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Abstract
Spoken Question Answering (SQA) is to find the answer from
a spoken document given a question, which is crucial for per-
sonal assistants when replying to the queries from the users.
Existing SQA methods all rely on Automatic Speech Recogni-
tion (ASR) transcripts. Not only does ASR need to be trained
with massive annotated data that are time and cost-prohibitive
to collect for low-resourced languages, but more importantly,
very often the answers to the questions include name entities
or out-of-vocabulary words that cannot be recognized correctly.
Also, ASR aims to minimize recognition errors equally over all
words, including many function words irrelevant to the SQA
task. Therefore, SQA without ASR transcripts (textless) is al-
ways highly desired, although known to be very difficult.

This work proposes Discrete Spoken Unit Adaptive Learning
(DUAL), leveraging unlabeled data for pre-training and fine-
tuned by the SQA downstream task. The time intervals of spoken
answers can be directly predicted from spoken documents. We
also release a new SQA benchmark corpus, NMSQA, for data
with more realistic scenarios. We empirically showed that DUAL
yields results comparable to those obtained by cascading ASR
and text QA model and robust to real-world data.1.
Index Terms: Spoken Question Answering, Textless NLP, Self-
Supervised Representation

1. Introduction
Spoken Question Answering (SQA) aims to find the answer from
a spoken document given a question in either text or spoken
form. SQA is crucial for personal assistants when replying
to the questions from the user’s spoken queries. Unlike many
spoken language understanding tasks such as speech translation
or intent classification, in which the required understanding of
semantics is primarily on utterance level, the SQA task requires
sophisticated comprehension and reasoning over much longer
audio content. In addition to understanding the question and
comprehending the global information in the audio context, it
also needs to catch the fine-grained information to precisely
locate the answer span out of the long audio context. Thus, SQA
is known to be a very challenging task.

The conventional SQA system consists of the cascade of
an Automatic Speech Recognition (ASR) engine followed by
a text-trained QA (TQA) model. However, speech recognition
errors naturally cause catastrophic problems to the TQA. [1],

1Dataset is collected and released by NTU. The dataset and source
code is available at: https://github.com/DanielLin94144/
DUAL-textless-SQA

Figure 1: The proposed DUAL framework for textless (ASR
transcript-free) SQA. All the passages, questions, and answers
are in spoken form. The time intervals of the spoken answers can
be extracted from the spoken passage without ASR transcripts.

and several works [2, 3, 4, 5] intended to alleviate such problems
by knowledge distillation, including adapting the TQA model
to be more robust against recognition errors. Some other ef-
forts [6, 7] exploited paired speech and transcripts to construct
a cross-modal speech and text pre-trained model with aligned
semantics fine-tuned end-to-end, in which the speech recogni-
tion error problems can be mitigated to some degree, and SQA
performance improved.

However, ASR errors remain to be a major problem for SQA
tasks. The correct answers to the questions often include name
entities or out-of-vocabulary (OOV) words that can never be
recognized. The key information is thus inevitably lost when the
audio signals are transformed into transcripts with errors, and
there is no way to recover them in the following TQA stage. Also,
the ASR engine was trained by minimizing the word error rate
(WER), which was evaluated equally overall words including
many function words irrelevant to the SQA task. So the cascade
of two stages (ASR and TQA) individually optimized with two
different criteria cannot perform as well as a single-stage global
performance goal. So it is highly desired to capture the informa-
tion directly, rather than from the ASR transcripts, and obtain
overall performance not constrained by ASR accuracies.

Also, ASR engines have to be trained with vast quanti-
ties of human-annotated audio-transcript data, which are time-
consuming and expensive to collect for the thousands of low-
resourced languages over the world, when low and robust enough
error rates are considered. Furthermore, there exist many lan-
guages without written form worldwide. All the above imply

https://github.com/DanielLin94144/DUAL-textless-SQA
https://github.com/DanielLin94144/DUAL-textless-SQA


technologies for ASR transcript-free (textless) SQA are highly
desired although challenging.

