
Drop an Octave: Reducing Spatial Redundancy in
Convolutional Neural Networks with Octave Convolution

Yunpeng Chen†‡, Haoqi Fan†, Bing Xu†, Zhicheng Yan†, Yannis Kalantidis†,
Marcus Rohrbach†, Shuicheng Yan‡[, Jiashi Feng‡

†Facebook AI, ‡National University of Singapore, [Yitu Technology

Abstract

In natural images, information is conveyed at different
frequencies where higher frequencies are usually encoded
with fine details and lower frequencies are usually encoded
with global structures. Similarly, the output feature maps of
a convolution layer can also be seen as a mixture of infor-
mation at different frequencies. In this work, we propose
to factorize the mixed feature maps by their frequencies,
and design a novel Octave Convolution (OctConv) opera-
tion1 to store and process feature maps that vary spatially
“slower” at a lower spatial resolution reducing both mem-
ory and computation cost. Unlike existing multi-scale meth-
ods, OctConv is formulated as a single, generic, plug-and-
play convolutional unit that can be used as a direct replace-
ment of (vanilla) convolutions without any adjustments in
the network architecture. It is also orthogonal and comple-
mentary to methods that suggest better topologies or reduce
channel-wise redundancy like group or depth-wise convolu-
tions. We experimentally show that by simply replacing con-
volutions with OctConv, we can consistently boost accuracy
for both image and video recognition tasks, while reduc-
ing memory and computational cost. An OctConv-equipped
ResNet-152 can achieve 82.9% top-1 classification accu-
racy on ImageNet with merely 22.2 GFLOPs.

1. Introduction
The efficiency of Convolutional Neural Networks

(CNNs) keeps increasing with recent efforts to reduce the
inherent redundancy in dense model parameters [15, 31, 42]
and in the channel dimension of feature maps [47, 18, 6, 9].
However, substantial redundancy also exists in the spatial
dimension of the feature maps produced by CNNs, where
each location stores its own feature descriptor indepen-
dently, while ignoring common information between adja-
cent locations that could be stored and processed together.

As shown in Figure 1(a), a natural image can be decom-

1https://github.com/facebookresearch/OctConv

(a) Separating the low and high spatial frequency signal [1, 10].

!"#$%&'()'*+,

-./0$%&'()'*+,

(b)

!"#$%&'()'*+,

-./0$%&'()'*+,

(c)

.*1"&234."*$'5+03*/'

.*1"&234."*$)6734'

(d)

Figure 1: (a) Motivation. The spatial frequency model for
vision [1, 10] shows that natural image can be decomposed
into a low and a high spatial frequency part. (b) The out-
put maps of a convolution layer can also be factorized and
grouped by their spatial frequency. (c) The proposed multi-
frequency feature representation stores the smoothly chang-
ing, low-frequency maps in a low-resolution tensor to re-
duce spatial redundancy. (d) The proposed Octave Convo-
lution operates directly on this representation. It updates the
information for each group and further enables information
exchange between groups.

posed into a low spatial frequency component that describes
the smoothly changing structure and a high spatial fre-
quency component that describes the rapidly changing fine
details [1, 10, 37, 39]. Similarly, we argue that the output
feature maps of a convolution layer can also be decomposed
into features of different spatial frequencies and propose a
novel multi-frequency feature representation which stores
high- and low-frequency feature maps into different groups
as shown in Figure 1(b). Thus, the spatial resolution of the
low-frequency group can be safely reduced by sharing in-
formation between neighboring locations to reduce spatial
redundancy as shown in Figure 1(c). To accommodate the
novel feature representation, we generalize the vanilla con-
volution, and propose Octave Convolution (OctConv) which

1

https://github.com/facebookresearch/OctConv

takes in feature maps containing tensors of two frequencies
one octave apart, and extracts information directly from the
low-frequency maps without the need of decoding it back
to the high-frequency as shown in Figure 1(d). As a re-
placement of vanilla convolution, OctConv consumes sub-
stantially less memory and computational resources. In ad-
dition, OctConv processes low-frequency information with
corresponding (low-frequency) convolutions and effectively
enlarges the receptive field in the original pixel space and
thus can improve recognition performance.

We design the OctConv in a generic way, making it
a plug-and-play replacement for the vanilla convolution.
Since OctConv mainly focuses on processing feature maps
at multiple spatial frequencies and reducing their spatial
redundancy, it is orthogonal and complementary to ex-
isting methods that focus on building better CNN topol-
ogy [22, 41, 35, 33, 29], reducing channel-wise redundancy
in convolutional feature maps [47, 9, 34, 32, 21] and re-
ducing redundancy in dense model parameters [42, 15, 31].
Moreover, different from methods that exploit multi-scale
information [4, 43, 12], OctConv can be easily deployed
as a plug-and-play unit to replace convolution, without
the need of changing network architectures or requiring
hyper-parameters tuning. Compared to the closely related
Multi-grid convolution [25], OctConv provides more in-
sights on reducing the spatial redundancy in CNNs based
on the frequency model and adopts more efficient inter-
frequency information exchange strategy with better perfor-
mance. We further integrate the OctConv into a wide vari-
ety of backbone architectures (including the ones featuring
group, depth-wise, and 3D convolutions) and demonstrate
universality of OctConv.

Our experiments demonstrate that by simply replacing
the vanilla convolution with OctConv, we can consistently
improve the performance of popular 2D CNN backbones
including ResNet [16, 17], ResNeXt [47], DenseNet [22],
MobileNet [18, 34] and SE-Net [19] on 2D image recog-
nition on ImageNet [11], as well as 3D CNN backbones
C2D [44] and I3D [44] on video action recognition on Ki-
netics [24, 3, 2]. The OctConv-equipped Oct-ResNet-152
can match or outperform state-of-the-art manually designed
networks [32, 19] at lower memory and computational cost.
Our contributions can be summarized as follows:
• We propose to factorize convolutional feature maps into

two groups at different spatial frequencies and process
them with different convolutions at their corresponding
frequency, one octave apart. As the resolution for low
frequency maps can be reduced, this saves both storage
and computation. This also helps each layer gain a larger
receptive field to capture more contextual information.

• We design a plug-and-play operation named OctConv to
replace the vanilla convolution for operating on the new
feature representation directly and reducing spatial re-

dundancy. Importantly, OctConv is fast in practice and
achieves a speedup close to the theoretical limit.

• We extensively study the properties of the proposed Oct-
Conv on a variety of backbone CNNs for image and video
tasks and achieve significant performance gain even com-
parable to the best AutoML networks.

