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ABSTRACT
How do we know if communication is emerging in a multi-agent
system? The vast majority of recent papers on emergent commu-
nication show that adding a communication channel leads to an
increase in reward or task success. This is a useful indicator, but
provides only a coarse measure of the agent’s learned communica-
tion abilities. As we move towards more complex environments, it
becomes imperative to have a set of finer tools that allow qualitative
and quantitative insights into the emergence of communication.
This may be especially useful to allow humans to monitor agents’
behaviour, whether for fault detection, assessing performance, or
even building trust. In this paper, we examine a few intuitive ex-
isting metrics for measuring communication, and show that they
can be misleading. Specifically, by training deep reinforcement
learning agents to play simple matrix games augmented with a
communication channel, we find a scenario where agents appear
to communicate (their messages provide information about their
subsequent action), and yet the messages do not impact the envi-
ronment or other agent in any way. We explain this phenomenon
using ablation studies and by visualizing the representations of the
learned policies. We also survey some commonly used metrics for
measuring emergent communication, and provide recommenda-
tions as to when these metrics should be used.
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1 INTRODUCTION
Communication through language is one of the hallmarks of human
intelligence; it allows us to share information efficiently between
humans and coordinate on shared tasks. This is a strong motivation
to develop machines that can communicate, so that they can share
their knowledge with us and help us coordinate on tasks where
humans alone perform poorly. One of the approaches for developing
agents capable of language is through emergent communication. The
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idea is to use an environment consisting of randomly initialized
agents and a dedicated communication channel, which the agents
can learn to use to accomplish tasks that require coordination.
This approach is motivated by a utilitarian view of communication,
where language is viewed as one of many tools an agent can use
towards achieving its goals, and an agent ‘understands’ language
once it can use it to accomplish these goals [14, 43]. The question
of emergent communication is also of scientific interest, as it could
provide insights into the origins of human language [30].

Recently, there has been a significant revival of emergent commu-
nication research using methods from deep reinforcement learning
(deep RL). In this line of work, researchers define a multi-agent
environment where agents possess a (usually discrete and costless)
communication channel, and train the agents’ policies (represented
by deep neural networks) to maximize the cumulative reward. In
most cases, the multi-agent environment is a cooperative referential
game, where one agent (the ‘speaker’) has some private information
about a public observation, and must communicate it accurately to
the other agent (the ‘listener’) [6, 8, 10, 17, 21–23]. In other works,
agents navigate a simulated world with a limited field of view, and
communication can help the agents coordinate to achieve a com-
mon goal [3, 12, 20, 37]. Algorithmic development has led to emer-
gent communication in games with pixel-based inputs [3, 6, 22],
in settings incorporating human language [23, 25], and even in
more complex games that require inferring the belief state of the
opponent, like Hanabi [12].

Despite these advances, there has been no formal study eval-
uating how we measure emergent communication. Most papers
in this area show that adding a communication channel helps the
agents achieve a higher reward, and attempt to understand the
communication protocols qualitatively by, for example, plotting the
distribution over messages in various states of the environment.
This is a reasonable approach: if adding a communication channel
increases the reward in an environment, then the agents are making
some use of that channel. But it is useful to quantify more finely
the degree of communication as it can provide more insights into
agent behaviour. This may be essential for human monitoring; we
want to understand why agents are making certain decisions, and
understanding their language would make this significantly easier.
Our aim is to develop a set of evaluation tools for detecting and
measuring emergent communication that increases the robustness
of emergent communication research on the way to developing
agents that communicate with humans.



In this paper, we take a step in this direction by analyzing some
intuitive metrics and tests that have been used in the recent liter-
ature for measuring emergent communication. In particular, we
show that some of these metrics, including speaker consistency
[20] and simply examining the agents’ policies qualitatively, can be
misleading if not properly understood. We use a simple class of ma-
trix games augmented with a bidirectional communication channel,
which we call Matrix Communication Games (MCGs), to study the
emergence of communication among deep RL agents. MCGs are
simple and efficient for learning, and have the appealing property
that the resulting communication policies are interpretable relative
to more complex gridworld environments.

To aid in our analysis, we categorize emergent communication
metrics into two broad classes: those that measure positive signaling,
which indicates that an agent is sending messages that are related
in some way with its observation or action; and those that measure
positive listening, indicating that the messages are influencing the
agents’ behaviour in some way. Both positive signaling and positive
listening are desirable; we want to develop communicative agents
that can both speak about their world and intentions, and can
interpret the messages of others and respond accordingly. While
intuitively it might seem that positive listening is a prerequisite for
positive signaling (otherwise, why would the agent signal in the
first place?), we show that, surprisingly, this is not always true for
deep RL agents; it is possible for positive signaling to emerge as a
byproduct of the task and policy architecture.