In this work, we propose the first known textless (i.e., ASR
transcript-free) SQA framework as in Figure 1. Inspired by the
concept of Textless NLP [8, 9, 10, 11, 12, 13], which encodes
speech signals into discrete units for modeling, and the pre-
trained language models transferability of [14, 15, 16, 17, 18],
we propose Discrete Unit Adaptive Learning (DUAL) for textless
SQA. DUAL leverages pre-trained models to obtain quantized,
length-condensed speech representations from audio signals and
further adapts the pre-trained language model to achieve compet-
itive SQA results without any ASR transcripts. The time span
of the answer can be directly located from the audio context and
played to the user, so the extracted answers do not suffer from
speech recognition errors or out-of-vocabulary (OOV) problems
because NO ASR is performed.

Furthermore, despite the increasing efforts to build SQA
benchmark corpora [1, 19, 20, 21, 22, 23, 24], there is still a lack
of natural and large-scale SQA datasets featuring real-world sce-
narios. For this purpose, we release a novel benchmark corpus,
Natural Multi-speaker Spoken Question Answering (NMSQA).
In this corpus, the test set was produced by human speakers,
and the training and validation set were synthesized from Ama-
zon Polly TTS service with industrial-grade quality. We also
assign two different speakers to read the pairs of passage and
question, examining whether our textless SQA system is speaker-
independent.

The contributions of this paper are summarized below:

• We propose DUAL as the first known framework for text-
less SQA, not utilizing ASR transcripts and not suffering
from ASR errors.

• We open-source the NMSQA dataset for SQA in real-
world scenarios.

• DUAL achieved performance competitive to those ob-
tained by cascading ASR and TQA, and significantly
better when the word error rate exceeded 30 %.

• DUAL is more robust and retains the performance for the
real-speaker testing set, which was not easily achievable
for the cascade approach.

2. Method
2.1. Problem Formulation

The form of SQA dataset D is {q,p, a}, corresponding to the
question q, passage p, and answer a, all in spoken form in this
work. Our goal is to extract the starting and ending time (ts, te),
denoted as the answer span a, from the spoken passage p given
the spoken question q.

2.2. DUAL framework

The DUAL framework consists of the Speech Content Encoder
(SCE) and Pre-trained Language Model (PLM) as in Figure 2
and introduced below.

2.2.1. Speech Content Encoder (SCE)

The SCE transforms the question-passage audio waveform
(q,p) pair to sequences of discrete units (zq, zp).
Self-supervised Speech Representation: A self-supervised
speech pre-trained model can extract informative feature
representations. We adopted the state-of-the-art self-supervised

Figure 2: The overview of the DUAL framework.

speech pre-trained model HuBERT [25] for feature extraction2.
HuBERT was trained by masked prediction objectives similar
to BERT [27]. The prediction target was the K-means clustered
index for speech signal processing features, e.g., Mel-frequency
cepstral coefficients (MFCC) initially, and then learned latent
representations after clustering in subsequent iterations. We
utilized the HuBERT-Large model containing 24 transformer
encoder layers pre-trained on LibriLight 60k hour dataset.
HuBERT encoded the raw waveform into frame-level 1024
dimension features. Each frame was equivalent to 20 ms.
Quantization: The goal of quantization is to discretize the
speech features so they can be fed into the pre-trained language
model. K-means clustering was performed over the layer-wise
representations of HuBERT-Large. We used LibriSpeech [28]
100-hour subset to train the K-means clustering model, and the
number of clusters K is 64, 128, and 512. After clustering, the
discrete units are represented by the clustering indices. The repet-
itive discrete units are merged to shorten the sequence length and
remove the duration information, forming the dense discrete unit
sequence of the question and passage (zq, zp). We recorded the
duration of duplication number of repetitions as cq and cp for
zq and zp, so we can recover the frame-level indices to convert
the answer span back to time interval at the inference stage.