2. Related Work

Improving the efficiency of CNNs. Ever since the pio-
neering work on AlexNet [26] and VGG [35], researchers
have made substantial efforts to improve the efficiency of
CNNs. ResNet [16, 17] and DenseNet [22] improve the
network topology by adding shortcut connections to early
layers. ResNeXt [47] and ShuffleNet [49] use sparsely con-
nected group convolutions to reduce redundancy in inter-
channel connectivity. Xception [9] and MobileNet [18, 34]
adopt depth-wise convolutions that further reduce the con-
nection density. Meanwhile, NAS [51], PNAS [29] and
AmoebaNet [33] propose to atomically find the best net-
work topology for a given task. Pruning methods, such
as DSD [15] and ThiNet [31], focus on reducing the re-
dundancy in the model parameters by eliminating the least
significant weight or connections in CNNs. Besides, Het-
Conv [36] propose to replace the vanilla convolution fil-
ters with heterogeneous convolution filters that are in dif-
ferent sizes. However, all of these methods ignore the re-
dundancy on the spatial dimension of feature maps, which
is addressed by the proposed OctConv, making OctConv
orthogonal and complementary to these previous methods.
Noticeably, OctConv does not change the connectivity be-
tween feature maps, making it also different from inception-
alike multi-path designs [41, 40, 47].
Multi-scale Representation Learning. Prior to the suc-
cess of deep learning, multi-scale representation has long
been applied for local feature extraction, such as the SIFT
features [30]. In the deep learning era, multi-scale repre-
sentation also plays a important role due to its strong ro-
bustness and generalization ability. FPN [27] and PSP [50]
merge convolutional features from different depths at the
end of the networks for object detection and segmenta-
tion tasks. MSDNet [20] and HR-Nets [38], proposed
carefully designed network architectures that contain mul-
tiple branches where each branch has it own spatial resolu-
tion. The bL-Net [4] and ELASTIC-Net [43] adopt similar
idea, but are designed as a replacement of residual block
for ResNet [16, 17] and thus are more flexible and eas-
ier to use. But extra expertise and hyper-parameter tun-
ing are still required when adopt them to architectures be-
yond ResNet, such as MobileNetV1 [18], DenseNet [22].
Multi-grid CNNs [25] propose a multi-grid pyramid feature
representation and define the MG-Conv operator as a re-
placement of convolution operator, which is conceptually
similar to our method but is motivated for exploiting multi-

scale features. Compared with MG-Conv, OctConv adopts
more efficient design to exchange inter-frequency informa-
tion with higher performance as can be found in Sec. 3.3 and
Sec. 4.3. For video models, the recently proposed Slow-
Fast Networks [12] introduce multi-scale pathways on the
temporal dimension. As we show in Section 4.4, this is
complementary to OctConv which operates on the spatial
dimensions.

In a nutshell, OctConv focuses on reducing the spatial re-
dundancy in CNNs and is designed to replace vanilla convo-
lution operations without needing to adjust backbone CNN
architecture. We extensively compare OctConv to closely
related methods in the sections of method and experiment
and show that OctConv CNNs give top results on a number
of challenging benchmarks.

3. Method
In this section, we first introduce the octave feature rep-

resentation and then describe Octave Convolution, which
operates directly on it. We also discuss implementation de-
tails and show how to integrate OctConv into group and
depth-wise convolution architectures.

3.1. Octave Feature Representation

For the vanilla convolution, all input and output feature
maps have the same spatial resolution, which may not be
necessary since some of the feature maps may represent
low-frequency information which is spatially redundant and
can be further compressed as illustrated in Figure 1.

To reduce the spatial redundancy, we introduce the oc-
tave feature representation that explicitly factorizes the fea-
ture map tensors into groups corresponding to low and high
frequencies. The scale-space theory [28] provides us with
a principled way of creating scale-spaces of spatial resolu-
tions, and defines an octave as a division of the spatial di-
mensions by a power of 2 (we only explore 21 in this work).
We follow this fashion and reduce the spatial resolution of
the low-frequency feature maps by an octave.

Formally, let X ∈ Rc×h×w denote the input feature ten-
sor of a convolutional layer, where h and w denote the spa-
tial dimensions and c the number of feature maps or chan-
nels. We explicitly factorizeX along the channel dimension
into X = {XH , XL}, where the high-frequency feature
mapsXH ∈ R(1−α)c×h×w capture fine details and the low-
frequency maps XL ∈ Rαc×h

2×
w
2 vary slower in the spatial

dimensions (w.r.t. the image locations). Here α ∈ [0, 1]
denotes the ratio of channels allocated to the low-frequency
part and the low-frequency feature maps are defined an oc-
tave lower than the high frequency ones, i.e. at half of the
spatial resolution as shown in Figure 1(c).

In the next subsection, we introduce a convolution op-
erator that operates directly on this multi-frequency feature
representation and name it Octave Convolution (OctConv).

3.2. Octave Convolution

The octave feature representation presented in Sec-
tion 3.1 reduces the spatial redundancy and is more compact
than the original representation. However, the vanilla con-
volution cannot directly operate on such a representation,
due to differences in spatial resolution in the input features.
A naive way of circumventing this is to up-sample the low-
frequency part XL to the original spatial resolution, con-
catenate it with XH and then convolve, which would lead
to extra costs in computation and memory and diminish all
the savings from the compression. In order to fully exploit
our compact multi-frequency feature representation, we in-
troduce Octave Convolution, which can directly operate on
factorized tensors X = {XH , XL} without requiring any
extra computational or memory overhead.
Vanilla Convolution. Let W ∈ Rc×k×k denote a k × k
convolution kernel and X,Y ∈ Rc×h×w denote the input
and output tensors, respectively. Each feature map in Yp,q ∈
Rc can be computed by

Yp,q =
∑

i,j∈Nk

Wi+ k−1
2 ,j+ k−1

2

>Xp+i,q+j , (1)

where (p, q) denotes the location coordinate and Nk =
{(i, j) : i = {−k−12 , . . . , k−12 }, j = {−k−12 , . . . , k−12 }}
defines a local neighborhood. For simplicity, in all equa-
tions we omit the padding, we assume k is an odd number
and that the input and output data have the same dimension-
ality, i.e. cin = cout = c.
Octave Convolution. The goal of our design is to effec-
tively process the low and high frequency in their corre-
sponding frequency tensor but also enable efficient inter-
frequency communication. Let X,Y be the factorized in-
put and output tensors. Then the high- and low-frequency
feature maps of the output Y = {Y H , Y L} will be given
by Y H = Y H→H + Y L→H and Y L = Y L→L + Y H→L,
respectively, where Y A→B denotes the convolutional up-
date from feature map group A to group B. Specifi-
cally, Y H→H , Y L→L denote intra-frequency update, while
Y H→L, Y L→H denote inter-frequency communication.

To compute these terms, we split the convolutional ker-
nel W into two components W = [WH ,WL] responsi-
ble for convolving with XH and XL respectively. Each
component can be further divided into intra- and inter-
frequency part: WH = [WH→H ,WL→H] and WL =
[WL→L,WH→L] with the parameter tensor shape shown
in Figure 2(b). Specifically for high-frequency feature map,
we compute it at location (p, q) by using a regular con-
volution for the intra-frequency update, and for the inter-
frequency communication we can fold the up-sampling over
the feature tensor XL into the convolution, removing the
need of explicitly computing and storing the up-sampled

(a) Detailed design of the Octave Convolution. Green arrows corre-
spond to information updates while red arrows facilitate information
exchange between the two frequencies.

