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ABSTRACT
Computing or approximating the convex hull of a dataset
plays a key role in a wide range of applications, includ-
ing economics, statistics, and physics, to name just a few.
However, convex hull computation and approximation is
exponentially complex in terms of both memory and com-
putation as the ambient space dimension increases. In this
paper, we propose DeepHull, a new convex hull approxima-
tion algorithm based on convex deep networks (DNs) with
continuous piecewise-affine nonlinearities and nonnegative
weights. The key idea is that binary classification between
true data samples and adversarially generated samples with
such a DN naturally induces a polytope decision boundary
that approximates the true data convex hull. A range of ex-
ploratory experiments demonstrates that DeepHull efficiently
produces a meaningful convex hull approximation, even in a
high-dimensional ambient space.

Index Terms— convex hull, approximation, input convex
deep network, generative adversarial network

1. INTRODUCTION

Convex hulls are important geometrical objects that find ap-
plications in fields ranging from economics [1] to statistics
[2–4] and optimization [5, 6]. Given a dataset X of N sam-
ples in a D-dimensional ambient space, the convex hull is
the smallest polytope that contains all of the data samples; it
can easily be shown that the vertices of the convex hull corre-
spond to some of the samples [7, 8]. Two crucial challenges
arise: (i) how to efficiently compute the convex hull, and (ii)
how to efficiently store the convex hull. These tasks are par-
ticularly challenging when the data is not organized on a low-
dimensional affine subspace of dimension d � D. In fact,
as d increases, the number of faces and vertices describing
the convex hull polytope grows exponentially. This exponen-
tial complexity holds whether one considers the H-form of
the polytope (in term of its supporting hyperplanes) or the V-
form of the polytope (in term of its vertices).
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The computational complications that emerge with in-
creasing dimension d have led the combinatorial geometry
community to specialize the convex hull computation task
to specific cases. For example, highly efficient algorithms
for planar data have been developed about four decades
ago [9–11]. Among those methods lies the popular Quick-
hull algorithm originally developed for d = 2, 3 [12, 13]
with asymptotic complexity O(N log(N)), which was then
extended to arbitrary dimensions [14]. More recently, spe-
cialized GPU implementations have been developed for
d = 3 [15–17].

Beyond these specialized algorithms, exact convex hull
computation remains an important open problem in high-
dimensional spaces. Consequently, a parallel line of research
has developed focusing on convex hull approximation. One
illustrative approximation method takes the following form.
Instead of creating the hull’s polytope faces based on data
selection (via the vertices description of each face), one first
starts with a set of hyperplanes (which will serve as the faces
of the approximate convex hull) and then refines the locations
of the hyperplanes such that the intersection of their half-
spaces produces a good convex hull approximation [18–20].
An inspiration for our work noted that this hyperplane learn-
ing task can be cast as a two-layer deep network (DN) train-
ing task [21]. It is easy to show that K hyperplanes can be
formed from a K × D weight matrix in the DN’s first layer.
That layer’s positive outputs (thanks to the application of
a ReLU thresholding activation function u 7→ max(u, 0)),
project data samples applied to the input of the DN onto each
half-space. This 2-layer DN formulation is thus an efficient
half-space projection formulation that can be employed in
any of the developed convex hull approximation methods

In this paper, we go one-step further by not only using
DNs as a means to reformulate the convex hull approxima-
tion problem, but also leveraging more complicated DN ar-
chitectures (DNs with varying number of layers and units
per layer) as a means to counter the exponential complexity
in high-dimensional spaces. Our first key contribution is a
proof that states for any DN architecture f : RD 7→ R us-
ing (i) continuous piecewise-affine (CPA) nonlinearities and
(ii) nonnegative weights in all but their first layers, the set
{f(x) = c|x ∈ RD} defines the boundary of a polytope,
i.e., it produces a convex hull approximation. Our second key



contribution is to formalize an optimization problem that en-
ables us to learn the parameters of DNs following the above
constraints such that {f(x) = c|x ∈ RD} becomes the ap-
proximated convex hull for a given dataset X . Thanks to the
approximation power of DNs which grows exponentially with
depth [22–26], we will be able to leverage our formulation
to produce efficient approximations even in high-dimensional
spaces. Our third key contribution is a relaxed form of the
above optimization problem that is tractable regardless of the
dataset size or space dimension. In fact, our relaxed form falls
back to a binary classification problem in which one discrim-
inates between the true data samples and adversarial samples
that lie within and outside the convex hull approximation,
respectively. The goal of this paper is to demonstrate that
convex hull approximation, even in high-dimensional spaces,
can be tackled from a carefully designed binary classification
deep learning task.