2.2.2. Pre-trained Language Model (PLM)

The learning model is a BERT-like transformer encoder model.
The input was the discrete unit sequences of the spoken questions
and passages (zq, zp). Because SQA is a very challenging task
to train from scratch, we leveraged the cross-disciplinary transfer-
ability of PLM [14, 15, 16, 17, 18] to help the SQA downstream
task. Specifically, we used the weights of text PLM for network
initialization, and randomly assigned the text pre-trained input
embeddings for discrete units. The different random embedding
assignments did not significantly affect the final performance.
The input of PLM was the concatenated discrete unit sequences
of the question and passage pair (zq, zp), and the target was the
start and end time (ys, ye) after the repetitions were reproduced.

2We used the open-source S3PRL [26] toolkit to extract the represen-
tations of the HuBERT-Large model.



Table 1: Word Error Rates on different datasets for the two open-
sourced ASR models used in the baseline (cascade).

ASR LS test-clean NMSQA dev NMSQA test

SB 3.1 15.6 61.7
W2v2 1.9 10.5 11.3

Because the length of a discrete unit sequence is much longer
than the corresponding text, and the duration of a spoken passage
itself is long, the standard maximal length of PLM (typically
512) is not enough in our case. As a result, we leveraged Long-
former [29] to model the long (zq, zp), which is a BERT-like
model for long documents, pre-trained on the unlabeled long text
documents and optimized for training efficiency by sparse atten-
tion mechanism, such as local and global attention, to support
up to 4096 tokens.

2.2.3. Training Objective
The training objective is similar to the canonical QA fine-tuning
in TQA. A randomly initialized linear layer is added on the top to
predict the start and end time index. As the gradient flow shown
in Figure 2, θ represents the trainable weights of the model,
cp = [cp1, cp2, ..., cpn] is the repetition of every discrete units
zpi in zp = [zp1, zp2, ..., zpn]. (ts, te) is the ground truth start
and end time in second, and (ys, ye) is the converted the version
on the index level. The overall training objective was to minimize
the loss L(θ) as the sum of the negative log probabilities of the
true start and end indices on all the examples,

−
∑

log P (ys|zq, zp; θ) + log P (ye|zq, zp; θ).

At the inference stage, we converted the predicted start and
end indices (ŷs, ŷe) to the frame level by cp above, and finally
transformed them to the time level (t̂s, t̂e).

3. Experiments
3.1. Corpus Description

We developed and released here a new listening comprehension
task named Natural Multi-speaker Spoken Question Answer-
ing (NMSQA). The train and dev set are the spoken version of
the SQuAD v1.1 dataset, one of the largest QA datasets from
Wikipedia paragraphs and human-written questions. We ran-
domly split the SQuAD dev set into disjoint SQuAD-dev-1 and
SQuAD-dev-2 for the NMSQA dev set and test set. The Amazon
Polly Text-to-Speech service3 was used for generating natural
speech. We randomly assigned 12 TTS speakers and ensured that
different speakers were used in producing each spoken document-
question pair. Overall, there are 297.18 / 37.61 hours of audio
for the train/dev set. Moreover, in order to have a realistic test
set, 60 human speakers (30 male / 30 female) were requested
to produce the SQuAD-dev-2 naturally. This test set included
2.67 hours of audio. The answer intervals were annotated by
Montreal Force Aligner [30].

3.2. Evaluation

Since the output target here is the temporal span of the spoken
answer, following the evaluation metrics previously proposed by
[1, 6], we adopted the Frame-level F1 score (FF1) and Audio
Overlapping Score (AOS) to evaluate the performance based on
the predicted time intervals. Higher FF1 and AOS scores imply
more overlap between the predicted and ground truth spans.

3https://aws.amazon.com/tw/polly/

Table 2: The performance of the proposed (DUAL) and base-
line (cascade) approaches on the NMSQA dev and test sets.

“Longformer†” indicates the Longformer model fine-tuned on
clean text SQuAD-v1.1, while the normal “Longformer” was
only pre-trained by unlabeled text data. The number after Hu-
BERT (64, 128, 512) are numbers of clusters. “synth” and “hu-
man” represent the synthesized and human speech respectively.