(b) The Octave Convolution kernel. The k × k Octave
Convolution kernel W ∈ Rcin×cout×k×k is equivalent
to the vanilla convolution kernel in the sense that the
two have the exact same number of parameters.

Figure 2: Octave Convolution. We set αin = αout = α throughout the network, apart from the first and last OctConv of the
network where αin = 0, αout = α and αin = α, αout = 0, respectively.

feature maps as follows:

Y Hp,q =Y
H→H
p,q + Y L→Hp,q

=
∑

i,j∈Nk

WH→H
i+ k−1

2 ,j+ k−1
2

>
XH
p+i,q+j

+
∑

i,j∈Nk

WL→H
i+ k−1

2 ,j+ k−1
2

>
XL

(b p2 c+i),(b
q
2 c+j)

,

(2)

where b·c denotes the floor operation. Similarly, for the
low-frequency feature map, we compute the intra-frequency
update using a regular convolution. Note that, as the map is
in one octave lower, the convolution is also low-frequency
w.r.t. the high-frequency coordinate space. For the inter-
frequency communication we can again fold the down-
sampling of the feature tensor XH into the convolution as
follows:

Y Lp,q =Y
L→L
p,q + Y H→Lp,q

=
∑

i,j∈Nk

WL→L
i+ k−1

2 ,j+ k−1
2

>
XL
p+i,q+j

+
∑

i,j∈Nk

WH→L
i+ k−1

2 ,j+ k−1
2

>
XH

(2∗p+0.5+i),(2∗q+0.5+j),

(3)
where multiplying a factor 2 to the locations (p, q) performs
down-sampling, and further shifting the location by half
step is to ensure the down-sampled maps well aligned with
the input. However, since the index of XH can only be an
integer, we could either round the index to (2∗p+i, 2∗q+j)
or approximate the value at (2 ∗ p+0.5+ i, 2 ∗ q+0.5+ j)
by averaging all 4 adjacent locations. The first one is also
known as strided convolution and the second one as average
pooling. As we discuss in Section 3.3 and Fig. 5, strided
convolution leads to misalignment; we therefore use aver-
age pooling to approximate this value for the rest of the pa-
per.

An interesting and useful property of the Octave Con-
volution is the larger receptive field for the low-frequency
feature maps. Convolving the low-frequency part XL with

k × k convolution kernels, results in an effective enlarge-
ment of the receptive field by a factor of 2 compared to
vanilla convolutions. This further helps each OctConv layer
capture more contextual information from distant locations
and can potentially improve recognition performance.

3.3. Implementation Details

As discussed in the previous subsection, the index {(2 ∗
p + 0.5 + i), (2 ∗ q + 0.5 + j)} has to be an integer for
Eq. 3. Instead of rounding it to {(2 ∗ p + i), (2 ∗ q + j)},
i.e. conduct convolution with stride 2 for down-sampling,
we adopt average pooling to get more accurate approxima-
tion. This helps alleviate misalignments that appear when
aggregating information from different scales, as shown in
Appendix A. and Appendix C.. We can now rewrite the
output Y = {Y H , Y L} of the Octave Convolution using
average pooling for down-sampling as:

Y H =f(XH ;WH→H) + upsample(f(XL;WL→H), 2)

Y L =f(XL;WL→L) + f(pool(XH , 2);WH→L)),
(4)

where f(X;W) denotes a convolution with parameters W ,
pool(X, k) is an average pooling operation with kernel size
k × k and stride k. upsample(X, k) is an up-sampling op-
eration by a factor of k via nearest interpolation.

The details of the OctConv operator implementation are
shown in Figure 2. It consists of four computation paths
that correspond to the four terms in Eq. (4): two green paths
correspond to information updating for the high- and low-
frequency feature maps, and two red paths facilitate infor-
mation exchange between the two octaves.
Group and Depth-wise convolutions. The Octave Convo-
lution can also be adopted to other popular variants of the
vanilla convolution such as group [47] or depth-wise [18]
convolutions. For the group convolution case, we simply
set all four convolution operations that appear inside the
design of the OctConv to group convolutions. Similarly,
for the depth-wise convolution case, the convolution opera-

ratio (α) .0 .125 .25 .50 .75 .875 1.0

#FLOPs Cost 100% 82% 67% 44% 30% 26% 25%

Memory Cost 100% 91% 81% 63% 44% 35% 25%

Table 1: Relative theoretical gains for the proposed multi-
frequency feature representation over vanilla feature maps
for varying choices of the ratio α of channels used by the
low-frequency feature. When α = 0, no low-frequency fea-
ture is used which is the case of vanilla convolution.

tions are depth-wise and therefore the information exchange
paths are eliminated, leaving only two depth-wise convo-
lution operations. We note that both group OctConv and
depth-wise OctConv reduce to their respective vanilla ver-
sions if we do not compress the low-frequency part.
Efficiency analysis. Table 1 shows the theoretical com-
putational cost and memory consumption of OctConv over
the vanilla convolution and vanilla feature map represen-
tation. More information on deriving the theoretical gains
presented in Table 1 can be found in the supplementary ma-
terial. We note the theoretical gains are calculated per con-
volutional layer. In Section 4 we present the corresponding
practical gains on real scenarios and show that our OctConv
implementation can sufficiently approximate the theoretical
numbers.
Integrating OctConv into backbone networks. OctConv
is backwards compatible with vanilla convolution and can
be inserted to regular convolutional networks without spe-
cial adjustment. To convert a vanilla feature representation
to a multi-frequency feature representation, i.e. at the first
OctConv layer, we set αin = 0 and αout = α. In this
case, OctConv paths related to the low-frequency input is
disabled, resulting in a simplified version which only has
two paths. To convert the multi-frequency feature repre-
sentation back to vanilla feature representation, i.e. at the
last OctConv layer, we set αout = 0. In this case, Oct-
Conv paths related to the low-frequency output is disabled,
resulting in a single full resolution output.
Comparison to Multi-grid Convolution [25]. The multi-
grid conv (MG-Conv) [25] is a bi-directional and cross-
scale convolution operator. Though being conceptually sim-
ilar, our OctConv is different from MG-Conv in both the
core motivation and design. MG-Conv aims to exploit
multi-scale information in existing CNNs, while OctConv
is focusing on reducing spatial redundancy among neigh-
borhood pixels. In terms of design, MG-Conv adopts max-
pooling for down-sampling. This requires extra memory for
storing the index of the maximum value during training and
further yields lower accuracy (see Appendix C.). MG-Conv
also first up-samples and then convolves with the enlarged
feature maps. Differently, OctConv aims for reducing spa-
tial redundancy and is a naive extension of convolution op-

erator. It uses average pooling to distill low-frequency fea-
tures without extra memory cost and its upsampling opera-
tion follows the convolution, and is thus more efficient than
MG-Conv. The meticulous design of the lateral paths are
essential for OctConv to be much more memory and com-
putationally efficient than MG-Conv and improve accuracy
without increasing the network complexity. We compare
OctConv to MG-Conv in Table 4.