Our main contributions are as follows. (1) We briefly survey the
existing metrics for detecting emergent communication in the deep
RL community, and find that the majority measure positive signal-
ing rather than positive listening. (2) We run experiments on MCGs
and show that agents can exhibit positive signaling without positive
listening. This lack of positive listening falsifies the hypothesis that
the agents are communicating to share information to increase the
reward of both agents. Thus, positive listening is an important tool
for understanding the purpose of emergent communication. (3) We
propose a new metric, the causal influence of communication (CIC),
designed to directly measure positive listening.1 (4) We discuss
other metrics and tests for measuring emergent communication,
and make recommendations for future work in this area.2

2 BACKGROUND
2.1 Markov games
The MCG environment in this paper can be considered a multi-
agent extension of partially observable Markov decision processes
(POMDPs) called partially observableMarkov games [27]. AMarkov
game for N agents is defined by a set of states S, N sets of actions
A1, ...,AN and N sets of observations O1, ...,ON , one each per
agent. To choose actions, each agent i uses a stochastic policy
πππθi : Oi ×Ai 7→ [0, 1], which produces the next state according to
the state transition functionT : S×A1×· · ·×AN 7→ S. Each agent
i obtains rewards as a function of the state and agent’s action ri : S×
A1 × · · · × AN 7→ R, and receives a private observation correlated

1A variant of CIC was developed concurrently by [20], where they showed that agents
trained with causal influence as an additional reward performed better in several
multi-agent settings. We adopt their terminology in this paper.
2Code available at github.com/facebookresearch/measuring-emergent-comm.

with the state oi : S 7→ Oi . The initial states are determined by a
distribution ρ : S 7→ [0, 1]. Each agent i aims to maximize its own
total expected return Ri =

∑T
t=0 γ

t r ti where γ is a discount factor
and T is the time horizon.

More specifically, in the games we consider the action space Ai
for each agent i can be subdivided into disjoint environment actions
Ae

i , and communication actions Am
i , such that Ae

i ∪ A
m
i = Ai

and Ae
i ∩ A

m
i = ∅. Environment actions are those that have a di-

rect effect on the environment dynamics and the rewards obtained
by the agent. We model each agent’s communication action as a
sequence of discrete symbols sent over a dedicated communication
channel, which are observed by the other agents at the next time
step. Communication actions do not affect the environment dynam-
ics (other than being observed by the other agent), and incur a fixed
cost rc ∈ R<0. In our paper, we consider the cheap talk setting [11]
where rc = 0, and leave an examination of costly signaling (e.g.
[15, 44]) to future work.

2.2 Policy gradient methods
Policy gradient methods are a popular choice for a variety of RL
tasks. The main idea is to directly adjust the parameters θ of the
policy in order to maximize the objective J (θ ) = Es∼pπππ ,a∼πππ θ [R] by
taking steps in the direction of ∇θ J (θ ). The gradient of the policy
can be written as [38]:

∇θ J (θ ) = Es∼pπππ ,a∼πππ θ [∇θ logπππθ (a |s)Qπππ (s,a)], (1)

where pπππ is the state distribution, and Qπππ (s,a) is an estimate of
the expected value of taking action a in state s .

The policy gradient theorem has given rise to several practical
algorithms, which often differ in how they estimate Qπππ . In the
simplest case, one can use a sample return Rt =

∑T
i=t γ

i−t ri , which
leads to the REINFORCE algorithm [41]. We use the REINFORCE
algorithm in our work, as it is simple, and has been by far the most
popular approach among emergent communication works using
deep RL [5, 8, 17, 20–23, 37].

3 EMERGENT COMMUNICATION METRICS
3.1 A categorization of metrics
When analyzing metrics to measure a certain quantity, it is impor-
tant to ask what that quantity actually represents. What does it
mean for agents to be communicating with each other in a rein-
forcement learning setting? We take a pragmatic perspective, and
identify two broad prerequisites for communication to occur: (1)
one agent needs to produce a signal that is in some way correlated
with its observation or intended action, and (2) another agent needs
to update its belief or alter its behaviour after observing the signal.

We define positive signaling as behaviour that satisfies criterion
(1), and positive listening as behaviour that satisfies criterion (2). To
formalize these intuitions, we provide very broad definitions these
terms below.

Definition 3.1 (Positive Signaling). Let m̄ = (m0,m1, ...,mT ) be
the sequence of messages sent by an agent over the course of a
trajectory of length T , and similarly for ō = (o0,o1, ...,ot ) and
ā = (a0,a1, ...,aT ). An RL agent exhibits positive signaling if either
m̄ ⊥̸⊥ ō or m̄ ⊥̸⊥ ā, i.e. if m̄ is statistically dependent (indicated by
⊥̸⊥ ) in some way with either ā or ō.



Definition 3.2 (Positive Listening). An RL agent exhibits positive
listening if there exists a message generated by another agentm ∈
Am

i , for some i ∈ {1, ...,N } such that | |πππ (o, 0) − πππ (o,m)| |τ > 0,
where 0 is the 0 vector, and | | · | |τ is a distance in the space of
expected trajectories followed by πππ .