Input Model dev (synth) test (human)
FF1 AOS FF1 AOS

Baseline - Cascade (with ASR transcripts)
SB Longformer† 56.7 49.7 17.3 15.3
W2v2 Longformer† 65.7 58.3 64.2 57.4

Proposed - DUAL (without ASR transcripts)
HuBERT-64 Longformer 47.8 42.2 39.0 33.0
HuBERT-128 Longformer 54.2 48.5 55.9 49.1
HuBERT-512 Longformer 55.0 49.6 17.3 12.5

3.3. Baseline - Cascade (ASR plus TQA)

The conventional SQA approach cascading an ASR model and
a TQA model was taken as the baseline to be compared here.
Two open-sourced pre-trained ASR models were used in the
first stage, one from Speechbrain [31]4, referred to as SB, the
other the Wave2vec 2.0-large with self-training fine-tuning [32]5,
referred to as W2v2. The Word Error Rates of them on different
speech datasets are listed in Table 1. Both SB and W2v2 utilized
LibriSpeech [28] 960-hour dataset as the supervised training
data; however, we see in Table 1 W2v2 was much more robust
than SB on the NMSQA test set, obviously because it leveraged
60k hrs of unlabeled data and the self-training procedure.

The TQA model, or the second stage of the baseline, is a
Longformer-based model fine-tuned on SQuAD v1.1, denoted
as Longformer† below. We used the online available model
checkpoint6 for TQA inference. The Longformer† obtained 91.5
F1 score and 85.1 EM (Exact Match) score on the text SQuAD
v1.1 dataset. For the evaluation metrics used here, we adopted
force alignment [30] to obtain the time intervals of the spoken
answers in seconds.

3.4. Implementation Details of DUAL

We use the official Longformer-base model7 as the PLM. The
learning rate is searched in [3e-5, 5e-5, 7e-5, 1e-4], and we
select models with the best performance on the validation set.
The learning rate warmup step is 500, growing up linearly to
the peak value and then linearly decaying to 0. All the DUAL
experiments use 4 Tesla V100s with an overall 128 batch size for
up to 5000 training steps. If the length of discrete units (zq, zp)
input exceeds 4096, we truncate the passage zp.

4. Results
Encouraging results are reported here. Noting that the proposed
(DUAL) approach achieves performance comparable to baselines
(cascade), which require large ASR parallel data.

4https://huggingface.co/speechbrain/asr-crdnn-rnnlm-librispeech
5https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self
6https://huggingface.co/valhalla/longformer-base-4096-finetuned-

squadv1
7https://huggingface.co/allenai/longformer-base-4096



4.1. “dev” set for synthesized speech

The experimental results are shown in Table 2. We first consider
results for synthesized speech on the “dev” set, whose style is
very similar to the training set, in the first column.

The top section of Table 2 is for the baseline (cascade) ap-
proach with ASR transcripts. We see ASR with W2v2 offered
much better performance than that with SB (65.7 vs. 56.7 for
FF1), obviously due to its lower recognition error in Table 1.
On the other hand, for the proposed (DUAL) approach without
ASR transcripts in the lower section of Table 2, we see DUAL
achieved good FF1 scores (55.0, 54.2, 47.8 respectively for 512,
128, 64 clusters). Here, “HuBERT-K” denotes the input of
DUAL is the clustering results from HuBERT-Large 22th layer
representations with K clusters. These numbers are competitive
to those in the top section for the baseline, verifying DUAL can
learn semantics in the audio signals and find the answers almost
as good as the case where ASR transcripts were available, though
transcripts were not available at all. The relatively weak per-
formance for 64 clusters suggested that the too small codebook
size may lose important fine-grained content information. The
situation can be improved significantly using larger codebook
sizes (128 or 512 clusters).

4.2. “test” set for human speakers

The experimental results on a more realistic scenario of human
speech (“test”) are shown in the right column of Table 2. We
observe that for the baseline (cascade) approach using SB for
ASR on the top section, the performance dropped sharply due
to the very high WER (61.7 in Table 2) on the human speech,
while using the W2v2 for ASR model offered more robust results
similar to the “dev” set. The result indicated that the performance
of the baseline (cascade) approach relied heavily on the accuracy
and robustness of ASR.