Our results in this paper, including various visualiza-
tions and quantitative approximation results, demonstrate
the promise of using DN-based methods for efficient and
effective convex hull approximation, especially in high-
dimensional space. We leave it to future work to develop
an implementation that can be applied universally. We dub
our general approach DeepHull. In the remainder of the
paper, we first develop our approach to convex hull approx-
imation of a dataset X via convex DNs (Sec. 2). Then, we
demonstrate how convex DNs can be trained on real data via
a binary classification problem and an adversarial sampler
(Sec. 3). We empirically validate our method on a range of
datasets (Sec. 4). We conclude by discussing the limitations
of DeepHull and future research directions (Sec. 5).

2. DEEPHULL: FROM DEEP NETWORKS TO
CONVEX HULLS

In this section, we develop DeepHull, a new convex hull ap-
proximation method that relies on two ingredients: (i) a con-
vex DN f using continuous piecewise-affine (CPA) nonlin-
earities and nonnegative weights for all but its first layer; and
(ii) a learned adversarial data sampler that generates positive
samples to train f to discriminate against the true data sam-
ples (negative samples). We first introduce some notation to
ease our development.

Notations. We denote the DN input-output mapping as
f : RD 7→ R. In this paper, we will consider only DNs
with univariate output for a reason that will become clear in
the next section. This DN can be further written as a com-
position of L layer mappings f = (f (L) ◦ · · · ◦ f (1)) where
f (`) : RD(`) 7→ RD(`+1)

. At each layer `, the input-output
mapping takes the form f (`)(v) = σ(`)(W (`)v + b(`)) where
σ is a pointwise activation function, W (`) is a weight ma-
trix of dimensions D(`+1) × D(`), and b(`) is a bias vector
of length D(`+1). W (`) could additionally take specific con-
straints, such as a circulant structure that depends on the type

of layer.
Deep Network based Convex Hull Formulation. Recall

that DeepHull is designed to work with DNs that fulfill some
specific constraints. These constraints result in DNs with a
special property called input convex, which we formulate in
Prop. 1.

Proposition 1 (Input Convex DNs [23, 24, 27]) A DN is in-
put convex if it obeys the following constraints

1. the activation functions σ(`),∀` are CPA functions; the
inner (i.e. all but the first) activation functions σ(`), ` =
2, . . . , L are increasing functions (e.g., leaky-ReLU);

2. the inner layer weight matrices W (`), ` = 2, . . . , L are
nonnegative, the first slope matrix W (1) is arbitrary

that is, the DN is a convex mapping with respect to its input.
The above result holds for strict convexity by replacing

the increasing activation with a strictly increasing activation
and the nonnegative slope matrices with strictly positive slope
matrices. Input convex DNs have been applied for control
problems [27], where the convexity property enabled the sim-
plification of the gradient based optimization of the DN in-
put. DeepHull relies heavily on input convex DNs that em-
ploy CPA nonlinearities for a reason that is made clear in the
following formal result.
Proposition 2 For any architecture and parameters of an in-
put convex DN f , the set {f(x) = c : x ∈ RD} defines the
boundary of a polytope. The sets {f(x) < c|x ∈ RD} and
{f(x) > c|x ∈ RD} are the interior and exterior of the poly-
tope, respectively.