Evidently, these definitions are very loose, and most agents in
an multi-agent environment with the capacity to communicate will
satisfy them to some degree. However, we can speak of the degree
or extent to which an agent exhibits positive signaling or positive
listening behaviour, and measure this using metrics or tests. Thus,
these terms are useful for categorizing different metrics of emergent
communication.

3.2 What metrics are being used now?
We now conduct a brief review of the existing metrics being used
in papers applying deep reinforcement learning to the problem of
emergent communication, and categorize them as being indicative
of positive signaling or positive listening. We focus on metrics that
are the most prevalent in the recent deep RL literature to give an
overview of how current research in this area is being conducted.
From our review, we find that only one metric (instantaneous coor-
dination) is explicitly designed to measure positive listening, and
that it has several shortcomings. This motivates our definition of a
new metric, the causal influence of communication, in Section 3.3.

Reward and task completion. As previously mentioned, in all pa-
pers we surveyed, the authors either measure the task completion
% of their proposed algorithm (for referential games [10, 22, 23]), or
show that adding a communication channel increases the agents’ re-
ward (for games where the agents interact with the world [3, 6, 37]).
For referential games [8, 22], this is an adequate measure of com-
municative performance because these games are non-situated. In
the terminology of [40], a non-situated environment (or simulation)
is one where agents’ actions consist solely of sending and receiving
signals. Non-embodied agents in these environments do not have
non-communicative actions that affect other objects or each other.
Thus, if task success increases in this setting, it is likely because
the sender agent has developed a better communication protocol,
or the listener agent has become better at understanding it.

In situated environments [40], where agents have non-
communicative actions that affect the environment and/or modify
their internal state, an increase in reward is still a loose measure of
both positive listening and positive signaling. If adding a commu-
nication channel leads to an increase in reward, then agents must
be using that channel to transmit some kind of information that is
affecting their behaviour. However, when comparing multiple algo-
rithms on the same environment, an increase in reward may not
necessarily indicate improved communication of one algorithm over
another, as this increase could be simply due to the improved action
policies. Thus, in this paper we advocate for more fine-grained
metrics for measuring the quality of emergent communication pro-
tocols. One of the reasons for our adoption of MCGs is that they
are in some ways the simplest situated environment (agents have
non-communicative interactions that affect each other’s reward).

Qualitative analysis of messages given states. An equally common
practice is to analyze the communication policies qualitatively, to

interpret what the agents are saying. This is done most commonly
by visualizing which messages were sent with which inputs or
observations [3, 17, 20, 23, 37]. For very simple environments, such
as the riddle game [13], the authors are able to make a full tree
describing the agents’ policies for all states in the game. However,
for other games with larger state spaces, papers simply show some
messages and inputs that the authors observed to have high co-
occurrence. While this is a useful practice to understand the agents’
behaviour, it is usually only testing positive signaling, as it does
not analyze how the message changes the other agent’s behaviour.

Speaker consistency. Some papers quantify the degree of align-
ment between an agent’s messages and its actions [3, 20]. One such
example is the speaker consistency (SC), proposed in [20]. The eas-
iest way to understand the speaker consistency is as the mutual
information between an agent’s message and its future action:

SC =
∑

a∈Ae

∑
m∈Am

p(a,m) log
p(a,m)

p(a)p(m)
(2)

where the probabilities p(a,m) = 1
N

∑N
i=1 1{act=a,comm=m } are cal-

culated empirically by averaging (message, action) co-occurrences
over the N episodes in each epoch.3 The speaker consistency is a
measure of positive signaling, as it indicates a statistical relation-
ship between the messages and actions of an agent, and does not
tell us anything about how these messages are interpreted.

On the surface, SC is a useful measure of communication because
it tells us how much an agent’s message reduces the uncertainty
about its subsequent action. Importantly, when an agent learns a
deterministic policy independent of observations, the SC will be 0.
Because of these appealing properties, we primarily focus on SC as
our metric of comparison in our experiments.

Context independence. Context independence (CI), introduced
by [3], is designed to measure the degree of alignment between an
agent’s messages and task concepts (corresponding to a particular
part of the input space). It is calculated as follows:

∀c : mc = arg max
m

pcm (c |m)

CI (pcm ,pmc ) =
1
|C|

∑
c
pmc (m

c |c) · pcm (c |m
c )

where C is the space of all concepts, pcm (c |m) is the conditional
probability of a concept given a message, and similarly forpmc (m |c).
This quantity relies on having a well-defined notion of ‘concept’
(in [3], this corresponds e.g. to the number and colour of objects),
and a way of estimating pcm and pmc ([3] use an IBM model 1 [4]).