4. Experimental Evaluation
In this section, we validate the effectiveness and effi-

ciency of the proposed Octave Convolution for both 2D and
3D networks. We first present ablation studies for image
classification on ImageNet [11] and then compare it with the
state-of-the-art. Then, we show the proposed OctConv also
works in 3D CNNs using Kinetics-400 [24, 3] and Kinetics-
600 [2] datasets. The best results per category/block are
highlighted in bold font throughout the paper.

4.1. Experimental Setups

Image classification. We examine OctConv on a set of
most popular CNNs [18, 34, 16, 17, 22, 47, 19] by replac-
ing the regular convolutions with OctConv (except the first
convolutional layer before the max pooling). The resulting
networks only have one global hyper-parameter α, which
denotes the ratio of low frequency part. We do apple-to-
apple comparison and reproduce all baseline methods by
ourselves under the same training/testing setting for inter-
nal ablation studies. All networks are trained with naı̈ve
softmax cross entropy loss except that the MobileNetV2
also adopts the label smoothing [40], and the best ResNet-
152 adopts both label smoothing and mixup [48] to pre-
vent overfitting. Same as [4], all networks are trained
from scratch and optimized by SGD with cosine learning
rate [13]. Standard accuracy of single centeral crop [16, 17,
47, 4, 43] on validation set is reported.
Video action recognition. We use both Kinetics-400
[24, 3] and Kinetics-600 [2] for human action recognition.
We choose standard baseline backbones from Inflated 3D
ConvNet [44] and compare them with the OctConv coun-
terparts. We follow the setting from [45] using frame length
of 8 as standard input size, training 300k iterations in to-
tal, and averaging the predictions over 30 crops during in-
ference time. To make fair comparison, we report the per-
formance of the baseline and OctConv under precisely the
same settings.

4.2. Ablation Study on ImageNet

We conduct a series of ablation studies aiming to an-
swer the following questions: 1) Does OctConv have better
FLOPs-Accuracy trade-off than vanilla convolution? 2) In
which situation does the OctConv work the best?

1 1.25 1.5 2 2.5 3 4 5 6 7 8 9 10 12 14 16

74

76

78

80

FLOPs (×109)

To
p-

1
A

cc
ur

ac
y

(%
)

0.0625
0.125

0.250.125
0.25

0.50

0.75

0.25

0.50

0.75

0.125
0.25

0.50

0.75

0.1250.25

0.5

0.25

0.5

0.125
0.25

0.50

0.125
0.25

0.50

0.75

ResNet-26

ResNet-50

SE-ResNet-50

ResNeXt-50 ResNet-101

ResNeXt-101

DenseNet-121

ResNet-200

Figure 3: Ablation study results on ImageNet. OctConv-
equipped models are more efficient and accurate than base-
line models. Markers in black in each line denote the cor-
responding baseline models without OctConv. The colored
numbers are the ratio α. Numbers in X axis denote FLOPs
in logarithmic scale.

Results on ResNet-50. We begin with using the popu-
lar ResNet-50 [17] as the baseline CNN and replacing the
regular convolution with our proposed OctConv to exam-
ine the flops-accuracy trade-off. In particular, we vary the
global ratio α ∈ {0.125, 0.25, 0.5, 0.75} to compare the im-
age classification accuracy versus computational cost (i.e.
FLOPs) [16, 17, 47, 7] with the baseline. The results are
shown in Figure 3 in pink.

We make following observations. 1) The flops-accuracy
trade-off curve is a concave curve, where the accuracy first
rises up and then slowly goes down. 2) We can see two
sweet spots: The first at α = 0.5, where the network gets
similar or better results even when the FLOPs are reduced
by about half; the second at α = 0.125, where the network
reaches its best accuracy, 1.2% higher than baseline (black
circle). We attribute the increase in accuracy to OctConv’s
effective design of multi-frequency processing and the cor-
responding enlarged receptive field which provides more
contextual information to the network. While reaching the
accuracy peak at 0.125, the accuracy does not suddenly drop
but decreases slowly for higher ratios α, indicating reduc-
ing the resolution of the low frequency part does not lead
to significant information loss. Interestingly, 75% of the
feature maps can be compressed to half the resolution with
only 0.3% accuracy drop, which demonstrates effectiveness
of grouping and compressing the smoothly changed feature
maps for reducing the spatial redundancy in CNNs. In Ta-
ble 2 we demonstrate the theoretical FLOPs saving of Oct-
Conv is also reflected in the actual CPU inference time in
practice. For ResNet-50, we are close to obtaining theo-
retical FLOPs speed up. These results indicate OctConv is
able to deliver important practical benefits, rather than only
saving FLOPs in theory.

ratio (α) Top-1 (%) #FLOPs (G) Inference Time (ms) Backend

N/A 77.0 4.1 119 MKLDNN
N/A 77.0 4.1 115 TVM
.125 78.2 3.6 116 TVM
.25 78.0 3.1 99 TVM
.5 77.4 2.4 74 TVM
.75 76.7 1.9 61 TVM

Table 2: Results of ResNet-50. Inference time is measured
on Intel Skylake CPU at 2.0 GHz (single thread). We report
Intel(R) Math Kernel Library for Deep Neural Networks
v0.18.1 (MKLDNN) [23] inference time for vanila ResNet-
50. Because vanilla ResNet-50 is well optimized by Intel,
we also show MKLDNN results as additional performance
baseline. OctConv networks are compiled by TVM [5] v0.5.

Oct-High-Frequency Group Oct-Low-Frequency GroupBaseline Low → High Freq

En
erg

y

Figure 4: Frequency analysis for activation maps in differ-
ent groups. ‘Baseline‘ refers to vanilla ResNet. 10k activa-
tion maps are sampled from ResNet-101(Res3).