On the other hand, in the lower section of Table 2, we see
the proposed (DUAL) approach could retain outstanding per-
formance when K = 128, showing remarkable robustness of
the approach for realistic human speech (55.9 of FF1 for K =
128). However, the performance dropped drastically for K =
512 (17.3 of FF1). The observation suggested that the cluster
number played a crucial role in performance. We surmise that
128 clusters of quantization provide a smooth transformation
from the machine-synthesized speech used in training to the
human-speech test set. In contrast, 512 clusters may retain too
many details that differentiate synthesized and human speech.
This finding inspires more research to understand what makes
textless SQA/NLP work or not.

5. Analysis and Discussion
Ablation study for embedding assignment: Table 3 shows the
ablation study regarding how the discrete units should be as-
signed to the pre-trained embeddings, as shown in the middle of
Figure 2. In this table on the top two rows (“Most frequent” and
“Least frequent”), we randomly assigned the K (128) discrete
units to the pre-trained embedding of the top-K and the least-K
frequent vocabularies, where the vocabulary frequency was de-
termined by Byte-Pair Encoding (BPE) on unlabeled text data.
“Random” refers to randomly selecting pre-trained input embed-
ding regardless of the frequency. “Re-init” denotes re-initializing
the input embedding by a normal distribution. ”Scratch” means
the Longformer model was not pre-trained on the unlabeled text
data. The results in Table 3 indicate that randomly assigning the
pre-trained input embeddings for discrete units did not result in

Table 3: Ablation study on embedding assignment. All experi-
ments used the HuBERT-128 setting. Performance was measured
on the NMSQA dev set.

Embedding Assignment FF1 AOS

Most frequent 54.2 48.5
Least frequent 46.9 41.7
Random 51.7 46.2
Re-init 8.9 7.2

Scratch (baseline) 6.1 4.9

Figure 3: Frame-level F1 (FF1) scores for DUAL and cascade
approach (SB), evaluated on the small groups of full NMSQA
dev set at different levels of ASR (SB) WER.

very different performance, although the “Most frequent” initial-
ization offered the best results, which are those listed in Table 2.
Performance for Poor ASR Accuracy: We compared the per-
formance of the baseline cascade approach (SB for ASR which
gave poor accuracy) and the proposed DUAL with HuBERT-128
for different levels of WER. Specifically, we bucketize the NM-
SQA dev set into subsets based on the WER (from 0% to 70%)
obtained with ASR (SB). In Figure 3, we observe that for the
baseline (cascade) approach, the FF1 score dropped significantly
and continuously as the WER increased. This is the typical
phenomenon of recognition error propagation. In contrast, the
proposed (DUAL) attained very similar FF1 scores for different
levels of WER, even when WER went up to 70 %. Because
there is no ASR in DUAL and no ASR transcripts were used,
there was actually no correlation between WER and the FF1
score. The cascade approach outperformed DUAL when the
WER was below 30%,; but DUAL became much higher when
WER exceeded 30%. Since the content of SQuAD (and thus
NMSQA) is based on Wikipedia, it includes many words that are
name entities, abbreviations, and OOV, which led to recognition
errors. Many of these words are part of the answers. DUAL
handle such scenario much better than cascade approaches.

6. Conclusion
We propose DUAL, the first textless (i.e., ASR transcript-free)
SQA framework in this work. This framework only utilizes
unlabeled speech and text data for pre-training and fine-tuning
by the spoken questions, passages, and answer time intervals.
DUAL directly predicts the answer time span without text su-
pervision or acoustic word boundaries. Furthermore, we release
NMSQA, a new natural, multi-speaker SQA benchmark corpus,
which contains human speakers for the test set and large-scaled
synthesized data for the training and development sets. The
experiments showed that DUAL yields competitive results with
the conventional cascade approach using ASR transcripts and is
robust to real-world scenarios on NMSQA.
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