Context independence captures the same intuition as speaker
consistency: if a speaker is consistently using a specific word to
refer to a specific concept, then communication has most likely
emerged. Thus, it is also a measure of positive signaling. The differ-
ence is that CI emphasizes that a single symbol should represent a
certain concept or input, whereas a high speaker consistency can
be obtained using a set of symbols for each input, so long as this
set of symbols is (roughly) disjoint for different inputs.

3The SC metric in [20] is a normalized version of the metric shown here.



Figure 1:When comparing the speaker consistency (SC), context independence (CI), and entropy of themessage policy (divided
by 5) between agents who learned to signal (real c) and agents who message randomly (rand c), it appears as though the agents
are communicating (note we expect a lower entropy for a communicating policy).

Entropy of message distribution. Another common practice is to
measure the perplexity or entropy (H (πππc )) of the distribution over
messages for different inputs [6, 10, 17]. Different papers interpret
themeaning of this quantity differently, but generally if the message
distribution has low entropy for a given input, then the speaker is
consistently using the same message to describe that input. This
differs from the speaker consistency metric, as it does not measure
whether or not the speaker is using a different message for each
input. The entropy actually measures neither positive signaling
(an agent that always outputs the same message, independent of
observation and action, will have low entropy), nor positive listen-
ing (it does not take into account the other agent’s response to the
messages), which gives it questionable utility as a metric.

Instantaneous coordination. Another metric considered in [20] is
instantaneous coordination (IC). IC uses the same formula as for
SC (Eq. 2), except it calculates the mutual information between one
agent’s message and the other agent’s action, again by averaging
(message, action) co-occurrences over episodes. IC is a measure of
positive listening; however, because of the way p(a,m) is calculated,
it only detects cases where a message from one agent changes the
other agent’s action regardless of context.

To illustrate why this is undesirable, we describe a simple matrix
communication game (MCG) example (see Section 4.1) where IC
would fail to detect positive listening. Let us draw the entries of
the payoff matrix R from a Gaussian at each timestep, and fix agent
1 to always truthfully signal the action it will take. In this case,
the optimal policy for agent 2 is to select the best response to
agent 1’s action, which it knows exactly. Clearly this policy exhibits
significant positive listening (it changes its action depending on
the message from agent 1 and the input). However, if R is drawn
randomly, when averaged across inputs agent 2 will take action 1
and 2 equally. The IC will then be 0 in expectation, since it calculates
p(a,m) by averaging over episodes and does not condition on R.

3.3 Causal influence of communication
We now propose a metric that more directly measures positive
listening, which we call the causal influence of communication
(CIC), following concurrent work in [20]. CIC measures the causal
effect that one agent’s message has on another agent’s behaviour.
In the simplest case, we can measure the effect that an agent’s
message has on the next action of the opponent. We call this one-
step causal influence. The one-step CIC is calculated using the
mutual information between an agent’s message and the other

Algorithm 1: One-step causal influence of communication.
Data: Agent policy πππ 1, other agent policy πππ 2, possible

messages m̄ = (m0, ...,mM−1), number of test games T .
CIC = 0
for i ∈ {0, ...,T − 1} do

Generate new state S , observations O .
// Intervene by changing message mj
for j ∈ {0, ...,M − 1} do

p(mj ) ← πππ 2(mj |o2), p(a |mj ) ← πππ 1(a |o1,mj )

p(a,mj ) = p(a |mj )p(mj )

p(a) =
∑
m∈Am p(a,m)

CIC += 1/T ·
∑
a∈Ae p(a,mj ) log p(a,mj )

p(a)p(mj )

end
end

agent’s action, similarly as for IC (cf. Eq 2), however the probabilities
p(a,m) = πππ 1(a |m)πππ 2(m) represent the change in the agent’s (πππ 1)
action probability distribution when intervening to change the
message m spoken by the other agent (πππ 2). In other words, the
probabilities are normalized over each game, rather than across
games. We describe in detail how to calculate the one-step CIC in
Algorithm 1, and we discuss how CIC might be generalized to the
multi-step case in Section 6.1. When calculating the CIC, care must
be taken that we condition on all the variables that can affect the
other agent’s action, to avoid back-door paths [32]. In our setting
this is easy, as our MCGs are not iterated (the state and reward are
independent of actions and states at previous timesteps).

4 EXPERIMENTAL SETUP
4.1 Matrix Communication Games
Our work is based on a simple class of games called matrix games,
where each agent i’s reward r ti at time step t is determined via
lookup into a fixed payoff matrix Rti ∈ R

|Ae
1 |×···× |A

e
N | for each

agent, indexed by the agents’ actions (i.e. r ti = Rti (a
t
1, ...a

t
N )). We

study emergent communication in an augmented version of matrix
games which we call matrix communication games (MCGs), where
agents can send discrete, costless messages over a communication
channel before acting. In other words, MCGs are matrix games
where |Am

i | > 0 for some i ∈ {0, ...,N }. MCGs are interesting to
study because they are the simplest form of game where agents
can both communicate with each other, and act in the environment.