Results on more CNNs. To further examine if the pro-
posed OctConv works for other networks with different
depth/wide/topology, we select the currently most popu-
lar networks as baselines and repeat the same ablation
study. These networks are ResNet-(26;50;101;200) [17],
ResNeXt-(50,32×4d;101,32×4d) [47], DenseNet-121 [22]
and SE-ResNet-50 [19]. The ResNeXt is chosen for as-
sessing the OctConv on group convolution, while the SE-
Net [19] is used to check if the gain of SE block found
on vanilla convolution based networks can also be seen
on OctConv. As shown in Figure 3, OctConv equipped
networks for different architecture behave similarly to the
Oct-ResNet-50, where the FLOPs-Accuracy trade-off is in
a concave curve and the performance peak also appears at
ratio α = 0.125 or α = 0.25. The consistent performance
gain on a variety of backbone CNNs confirms that OctConv
is a good replacement of vanilla convolution.
Frequency Analysis. Figure 4 shows the frequency anal-
ysis results. We conducted the Fourier transform for each
group of feature maps and visualized the averaged results.
From the energy map, the low frequency group does not
contain high frequency signal, while the high frequency
group contains both low and high frequency signals. This
confirms that low-frequency group indeed captures low-
frequency information as expected. Note that OctConv
gives the high frequency group the flexibly to store both
low and high frequency signals for better learning capacity.
Summary. 1) OctConv can help CNNs improve the ac-
curacy while decreasing the FLOPs, deviating from other
methods that reduce the FLOPs with a cost of lower ac-
curacy. 2) At test time, the gain of OctConv over baseline

Method ratio (α) #Params (M) #FLOPs (M) CPU (ms) Top-1 (%)

CondenseNet (G = C = 8) [21] - 2.9 274 - 71.0
1.5 ShuffleNet (v1) [49] - 3.4 292 - 71.5
1.5 ShuffleNet (v2) [32] - 3.5 299 - 72.6

0.75 MobileNet (v1) [18] - 2.6 325 13.4 70.3∗

0.75 Oct-MobileNet (v1) (ours) .375 2.6 213 11.9 70.5
1.0 Oct-MobileNet (v1) (ours) .5 4.2 321 18.4 72.5

1.0 MobileNet (v2) [34] - 3.5 300 24.5 72.0
1.0 Oct-MobileNet (v2) (ours) .375 3.5 256 17.1 72.0
1.125 Oct-MobileNet (v2) (ours) .5 4.2 295 26.3 73.0

Table 3: ImageNet classification results for Small models.
∗ indicates it is better than original reproduced by MXNet
GluonCV v0.4 [14]. The inference speed is tested using
TVM on Intel Skylake processor (2.0GHz, single thread)2.

Method ratio (α) Depth #Params (M) #FLOPs (G) Top-1 (%)

R-MG-34 [25] - 34 32.9 5.8 75.5
Oct-ResNet-26 (ours) .25 26 16.0 1.9 76.1
Oct-ResNet-50 (ours) .5 50 25.6 2.4 77.4

ResNet-50 + GloRe [8] (+3 blocks Res4) - 50 30.5 5.2 78.4
Oct-ResNet-50 (ours) + GloRe [8] (+3 blocks Res4) .5 50 30.5 3.1 78.8

ResNeXt-50 + Elastic [43] - 50 25.2 4.2 78.4
Oct-ResNeXt-50 (32×4d) (ours) .25 50 25.0 3.2 78.8

ResNeXt-101 + Elastic [43] - 101 44.3 7.9 79.2
Oct-ResNeXt-101 (32×4d) (ours) .25 101 44.2 5.7 79.6

bL-ResNet-50‡ (α = 4, β = 4) [4] - 50 (+3) 26.2 2.5 76.9
Oct-ResNet-50‡ (ours) .5 50 (+3) 25.6 2.5 77.8
Oct-ResNet-50 (ours) .5 50 25.6 2.4 77.4

bL-ResNeXt-50‡ (32×4d) [4] - 50 (+3) 26.2 3.0 78.4
Oct-ResNeXt-50‡ (32×4d) (ours) .5 50 (+3) 25.1 2.7 78.6
Oct-ResNeXt-50 (32×4d) (ours) .5 50 25.0 2.4 78.4

bL-ResNeXt-101‡ § (32×4d) [4] - 101 (+1) 43.4 4.1 78.9
Oct-ResNeXt-101‡ § (32×4d) (ours) .5 101 (+1) 40.1 4.2 79.4
Oct-ResNeXt-101‡ (32×4d) (ours) .5 101 (+1) 44.2 4.2 79.1
Oct-ResNeXt-101 (32×4d) (ours) .5 101 44.2 4.0 78.9

Table 4: ImageNet Classification results for Middle sized
models. ‡ refers to method that replaces “Max Pooling” by
extra convolution layer(s) [4]. § refers to method that uses
balanced residual block distribution [4].

models increases as the test image resolution grows because
OctConv can detect large objects better due to its larger re-
ceptive field, see Appendix C. 3) Both the information ex-
changing paths are important, since removing any of them
can lead to accuracy drop, see Appendix C. 4) Shallow net-
works, e.g. ResNet-26, have a rather limited receptive field,
and can especially benefit from OctConv, which greatly en-
larges their receptive field.

4.3. Comparing with SOTAs on ImageNet

Small models. We adopt the most popular light weight
networks as baselines and examine if OctConv works well
on these compact networks with depth-wise convolution. In
particular, we use the “0.75 MobileNet (v1)” [18] and “1.0
MobileNet (v2)” [34] as baseline and replace the regular
convolution with our proposed OctConv. The results are
shown in Table 3. We find that OctConv can reduce the
FLOPs of MobileNetV1 by 34%, and provide better accu-
racy and faster speed in practice; it is able to reduce the
FLOPs of MobileNetV2 by 15%, achieving the same ac-
curacy with faster speed. When the computation budget is

fixed, one can adopt wider models to increase the learning
capacity because OctConv can compensate the extra com-
putation cost. In particular, our OctConv equipped networks
achieve 2% improvement on MobileNetV1 under the same
FLOPs and 1% improvement on MobileNetV2.
Medium models. In the above experiment, we have com-
pared and shown that OctConv is complementary with a
set of state-of-the-art CNNs [16, 17, 47, 22, 18, 34, 19].
In this part, we compare OctConv with MG-Conv [25],
GloRe [8], Elastic [43] and bL-Net [4] which share a simi-
lar idea as our method. Seven groups of results are shown
in Table 4. In group 1, our Oct-ResNet-26 shows 0.6% bet-
ter accuracy than R-MG-34 while costing only one third
of FLOPs and half of #Params. Also, our Oct-ResNet-
50, which costs less than half of FLOPS, achieves 1.9%
higher accuracy than R-MG-34. In group 2, adding our
OctConv to GloRe network reduces the FLOPs with bet-
ter accuracy. In group 3, our Oct-ResNeXt-50 achieves
better accuracy than the Elastic [43] based method (78.8%
v.s. 78.4%) while reducing the computational cost by 31%.
In group 4, the Oct-ResNeXt-101 also achieves higher ac-
curacy than the Elastic based method (79.6% v.s. 79.2%)
while costing 38% less computation. When compared to
the bL-Net [4], OctConv equipped methods achieve better
FLOPs-Accuracy trade-off without bells and tricks. When
adopting the tricks used in the baseline bL-Net [4], our Oct-
ResNet-50 achieves 0.9% higher accuracy than bL-ResNet-
50 under the same computational budget (group 5), and Oct-
ResNeXt-50 (group 6) and Oct-ResNeXt-101 (group 7) get
better accuracy under comparable or even lower compu-
tational budget. This is because MG-Conv [25], Elastic-
Net [43] and bL-Net [4] are designed following the prin-
ciple of introducing multi-scale features without consider-
ing reducing the spatial redundancy. In contrast, OctConv
is born for solving the high spatial redundancy problem in
CNNs, uses more efficient strategies to store and process the
information throughout the network, and can thus achieve
better efficiency and performance.
Large models. Table 5 shows the results of OctConv in
large models. Here, we choose the ResNet-152 as the back-
bone CNN, replacing the first 7 × 7 convolution by three
3× 3 convolution layers and removing the max pooling by
a lightweight residual block [4]. We report results for Oct-
ResNet-152 with and without the SE-block [19]. As can
be seen, our Oct-ResNet-152 achieves accuracy compara-
ble to the best manually designed networks with less FLOPs
(10.9G v.s. 12.7G). Since our model does not use group or
depth-wise convolutions, it also requires significantly less
GPU memory, and runs faster in practice compared to the
SE-ShuffleNet v2-164 and AmoebaNet-A (N=6, F=190)
which have low FLOPs in theory but run slow in practice