Input convex DNs with CPA nonlinearities thus have the
capability to approximate the convex hull of a dataset X .
This is done by finding the parameters θ of the DN such that
the DN-induced polytope contains all the data samples while
minimizing its volume as in

min
θ,c

volume minimization︷ ︸︸ ︷
Vol({f(x) < c : x ∈ RD})

s.t. X ⊂ {f(x) ≤ c : x ∈ RD}︸ ︷︷ ︸
dataset inclusion

. (1)

Theorem 1 Given a DN f with enough layers/units, all the
local minima of (1) are global minimia and result in {f(x) =
c : x ∈ RD} being the exact convex hull of X .
The proof of the Theorem 1 follows easily by considering f to
be able to represent decision boundaries with as many piece-
wise linear regions as needed for the convex hull of X . In
that setting, minimizing (1) simply amounts in adapting the
decision boundary such that is perfectly matches with the true
data convex hull. Of course, this optimization problem is not
practical, since Vol({f(x) < c : x ∈ RD}) would require a
tremendous amount of computation to obtain. We thus pro-
pose a training method to obtain f and its parameters θ, c on
a relaxed optimization problem in the next section.



Fig. 1. DeepHull examples in 2-
dimensions of datasets obtained by sam-
pling from 1 to 5 Gaussians, 1 to 2 moons
and uniform over a pentagon. The top two
rows demonstrate the exact convex hull in
black dashed line and our approximation in
purple when using the loss from (5) with an
hyper-parameter value of λ = 1. The bot-
tom two rows demonstrate the exact same
setting but now with a larger hyperparame-
ter λ = 1.5. In both cases the approxima-
tion captures the geometry of the data; the
value of λ controls the tightness of the ap-
proximation, potentially at the cost of dis-
regarding a few of the dataset outliers when
a tighter approximation for the majority of
the remaining samples is possible. We do
not consider automatic selection of λ in this
study, however it is clear that one could in-
crease/decrease its value during training to
obtain the greatest possible value of λ that
does not cause data samples to exit the con-
vex hull approximation.

Fig. 2. Visualization of how the decision boundary changes during training at the 0, 25, 50, 75, 100, 125, 300, 1500, and 5000
epochs. Our model converges quickly gives a good approximation even at early stages of the training.

Table 1. Precision and recall of DeepHull’s approximation.

D=3 D=4 D=5 D=6 D=7

P R P R P R P R P R

92.1 92.0 85.8 85.5 79.2 78.4 79.2 79.2 77.8 77.8

3. DEEPHULL FITTING: BINARY
CLASSIFICATION

We demonstrated in the last section how by applying simple
constraints on any given DN architecture one could obtain
an input convex DN form which level sets define polytope
boundaries. Given that approximator, we train it such that
the polytope boundaries match as closely as possible to true
data convex hull. We now construct a binary classification
problem to solve this task efficiently.

Relaxed Dataset Inclusion Loss. From Sec. 2, it is clear
that the convex hull approximator, f , must fulfill f(x) <
c,∀x ∈ X where we recall that X is the training set, i.e.,
the set of samples for which we try to approximate the con-
vex hull. For the remaining of this paper, we consider the last

layer to have linear activation function (σ(L)(u) = u, and we
incorporate the constant c as part of the last layer bias as in
b(L) ← b(L) − c. Given that parametrization, one differen-
tiable loss that can be used to enforce data inclusion is given
by

Lpos(x) = − log (1− sigmoid(f(x))) . (2)

As a result, as 1
N

∑N
n=1 Lpos(x) → 0 as the approximated

convex hull ({f(x) < 0 : x ∈ RD}) contains all the training
data. Minimizing (2) is however not enough since it does
not enforce tightness of the approximation, i.e., the convex
hull approximation can cover more and more space and still
minimize (2).

Relaxed Volume Minimization Loss. We also intro-
duce the following relaxed version of the volume minimiza-
tion term from (1) as

Lneg(z) = − log (sigmoid(f(z))) , (3)

and obtain the following total loss

L =
1

N

N∑
n=1

Lpos(x) + λEz∼U(RD) [Lneg(z)] , (4)



Fig. 3. Com-
putation time
for the proposed
DeepHull ap-
proximation
algorithm and for
exact convex hull
computation

where λ is an hyperparameter controlling the tightness. As
samples z are sampled from the ambiant space, as the DN
decision boundary will be refined to contain the samples X ,
but as few as possible of anything else in order to minimize
the second term. If λ is too large, however, then the DN will
start disregarding some of the samples inX while on the other
hand if λ is too small, then the optimal tightness might not be
achieved. We will perform an ablation study of this parameter
in Sec. 4.