MCGs can be easily adapted to various settings (cooperative vs. non-
cooperative, fully vs. partially observable), are simple and efficient
for learning, and the resulting communication policies are generally
interpretable. Variants of matrix games with communication have
been used to model emergent signaling in the fields of economics,
game theory, and evolutionary biology [11, 18, 36, 40].

In our variant of the game, two agents play an MCG in rounds. A
round begins with one agent communicating, and ends when both
agents have acted and received a reward, at which point another
payoff Rt+1 = (Rt+1

1 ,Rt+1
2 ) is selected. The agents observe both

payoff matrices and all messages sent that round. Communication
occurs in turns;4 at each round, one agent is randomly chosen
to speak first, and sends a message (a one-hot vector of length
M = |Am |) to the other agent. That agent observes the message
from the first agent, and can in turn send its ownmessage. After this
exchange, both agents act simultaneously, and receive a reward. We
consider the non-iterated case, where the actions andmessages from
previous rounds are not observed.5 To simplify learning, we use
this reward to update both the agent’s action and communication
policies for that round.

For the experiments in this paper, we consider the general-sum
case, where agents are not strictly cooperative and may have com-
peting objectives (i.e. R1 , R2). Note that this does not mean the
agents are strictly competitive either; the agents have some partial
common interest in the game which permits a degree of coordina-
tion. We vary the size of the payoff matrix from 2x2, to 4x4, to 8x8,
and we provide a communication channel slightly larger than the
number of actions (M = 4, 6, and 10, respectively), so that the agents
can in theory learn flexible communication policies.

4.2 Model and learning algorithm
We train our agents using an adaptation of the REINFORCE algo-
rithm [41]. We represent the agents’ policies using a two-layer feed-
forward network (with parameters θn ), with separate linear output
layers for the action a (θa ), communication c (θc ), and learned base-
line V (θv ). Let θa = {θa ,θn } be all the parameters of the action
network giving rise to an action policy πππθ a , and similarly for θc
and θv (with outputs πππθ c and V ). The objective for each agent can
be written as:

J (θ ) =Jpol (θ
a) + λc Jpol (θ

c) + λent (Jent (θ
a) + Jent (θ

c)) + λv Jv (θ
v),

where θ = {θn ,θa ,θc ,θv }. This can be broken down as follows:
Jpol (θ

a) = Eπθ a [− logπθ a (a |o) · (r − V (o))] is the normal REIN-
FORCE update for the action probabilities, with the learned value
function V (o),o ∈ O as a baseline to reduce the variance. Jpol (θc)
takes the same form, exceptV only uses information available to the
agent at the time it sends its message, which may not include the
message of the other agent (there is no separate value function for
the communication output). This value function is updated using
the squared loss Jv (θv) = (r −V (o))2. The entropy bonus Jent (θ )
gives a small reward based on the entropy of the agent’s policies, as
is common in the RL literature to encourage exploration [7, 35, 42].
Each λi is a real-valued coefficient that we tune separately.

4The exact form of communication is not important for our results; we have observed
similar behaviour when agents speak simultaneously, or if only one agent speaks.
5In Section 5.3 we show that the iterated case where agents (trained using the A2C
algorithm [28]) have a memory of previous interactions produces similar behaviour.

Figure 2: Visualization of example learned policies for two
agents playing 2x2 MCGs (M = 4), averaged over 1000 test
games. Agent 2 learns to clearly signal its next action.

5 RESULTS
We now train deep RL agents to play MCGs. We find that even
though our agents show strong indicators of communicating ac-
cording to speaker consistency and qualitative analysis, this does
not mean that the communication is useful. In fact, we show that
this ‘communication’ occurs even if the messages are scrambled
(replaced by a random message) before being observed.

5.1 Positive signaling with random payoffs
Fixed R setting. It is known that humans are able to use commu-

nication to obtain a higher reward in general-sum matrix games,
such as the Prisoner’s Dilemma [34]. To our knowledge, whether
RL agents can learn to communicate for various MCGs remains
an open question. So, we first conduct an experiment where we
train two REINFORCE agents to play MCGs where the payoff Rt

is fixed for every timestep t . We vary the size of the payoff matrix
and communication channel as described in Section 4.1. We find
experimentally that, for every payoff matrix we tried, the agents
don’t learn to communicate. Instead, when there is partial common
interest, agents collapse to executing a single action (even with
a well-tuned λent ), and in zero-sum games they cycle between
actions without communicating. Intuitively, this makes sense; the
main utility in an agent learning to communicate in this setting is in
reducing the other agent’s uncertainty about their action. Evidently,
when always playing the same payoff it is easier for these naïve
agents to adapt to the actions of the opponent directly, rather than
learning a communication protocol.