2For small models, we should notice according to arithmetic intensity
[46], real execution time is not only bounded by FLOPS.

Method #Params (M)
Training Testing (224× 224) Testing (320× 320 / 331× 331)

Input Size Memory Cost (MB) Speed (im/s) #FLOPs (G) Top-1 (%) Top-5 (%) #FLOPs (G) Top-1 (%) Top-5 (%)

NASNet-A (N=6, F=168) [51] 3 88.9

331× 331
/ 320× 320

> 32, 480 43 ‡ - - - 23.8 82.7 96.2

AmoebaNet-A (N=6, F=190) [33] 3 86.7 > 32, 480 47 ‡ - - - 23.1 82.8 96.1

PNASNet-5 (N=4, F=216) [29] 3 86.1 > 32, 480 38 ‡ - - - 25.0 82.9 96.2

Squeeze-Excite-Net [19] 115.1 > 32, 480 43 † - - - 42.3 83.1 96.4

AmoebaNet-A (N=6, F=448) [33] 3 469 > 32, 480 15 § - - - 104 83.9 96.6

Dual-Path-Net-131 [7] 79.5

224× 224

31,844 83 16.0 80.1 94.9 32.0 81.5 95.8

SE-ShuffleNet v2-164 [32] 69.9 > 32, 480 70 † 12.7 81.4 - - - -

Squeeze-Excite-Net [19] 115.1 28,696 78 21 81.3 95.5 42.3 82.7 96.2

Oct-ResNet-152, α = 0.125 (ours) 60.2 15,566 162 10.9 81.4 95.4 22.2 82.3 96.0

Oct-ResNet-152 + SE3, α = 0.125 (ours) 66.8 21,885 95 10.9 81.6 95.7 22.2 82.9 96.3

Table 5: ImageNet Classification results for Large models. The names of OctConv-equiped models are in bold font and
performance numbers for related works are copied from the corresponding papers. Networks are evaluated using CuDNN
v10.04in flop16 on a single Nvidia Titan V100 (32GB) for their training memory cost and speed. Works that employ neural
architecture search are denoted by (3). We set batch size to 128 in most cases, but had to adjust it to 64 (noted by †), 32
(noted by ‡) or 8 (noted by §) for networks that are too large to fit into GPU memory.

due to the use of group and depth-wise convolutions. Our
proposed method is also complementary to Squeeze-and-
excitation [19], where the accuracy can be further boosted
when the SE-Block is added (last row).

4.4. Experiments of Video Recognition on Kinetics

In this subsection, we evaluate the effectiveness of Oct-
Conv for action recognition in videos and demonstrate that
our spatial OctConv is sufficiently generic to be integrated
into 3D convolution to decrease #FLOPs and increase ac-
curacy at the same time. As shown in Table 6, OctConv
consistently decreases FLOPs and meanwhile improves the
accuracy when added to C2D and I3D [44, 45], and is also
complementary to the Non-local [44]. This is observed
for models pre-trained on ImageNet [11] as well as mod-
els trained from scratch on Kinetics. The higher accuracy,
lower FLOPs and the ability of being complimentary to ex-
isting metods, e.g. Non-local method, confirm the effective-
ness of the proposed OctConv method. Performance further
increases when combining OctConv with the SlowFast Net-
works [12]. Specifically, we apply OctConv on the spatial
dimensions and SlowFast on the temporal dimension.

5. Conclusion
In this work, we address the problem of reducing spa-

tial redundancy that widely exists in vanilla CNN models,
and propose a novel Octave Convolution operation to store
and process low- and high-frequency features separately to
improve the model efficiency. Octave Convolution is suffi-

3The auto-tune is set to off when evaluating the memory cost for more
accurate result, and is set to on when measuring speed for fastest speed.

4An extra BatchNorm is added at the beginning of each residual func-
tion, otherwise the gradient will easily diverged due to the newly added
SE module. This costs more memory and slows down the speed but can
provide higher accuracy.

5Note that [12] reports 36.1 GFLOPs at a spatial size of 2562, while
we report (training) GFLOPs at 2242 for all methods.

Method ImageNet Pretrain #FLOPs (G) Top-1 (%)

(a) Kinetics-400 [3]

I3D 28.1 72.6

Oct-I3D, α=0.1, (ours) 25.6 73.6 (+1.0)
Oct-I3D, α=0.2, (ours) 22.1 73.1 (+0.5)

Oct-I3D, α=0.5, (ours) 15.3 72.1 (-0.5)

C2D � 19.3 71.9

Oct-C2D, α=0.1, (ours) � 17.4 73.8 (+1.9)

I3D � 28.1 73.3

Oct-I3D, α=0.1, (ours) � 25.6 74.6 (+1.3)

I3D + Non-local � 33.3 74.7

Oct-I3D + Non-local, α=0.1, (ours) � 28.9 75.7 (+1.0)

SlowFast-R50 [12] 27.6 5 75.6

Oct-SlowFast-R50, α=0.1, (ours) 24.5 76.2 (+0.6)
Oct-SlowFast-R50, α=0.2, (ours) 22.9 75.8 (+0.2)

(b) Kinetics-600 [2]

I3D � 28.1 74.3

Oct-I3D, α=0.1, (ours) � 25.6 76.0 (+1.7)

Table 6: Action Recognition in videos, ablation study, all
models with ResNet50 [16].

ciently generic to replace the regular convolution operation
in-place, and can be used in most 2D and 3D CNNs without
model architecture adjustment. Beyond saving a substan-
tial amount of computation and memory, Octave Convolu-
tion can also improve the recognition performance by effec-
tive communication between the low- and high-frequency
and by enlarging the receptive field size which contributes
to capturing more global information. Our extensive ex-
periments on image classification and video action recog-
nition confirm the superiority of our method for striking a
much better trade-off between recognition performance and
model efficiency, not only in FLOPs, but also in practice.

