion. This experiment helps us disentangle those factors and
determine the contribution of each component of the model.
To perform this experiment, we run our model on only a single

frame. Although the encoder will produce a constant value, we keep
the entire encoder-decoder network intact while training. We also
compare to “direct” volume estimation, i.e., we directly estimate
the template voxel volume T and warp values W−1 without the
encoder-decoder network.
Fig. 12 shows the results of the experiment on four objects we

captured as well as one scene from a publicly available MVS dataset
[Aanæs et al. 2016]. As shown, the “direct” voxel/warp estimation
contains artifacts and incorrectly reconstructs the object. This ex-
periment shows that the convolutional architecture provides a reg-
ularization that, even in the case of a single frame, allows us to
accurately recover and re-render objects. Similar observations have

been made in a recent work on deep image priors [Ulyanov et al.
2018].

For comparison, we show the same frame reconstructed as a mesh
using a commercial multi-view stereo system [Agisoft 2019] and
the open-source multi-view stereo system COLMAP [Schönberger
and Frahm 2016; Schönberger et al. 2016], as well as a comparison
to space carving [Kutulakos and Seitz 2000]. Characteristically, the
recovered resolution in the MVS texture map is greater than what
we can achieve with volume reconstructions on current hardware.
However, the mesh also shows artifacts in thin regions, like the
frame of the glasses, and translucent regions, like the glass material
and the hair at the top of the head, or the smoke in the 4th row.
Space carving heavily relies on consistent appearance across views
and struggles with translucent materials.

8.6 Animating
With the proposed reconstruction method, we can playback and
re-render the captured data from many different angles. We not
only want to extrapolate in viewpoint, but also in the content of
the performance. Our latent variable model allows us to create new
sequences of content by modifying the latent variables.

Fig. 8 shows two examples of content modification by interpolat-
ing latent codes and by changing the conditioning variable based on
user input. Our latent space interpolation shows that the encoder
network learns a compact representation of the scene. In the second
example, we condition the decoder on the head pose of the subject,
allowing us to create novel sequences in real time.

Fig. 9 shows the results of combining a textured mesh representa-
tion with our voxel representation. Textured meshes can efficiently
and accurately represent fine detail in regions of the face like the
skin and eyes while the voxel representation excels at modeling
hair. For a mesh model we use the Deep Appearance Model of
Lombardi et al. [2018] trained to reconstruct the same face we used
to train our volume encoder/decoder network.
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Fig. 8. Novel content generation. First row: Interpolation in latent space.
Leftmost and rightmost frames are reconstructed from real image encodings,
intermediate frames are reconstructed from linear interpolation between
the left and right codes. Second row: real-time avatar driving based on user
input. The magenta dot represents the position of the user’s hand, which
the avatar’s head turns to track.

Fig. 9. Combiningmesh and volumetric representations (images best viewed
at high-resolution). Given an initial textured mesh model, all rays which
intersect the mesh have tmax set to the depth of the mesh along each
ray. Rays which terminate at tmax accumulate color from the mesh based
on remaining opacity. From left to right: masked mesh (placed into voxel
volume during learning), voxel representation, hybrid rendering, mesh-only
reconstruction. The learned voxel representation avoids occluding the mesh
to achieve a higher-quality reconstruction.

9 DISCUSSION
In this paper, we presented amethod formodeling objects and scenes
with a semi-transparent volume representation that we learn end-to-
end from multi-view RGB images. We showed that our method can
convincingly reconstruct challenging objects such as moving hair,
fuzzy toys, and smoke. Ourmethod requires no explicit tracking, and
can be run in real time alongside traditional triangle rasterization.
One limitation of our method is that given a surface with lim-

ited texture, our estimated volume may represent that surface as
transparent and place its color in the background, so long as do-
ing so does not cause otherwise occluded surfaces to appear. This
is a challenge that affects traditional 3D reconstruction methods
as well. With our method, however, the reconstruction degrades
gracefully and still produces perceptually-pleasing results thanks
to our image-space loss function. Fig. 10 shows an example of this
via a depth map computed as the distance each ray travels before

Fig. 10. Depth map showing where raymarching terminates. The hole in
the chest indicates that those rays passed through the entire volume and
only terminated at the background. Since the chest area has limited texture
variation and is a similar color to the background, this artifact does not
greatly affect reconstruction error even when viewed from novel viewpoints.

saturating or hitting the bounding box. In a more practical setting,
this could be addressed simply by capturing the sequence with a
bright background such as a green screen.

Although our method can handle transparent objects, like plastic
bottles, the method doesn’t currently consider refractive surfaces.
We believe the approach can be extended to model refraction and
even reflection, and we leave that to future work. Our model can
represent dull specular highlights through view conditioning but
high-frequency specular highlights are not correctly represented.
The latent space is the feature enabling us to generate dynamic

content, but we do not explicitly model any temporal dynamics.
This is not a problem for playback, since the playback sequence
implicitly encodes the same temporal dynamics as the recording.
It is also not a problem when driving the representation from user
input, so long as that user input has reasonable temporal dynamics
of its own. However, if we traverse the latent space in some manner
not guided by temporal information, we may generate sequences
which, while visually accurate, do not represent real behaviors of
the object we modeled.
Volumetric representations typically suffer from limited resolu-

tion due to the cubic relationship between resolution and memory
requirement. In this work, we showed some ways to increase the
effective resolution without simply increasing the voxel grid resolu-
tion by using warping fields. We believe that we can further improve
this approach to achieve a level of fidelity and resolution previously
only achievable with traditional textured mesh surfaces.
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