Randomized R setting. One way we can increase the uncertainty
each agent has about the other’s action (with the hope of producing
emergent communication) is by randomizing the payoffs at each
round. In our next experiment, we train two agents on an MCG
where, at every round, each entry of the payoff matrix Rti is drawn
from a Gaussian distribution N(µ,σ 2), with µ = 0 and σ 2 = 3.

As shown in Figure 1, in this randomized setting speaker consis-
tency emerges. The SC for the generated messages is significantly
greater than for random messages, which rules out the possibility
that the agents’ messages are simply acting as a random public
signal that the agents are using to condition their actions (as would
be the case in a correlated equilibrium [2]). The CI is also higher
for the generated messages, and the entropy of the message distri-
bution is lower, both indicating that communication has emerged.
We also examine the policies qualitatively in Figure 2, and find that
one agent clearly learns to signal its intended action. One plausible



Payoff min(CIC) Average % games with
Size CIC CIC < 1.02 ·min(CIC)
2x2 1.386 1.408 ± 0.002 89.3 ± 0.6%
4x4 1.792 1.797 ± 0.001 97.9 ± 0.4%
8x8 2.303 2.303 ± 0.001 99.9 ± 0.1%

Table 1: Causal influence values for variousmatrix sizes, cal-
culated over 1000 test games. In all cases, the average CIC is
very close to theminimumCIC (when changing themessage
has no effect on the action distribution).

Experiments 2x2 payoff 4x4 payoff 8x8 payoff
Scrambled c 0.198 ± 0.038 0.487 ± 0.051 0.597 ± 0.091
Separate c net 0.028 ± 0.002 0.124 ± 0.011 0.020 ± 0.019
No c training 0.171 ± 0.033 0.428 ± 0.025 0.686 ± 0.049

Default 0.202 ± 0.040 0.510 ± 0.094 0.541 ± 0.090
Table 2: SC values for the randomized R setting. ‘Scrambled
c’ is when the messages are replaced by a random message
before being observed, ‘Separate c net’ is when the action
and message networks have no shared parameters, and ‘No
c training’ is when λc = 0.

explanation for this phenomenon is that the agents have uncer-
tainty about the intended action of the other agent, and receiving a
high reward in these games requires agents to predict the intended
action of the opponent. An agent can do this in two ways: first by
using the opponent’s payoff matrix (and its own) to determine what
action they are likely to take to achieve a high reward, and second
using the opponent’s message to predict their most likely action.
When the payoff matrix is changing at each time step, predicting
the action of the opponent conditioned solely on the payoff matrix
becomes significantly harder. Thus, the agents seem to learn to
leverage the communication channel to provide additional infor-
mation to the other agent, which is beneficial for both agents when
the game has partial common interest.

5.2 Positive signaling ≠⇒ positive listening
It turns out that, in the randomized R setting, the communication
has very little effect on the agents’ behaviour. We show this in two
ways. First, we examine the trained policies directly to see how
altering the message in various games changes the resulting action
selection, using the CIC metric. We calculate the CIC over 1000 test
games, and show the results in Table 1. We find that, for the vast
majority of games, the message sent by an agent has no effect on
the action of the opponent. Thus, communication is not having a
significant effect on the training process.

Second, we conduct an experiment where we train the agents in
the randomized R setting described above, except we scramble the
messages received by both agents. That is, each agent outputs some
message ci , but we have both agents observe a different commu-
nication c ′i , which has no relation to ci and is drawn uniformly at
random from the set of messages. Thus, there is no possibility for
the agents’ messages to impact the learning whatsoever. However,
as shown in Table 2, the SC between the agents’ action and sent
message (not the random replacement message) is still positive

Figure 3: Activations of the last layer of the policy network
for both the standard architecture (left), and when using a
separate network for communication (right). Calculated on
100 random 2x2 games, and reduced to 3D using PCA.

and indistinguishable from the SC in the regular MCG set-up. This
is convincing evidence that the correlation between actions and
communications does not emerge because the message are useful,
but rather as a byproduct of optimization.

Why is the SC positive? If the emergent communication is not
useful at all, why is the SC positive? To help us understand what the
policies are learning, we train agents according to the randomized R
setting in Section 5.1, and we plot the activations of the last hidden
layer (values in the policy network after the last activation function)
for 100 inputs using principal component analysis (PCA) [33] in Fig-
ure 3. This shows us our policy network’s learned representations
of the data [24]. When using shared features (left), the network
learns to separate the inputs based on which action the agent takes.
This makes sense: in order to take the appropriate action for a given
input, the representations need to be linearly separable at the last
layer of the network, since the action output layer has a linear
decision boundary [16]. This separation of representations does
not occur in the last layer of a separate communication network,
which provides further evidence for this explanation.

This separation of representations makes it easy for a relation-
ship to emerge between an agent’s actions and messages, even if
the parameters of the communication head are completely random;
since the communication output layer also has a linear decision
boundary, it is likely to separate based on intended actions to some
degree. Indeed, we find that SC emerges using our architecture
when the communication parameters are not trained (Table 2).
Further, when we re-train the agents using completely separate net-
works for the actions and messages, we find that the SC completely
disappears (see Table 2), showing that it was indeed our choice of
architecture that resulted in the emergent signaling behaviour.