Acknowledgement. We would like to thank Min Lin and
Xin Zhao for helpful discussions of the code development.

References
[1] Fergus W Campbell and JG Robson. Application of fourier

analysis to the visibility of gratings. The Journal of physiol-
ogy, 197(3):551–566, 1968. 1

[2] Joao Carreira, Eric Noland, Andras Banki-Horvath, Chloe
Hillier, and Andrew Zisserman. A short note about kinetics-
600. arXiv preprint arXiv:1808.01340, 2018. 2, 5, 8

[3] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6299–6308, 2017. 2, 5, 8

[4] Chun-Fu Chen, Quanfu Fan, Neil Mallinar, Tom Sercu, and
Rogerio Feris. Big-little net: An efficient multi-scale feature
representation for visual and speech recognition. Proceed-
ings of the Seventh International Conference on Learning
Representations, 2019. 2, 5, 7

[5] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng,
Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang,
Yuwei Hu, Luis Ceze, et al. {TVM}: An automated
end-to-end optimizing compiler for deep learning. In 13th
{USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 18), pages 578–594, 2018. 6

[6] Yunpeng Chen, Yannis Kalantidis, Jianshu Li, Shuicheng
Yan, and Jiashi Feng. Multi-fiber networks for video recog-
nition. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 352–367, 2018. 1

[7] Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin,
Shuicheng Yan, and Jiashi Feng. Dual path networks. In
Advances in Neural Information Processing Systems, pages
4467–4475, 2017. 6, 8

[8] Yunpeng Chen, Marcus Rohrbach, Zhicheng Yan, Shuicheng
Yan, Jiashi Feng, and Yannis Kalantidis. Graph-based global
reasoning networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019. 7

[9] François Chollet. Xception: Deep learning with depthwise
separable convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
1251–1258, 2017. 1, 2

[10] Russell L. De Valois and Karen K. De Valois. Spatial vision.
Oxford psychology series, No. 14., 1988. 1

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 2, 5, 8

[12] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. Slowfast networks for video recognition.
ICCV, 2019. 2, 3, 8

[13] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large mini-
batch sgd: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017. 5

[14] Jian Guo, He He, Tong He, Leonard Lausen, Mu Li, Haibin
Lin, Xingjian Shi, Chenguang Wang, Junyuan Xie, Sheng
Zha, Aston Zhang, Hang Zhang, Zhi Zhang, Zhongyue
Zhang, and Shuai Zheng. Gluoncv and gluonnlp: Deep

learning in computer vision and natural language processing.
arXiv preprint arXiv:1907.04433, 2019. 7

[15] Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao
Gong, Shijian Tang, Erich Elsen, Peter Vajda, Manohar
Paluri, John Tran, et al. Dsd: Dense-sparse-dense training
for deep neural networks. arXiv preprint arXiv:1607.04381,
2016. 1, 2

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016. 2, 5, 6, 7, 8

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In European
conference on computer vision, pages 630–645. Springer,
2016. 2, 5, 6, 7

[18] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 1, 2, 4, 5, 7

[19] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7132–7141, 2018. 2,
5, 6, 7, 8

[20] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens
van der Maaten, and Kilian Q Weinberger. Multi-scale dense
networks for resource efficient image classification. ICLR,
2018. 2

[21] Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kil-
ian Q Weinberger. Condensenet: An efficient densenet us-
ing learned group convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2752–2761, 2018. 2, 7

[22] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017. 2,
5, 6, 7

[23] Intel. Math kernel library for deep neural net-
works (mkldnn). https://github.com/intel/mkl-
dnn/tree/7de7e5d02bf687f971e7668963649728356e0c20,
2018. 6

[24] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017. 2, 5

[25] Tsung-Wei Ke, Michael Maire, and Stella X Yu. Multigrid
neural architectures. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 6665–
6673, 2017. 2, 5, 7, 12

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012. 2

[27] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2117–2125, 2017. 2

[28] Tony Lindeberg. Scale-space theory in computer vision, vol-
ume 256. Springer Science & Business Media, 2013. 3

[29] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon
Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan
Huang, and Kevin Murphy. Progressive neural architecture
search. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 19–34, 2018. 2, 8

[30] David G Lowe. Distinctive image features from scale-
invariant keypoints. International journal of computer vi-
sion, 60(2):91–110, 2004. 2

[31] Jian-Hao Luo, Hao Zhang, Hong-Yu Zhou, Chen-Wei Xie,
Jianxin Wu, and Weiyao Lin. Thinet: pruning cnn filters for
a thinner net. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2018. 1, 2

[32] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 116–131, 2018. 2, 7, 8

[33] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. Proceedings of the Thirty-Third AAAI Conference on
Artificial Intelligence, 2019. 2, 8

[34] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4510–4520, 2018. 2, 5, 7

[35] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 2

[36] Pravendra Singh, Vinay Kumar Verma, Piyush Rai, and
Vinay P Namboodiri. Hetconv: Heterogeneous kernel-
based convolutions for deep cnns. arXiv preprint
arXiv:1903.04120, 2019. 2

[37] Mallat Stephane. A wavelet tour of signal processing. 1
[38] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep

high-resolution representation learning for human pose esti-
mation. In CVPR, 2019. 2

[39] Wim Sweldens. The lifting scheme: A construction of sec-
ond generation wavelets. SIAM journal on mathematical
analysis, 29(2):511–546, 1998. 1

[40] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and
Alexander A Alemi. Inception-v4, inception-resnet and the
impact of residual connections on learning. In Thirty-First
AAAI Conference on Artificial Intelligence, 2017. 2, 5, 12

[41] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1–9, 2015.
2

[42] Frederick Tung and Greg Mori. Clip-q: Deep network com-
pression learning by in-parallel pruning-quantization. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 7873–7882, 2018. 1, 2

[43] Huiyu Wang, Aniruddha Kembhavi, Ali Farhadi, Alan
Yuille, and Mohammad Rastegari. Elastic: Improving
cnns with instance specific scaling policies. arXiv preprint
arXiv:1812.05262, 2018. 2, 5, 7

[44] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2017. 2, 5, 8

[45] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and
Kaiming He. https://github.com/facebookresearch/video-
nonlocal-net, 2018. 5, 8

[46] Samuel Webb Williams. Auto-tuning performance on mul-
ticore computers. University of California, Berkeley, 2008.
7

[47] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1492–
1500, 2017. 1, 2, 4, 5, 6, 7

[48] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. Proceedings of the Sixth International Conference on
Learning Representations, 2018. 5, 12

[49] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.
Shufflenet: An extremely efficient convolutional neural net-
work for mobile devices. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
6848–6856, 2018. 2, 7

[50] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2881–2890, 2017. 2

[51] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8697–8710,
2018. 2, 8

Appendix A. The Misalignment Problem

As shown in Figure 5, up-sampling after the strided con-
volution with odd convolutional filter, e.g. 3× 3, will cause
the entire feature map to move to the lower right, which is
problematic when we add the up-sampled shifted map with
the unshifted map.