We propose one last alteration to (4) to further improve its
efficiency in high-dimensional settings. Note that we do not
need to sample uniformly in RD to ensure tightness. Instead,
we only need to be able to sample around the boundary of the
current convex hull approximation. This is also true in term
of gradient dynamics as samples z position far away from the
current convex hull boundary approximation will have van-
ishing gradient from (2) and thus will not impact the update
of the DN weights. Consequently, we propose our final loss
function

L =

dataset inclusion︷ ︸︸ ︷
1

N

N∑
n=1

Lpos(x) +

tightness loss around
approximated boundary︷ ︸︸ ︷
λEz∼G [Lneg(z)]

+ Ez∼U(Rd [sigmoid(f(G(z)))]︸ ︷︷ ︸
adversarial training of distribution G

, (5)

4. EXPERIMENTAL VALIDATION

We now report on a series of carefully controlled experiments
that validate and illustrate the behavior of DeepHull.
Role of λ and Training Dynamics. We first propose in
Fig. 1 a collection of 2-dimensional datasets where we study
the impact of the hyper-parameter λ (recall (5)). The role
of this parameter is to ensure that the convex hull approxi-
mation is not degenerate, as in, the approximation includes
the entire space. If this parameter is too large, however, the
approximation will start disregarding some of the samples if
it can allow to have a tighter approximation for the majority
of the remaining samples. While out of the scope of this pa-
per, this could open the door to further application in convex
hull approximation in the presence of outliers. We depict in
Fig. 2 how the approximation is progressively built through
the training updates of the DN. We can see how in the first
stages the approximation is degenerate around 0. This is be-
cause we chose to keep the DN initialization as done in usual

classification tasks, with b(L) = 0. Once the approxima-
tion expands to include the training samples, we see that the
tightness loss term (recall (3)) takes effect and prevents the
convex hull to keep expanding beyond that point. We believe
that one important question is to design DN initialization of
the parameters W (`), b(`),∀` that will provide more adapted
initial guess on the convex hull approximation.
DeepHull in Higher Dimensions. We also validate our
approach for higher dimensions and demonstrate that our
approach has a stable computational time while achieving
reasonable convex hull approximation. We randomly sam-
ple 100,000 points from a isotropic multivariate Gaussian
N (1,Σ) where 1 ∈ RD and Σ ∈ RD×D is a diagonal matrix
with 0.01 on the diagonal. We vary D ∈ {3, 4, 5, 6, 7, 8, 9}
and measure the goodness of the DeepHull approximation
and compares DeepHull’s computation time with the exact
convex hull method. Going beyond D = 9 makes the ex-
act convex hull computation highly prohibitive. Because
it is impossible to visualize a convex hull in high dimen-
sions, we compute both precision and recall to measure the
tightness and coverage of the approximation, respectively,
by uniformly sampling 500,000 points in the D-dimensional
space, computing the number of points in the ground-truth
convex hull [14], and the number of points in the approxi-
mated convex hull. Table 1 shows DeepHull’s convex hull
approximation performance for D ∈ {3, 4, 5, 6, 7}. We omit
D ∈ {8, 9} because computing whether a point belongs to a
convex hull becomes computationally infeasible for D > 7
on our hardware. We can see that DeepHull maintains reason-
able performance, indicating that the approximation is tight
and covers most of the ground-truth hull. In Fig. 3 we com-
pare the DeepHull’s computation time with the exact method.
We observe that as D increases, the exact method requires
nearly exponentially more compute time, while DeepHull’s
compute time remains nearly constant. This observation is
particularly appealing in practice, because DeepHull gives
an efficient and decent approximation to computing convex
hull, which becomes computationally infeasible for classical,
exact methods.

5. CONCLUSIONS

We have opened the door to the potential use of DNs for the
important but expensive task of convex hull approximation.
Our preliminary results with DeepHull demonstrate the va-
lidity of the approach while opening many future avenues
to improve those results and obtain an approximation solu-
tion with theoretical guarantees. Future research directions
include better-suited DN parameter initialization, adaptive
hyper-parameter (λ) tuning, application to convex hull ap-
proximation in the presence of outliers, and approximation
error guarantees between the produced convex hull and the
ground truth one.
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