Why aren’t the agents using the messages? We would imagine
that, even if the correlation between actions and messages emerged
accidentally, that this might still be useful for the agents in selecting
their action. After all, isn’t more information about the opponent
strictly better? To answer this question, we use a set of action classi-
fier probes, related to the linear classifier probes for understanding
hidden layers of neural networks proposed in [1]. Specifically, in



Figure 4: Accuracy in predicting the opponent’s action using action classifier probes, for 2x2 payoffs (left), 4x4 payoffs (center),
and 8x8 payoffs (right). ‘no c’ indicates that the other agent’s communication was not used to predict their action, and ‘from
input’ indicates that a separate network was trained to predict the action (rather than using a linear model on top of the last
hidden layer of the policy network).

Experiments 2x2 payoff 4x4 payoff 8x8 payoff
Scrambled c 0.195 ± 0.059 0.127 ± 0.065 0.208 ± 0.067
Separate c net 0.016± 0.019 0.019 ± 0.011 0.000 ± 0.000

Default 0.169 ± 0.015 0.130 ± 0.055 0.269 ± 0.076
Table 3: Speaker consistency values for different experi-
ments in the iterated MCG case with A2C agents [28].

the randomized R setting, we train a neural network ‘probe’ to
predict the action of the opponent in the current round, based on
either part of the input (using 2-layer MLP probes) or part of the
last hidden layer of the policy network (using linear probes).

The results are shown in Figure 4. We observe that removing the
opponent’s message from the input does not significantly reduce
the accuracy in predicting the opponent’s action, both when using
a probe directly from the input and a probe from the last layer of
the network. This suggests that the information being provided
by the messages is redundant when compared to the information
provided by the payoff matrix itself.

5.3 Results in the iterated MCG setting
The results in our paper are not limited to the non-iterated case.
To show this, we run experiments on an iterated version of our
environment, using the A2C algorithm [28]. We keep the policy
architectures the same, except we give each agent a memory of the
previous 5 rounds (the actions and the messages of both agents),
which is concatenated to the input at each round. We increase the
discount factor γ to 0.9. Changing our REINFORCE algorithm (Eq.
1) to A2C requires changing the way Qπππ is estimated; instead of
using the next reward, we use the n-step return (sum of n next
rewards), with n = 5 [28]. The results are shown in Table 3. We can
see that the same general trend is present: there is positive SC in
the randomized R setting, even when scrambling the messages c;
however, the SC disappears when a different network is used to
produce the messages.

6 DISCUSSION
6.1 How general is this analysis?

Positive signaling without positive listening. An important ques-
tion is whether the behaviours observed in this paper are specific

to training our policy architecture on MCGs, and whether any of
these insights can be applied in other emergent communication
settings. We conjecture that this could indeed happen whenever the
agent’s architecture uses shared feature learning layers between
the action and communication outputs; policies will always learn
representations that separate the inputs based on the desired ac-
tion, and this may lead to spurious correlations between an agent’s
messages and actions. Since sharing features is quite common in RL
(e.g. [19]), it is possible that this becomes an occasional occurrence
in emergent communication work.

However, our claim is not that this specific failure case will be
frequently observed; rather, our goal is to highlight the importance
of understanding what our metrics are measuring, and encourage
emergent communication researchers to explore quantitative met-
rics for measuring the impact that the agents’ communication is
having on their behaviour (i.e. positive listening).

Scaling causal influence. In this paper, we focused on the one-step
approximation to CIC, which only calculates the effect of an agent’s
message (which consists of one symbol) on the other agent’s next
action. While this is sufficient for the non-iterated MCG setting, as
we move to more complex environments we will need to measure
the effect of compositional messages on the long-term behaviour
of all other agents in the environment. In this case, calculating
CIC naïvely using Algorithm 1 will be computationally expensive.
However, we can make this efficient via sampling; rather than iter-
ating over all possible messages and all agents, the CIC could be
calculated by iterating over a small set of messages sampled from
the agent’s communication policy, and evaluating the change in
behaviour over finite time horizon for agents in some neighbour-
hood of the speaking agent. We leave a detailed exploration of this
direction to future work.

6.2 Recommendations
Here we provide recommendations as to when the metrics pre-
sented in Section 3 might be used to either detect whether commu-
nication is emerging, or measure the difference in communication
quality between algorithms. We also propose some other tests that
could be used for this purpose. We summarize our insights in Table
4. In general, no single metric or test will tell the whole story, and
we advise using several of them to illuminate the agents’ behaviour.