Figure 5: Strided convolution may cause misaligned feature
maps after up-sampling.

Appendix B. Relative Theoretical Gains of
OctConv

In Table 1 of the main paper, we reported the relative the-
oretical gains of the proposed multi-frequency feature rep-
resentation over regular feature representation with respect
to memory footprint and computational cost, as measured in
FLOPS (i.e. multiplications and additions). In this section,
we show how the gains are estimated in theory.

Memory cost. The proposed OctConv stores the feature
representation in a multi-frequency feature representation
as shown in Figure 6, where the low frequency tensor is
stored in 2× lower spatial resolution and thus cost 75% less
space to store the low frequency maps compared with the
conventional feature representation. The relative memory
cost is conditional on the ratio (α) and is calculated by

1− 3

4
α. (5)

Computational cost. The computational cost of OctConv
is proportional to the number of locations and channels that
are needed to be convolved on. Following the design shown
in Figure 2 in the main paper, we need to compute four
paths, namely H → H , H → L, L→ H , and L→ L.

We assume the convolution kernel size is k× k, the spa-
tial resolution of the high-frequency feature is h × w, and
there are (1 − α)c channels in the high-frequency part and
αc channels in the low-frequency part. Then the FLOPS for

!

"

#

(a)

!

"

#$

%& ' #($

(b)

Figure 6: (a) The conventional feature representation used
by vanilla convolution. (c) The proposed multi-frequency
feature representation stores the smoothly changing, low-
frequency maps in a low-resolution tensor to reduce spatial
redundancy, used by Octave Convolution. The figure is ro-
tated compared to the one in the main paper for clarity.

computing each paths are calculated as below.

FLOPS(Y H→H) = h× w × k2 × (1− α)2 × c2

FLOPS(Y H→L) =
h

2
× w

2
× k2 × α× (1− α)× c2

FLOPS(Y L→H) =
h

2
× w

2
× k2 × (1− α)× α× c2

FLOPS(Y L→L) =
h

2
× w

2
× k2 × α2 × c2

(6)
We omit FLOPS for adding Y H→H and Y L→H together,

as well as that of adding Y L→L and Y H→H together, since
the FLOPS of such addition is less than h × w × c, and is
negligible compared with other computational costs. The
computational cost of the pooling operation is also ignor-
able compared with other computational cost. The nearest
neighborhood up-sampling is basically duplicating values
which does not involves any computational cost. Therefore,
by adding up all FLOPS in Eqn 6, we can estimate the over-
all FLOPS for compute Y H and Y L in Eqn 7.

FLOPS([Y H , Y L]) = (1− 3

4
α(2− α))× h× w × k2 × c2

(7)
For vanilla convolution, the FLOPS for computing out-

put feature map Y of size c × h × w with the kernel size
k × k, and input feature map of size c × h × w, can be
estimated as below.

FLOPS(Y) = h× w × k2 × c2 (8)

three out of four internal convolution operations are con-
ducted on the lower resolution tensors except the first con-
volution, i.e. f(XH ,WH−→H). Thus, the relative com-
putational cost compared with vanilla convolution using
the same kernel size and number of input/out channels is:

Therefore, the computational cost ratio between the Oct-
Conv and vanilla convolution is (1− 3

4α(2− α)).

(1− α)2c2 + 1
2α(1− α)c

2 + 1
4α

2c2

c2

= 1− 3

4
α(2− α).

(9)

Note that the computational cost of the pooling operation
is ignorable and thus is not considered. The nearest neigh-
borhood up-sampling is basically duplicating values which
does not involves any computational cost.

Appendix C. ImageNet Ablation Study Results
Table 7 shows that the gain of OctConv over baseline

models increases as the test image resolution grows. Such
ability of better detecting large objects can be explained as
the larger receptive field of each OctConv.

Table 8 shows an ablation study to examine down-
sampling and inter-octave connectivity on ImageNet. The
results confirm the importance of having both inter-
frequency communication paths. It also shows that pooling
methods are better than strided convolution and the average
pooling works the best.

Table 9 reports the values that are plotted in Figure 4 of
the main text for clarity of presentation and to allow future
work to compare to the precise numbers.

Model ratio (α)
Testing Scale (small −→ large)

256 320 384 448 512 576 640 740

ResNet-50 N/A 77.2 78.6 78.7 78.7 78.3 77.6 76.7 75.8
Oct-ResNet-50 .5 +0.7 +0.7 +0.9 +0.9 +0.8 +1.0 +1.1 +1.2

Table 7: ImageNet classification accuracy. The short length
of input images are resized to the target crop size while
keeping the aspect ratio unchanged. A centre crop is
adopted if the input image size is not square. ResNet-50
backbone trained with crops size of 256× 256 pixels.

Method Down-sampling Low −→ High High −→ Low Top-1 (%)

Oct-ResNet-50
ratio: 0.5

avg. pooling 76.0
avg. pooling X 76.4
avg. pooling X 76.4

strided conv. X X 76.3
max. pooling X X 77.0
avg. pooling X X 77.4

Table 8: Ablation on down-sampling and inter-octave con-
nectivity on ImageNet. Note that MG-Conv [25] uses max
pooling for down-sampling.

Backbone baseline α = 0.125 α = 0.25 α = 0.5 α = 0.75

ResNet-26
GFLOPs 2.353 2.102 1.871 1.491 1.216

Top-1 acc. 73.2 75.8 76.1 75.5 74.6

DenseNet-121
GFLOPs 2.852 2.428 2.044 - -

Top-1 acc. 75.4 76.1 75.9 - -

ResNet-50
GFLOPs 4.105 3.587 3.123 2.383 1.891

Top-1 acc. 77.0 78.2 78.0 77.4 76.7

SE-ResNet-50
GFLOPs 4.113 3.594 3.130 2.389 1.896

Top-1 acc. 77.6 78.7 78.4 77.9 77.4

ResNeXt-50
GFLOPs 4.250 - 3.196 2.406 1.891

Top-1 acc. 78.4 - 78.8 78.4 77.5

ResNet-101
GFLOPs 7.822 6.656 5.625 4.012 -

Top-1 acc. 78.5 79.2 79.2 78.7 -

ResNeXt-101
GFLOPs 7.993 - 5.719 4.050 -

Top-1 acc. 79.4 - 79.6 78.9 -

ResNet-200
GFLOPs 15.044 12.623 10.497 7.183 -

Top-1 acc. 79.6 80.0 79.8 79.5 -

Table 9: Ablation study on ImageNet in table form corre-
sponding to the plots in Figure 4 in the main paper. Note:
All networks are trained with naı̈ve softmax loss without
label smoothing [40] or mixup [48]