Positive signaling Positive listening
Metric Sufficient? Necessary? Sufficient? Necessary? Remarks
SC ✓ ✗ ✗∗ ✗ Not necessary for positive signaling, as there may be no relationship between the

message and subsequent action (can communicate previous observations or actions).
CI ✓ ✗ ✗∗ ✗ More restrictive than SC, punishes formation of synonyms.

H (πππ c ) ✗ ✗ ✗∗ ✗ Useful for diagnosing policy behaviour, but not as a metric.
IC ✗ ✗ ✓ ✗∗ Since it is not state-dependent, IC can miss many positive listening relationships.
MIN ✗ ✗ ✗∗ ✓ If | |W 1

m | | = 0, then no positive listening is present.
∆r ✓ ✗ ✓ ✗ Should always be measured, strong indicator that communication is present. But less

applicable when comparing the communicative behaviour of two policies
Qual. ✓ ✓ ✗∗ ✗ Very useful for understanding agent behaviour. Can come in many forms.
CIC ✗ ✗∗ ✓ ✓ Should always be used to determine effect communication has on agent behaviour.

Table 4: Summary of the metrics analyzed in this paper (∆r = increase in reward when adding a communication channel, Qual.
= qualitative analysis of messages, and MIN = message input norm, detailed in Section 6.2). Asterisks (∗) mark relationships
we have shown experimentally (Sections 5 and 6.2) or via counterexample (Section 3). See text for a more detailed explanation.

Detecting emergent communication. If our goal is to detect whether
communication is emerging at all, showing that adding a communi-
cation channel to a given algorithm leads to improved reward is a
sufficient indicator. However, it may not be necessary; agents may
obtain a similar reward by coordinating via learned convention
[26], rather than communication. In other words, communication
may act as an alternate pathway for optimization. Detecting useful
communication is not as simple as testing if removing the commu-
nication channel at test time leads to a decrease in reward; neural
networks are notoriously sensitive to their input distribution [39],
and a change in this distribution (e.g. setting the messages to 0)
may cause them to fail, even if the messages contain no useful
information. We recommend instead using CIC and other causal
metrics, discussed below.

The variant of SC explored here only measures the one-step
relationship between an agent’s message and subsequent action.
In general, communication could influence the actions of agents
further in the future than a single time step, and the language used
by the agents may be compositional and temporally extended. This
should be taken into account as we move towards more complex
environments. In general, we acknowledge that speaker consistency
is useful from the perspective of detecting positive signaling, but
we reiterate that the observed relationships may be spurious.

There are other aspects of the environment that an agent could
learn to signal about: an agent might send a message to get an-
other agent to perform an action, to share an observation it has
made, or to reveal the sequence of actions it has taken in the past.
New metrics need to be developed to evaluate these possibilities.
We recommend researchers evaluate the quantities that are rel-
evant for their environment or task. The crucial point is that, if
these quantities are measured by observing the agent’s behaviour
without causal intervention, detecting positive listening is difficult,
as evidenced by our experiments in Section 5. If a relationship is
observed between an agent’s messages and some quantity in the
environment, we recommend researchers investigate the causal rela-
tionship between these variables, by intervening to change in turn
the environmental quantity and the agent’s message, and observing
the impact on the other quantity over a number of episodes [9].

One way to tell conclusively that there is no positive listening is
to look at the weight matrix of the first layer of the policy network

(W 1), specifically the part that comes from the message inputs of
the other agents (W 1

m ). If the norm of this part of the weight matrix
(themessage input norm, MIN) is 0, then clearly no positive listening
is present, as the messages from the other agents cannot affect a
given agent’s behaviour. However, just because | |W 1

m | | > 0, does
not mean positive listening is present; in our experiments on MCGs,
we found that this norm was of similar magnitude to the norm of
the weights from the payoff matrix.

Measuring improvement in communication. How should we judge
the quality of a learned communication protocol in a multi-agent
environment? Of course, this depends on the environment and
the objectives of the researcher. Often, researchers may want to
show that their algorithm exhibits a new kind of communication
(e.g. verbal agreements, compositional language, or deception). In
these cases, it makes sense to use metrics targeted at measuring the
phenomenon in question. If the goal is to develop compositional
communication, as has been the case for several recent emergent
communication papers [3, 17, 29], then it is perhaps sufficient to
evaluate using metrics designed to measure compositionality, such
as context independence [3]. These metrics will have to be devel-
oped on a case-by-case basis, depending on the type of communi-
cation under investigation.

There may also be cases where we simply want to show that
the learned communication protocol for a proposed algorithm has
a larger effect on agent behaviour than for previous algorithms.
Here, a variant of CIC should be used that measures the impact of
communication on the long-term behaviour of the other agents.
Another test one could run is measuring the difference in reward
for each algorithm with and without communication. This should
be done by training each algorithm from scratch with and without
communication, rather than removing the communication channel
at test time, to avoid the problems of distributional shift mentioned
earlier in this section. Of course, since these metrics may be ex-
ploitable, it is important to benchmark against a range of metrics
and tests to avoid overfitting.
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