
Riemannian Continuous Normalizing Flows

Emile Mathieu†∗, Maximilian Nickel‡
emile.mathieu@stats.ox.ac.uk, maxn@fb.com
† Department of Statistics, University of Oxford, UK

‡ Facebook Artificial Intelligence Research, New York, USA

Abstract

Normalizing flows have shown great promise for modelling flexible probability
distributions in a computationally tractable way. However, whilst data is often
naturally described on Riemannian manifolds such as spheres, tori, and hyperbolic
spaces, most normalizing flows implicitly assume a flat geometry, making them
either misspecified or ill-suited in these situations. To overcome this problem, we
introduce Riemannian continuous normalizing flows, a model which admits the
parametrization of flexible probability measures on smooth manifolds by defining
flows as the solution to ordinary differential equations. We show that this approach
can lead to substantial improvements on both synthetic and real-world data when
compared to standard flows or previously introduced projected flows.

1 Introduction

Figure 1: Trajectories generated on
the sphere to model volcano erup-
tions. Note that these converge to
the known Ring of Fire.

Learning well-specified probabilistic models is at the heart of
many problems in machine learning and statistics. Much focus
has therefore been placed on developing methods for modelling
and inferring expressive probability distributions. Normalizing
flows (Rezende and Mohamed, 2016) have shown great promise
for this task as they provide a general and extensible framework
for modelling highly complex and multimodal distributions (Pa-
pamakarios et al., 2019).

An orthogonal but equally important aspect of well-specified
models is to correctly characterize the geometry which describes
the proximity of data points. Riemannian manifolds provide a
general framework for this purpose and are a natural approach to
model tasks in many scientific fields ranging from earth and cli-
mate science to biology and computer vision. For instance, storm
trajectories may be modelled as paths on the sphere (Karpatne
et al., 2017), the shape of proteins can be parametrized using tori
(Hamelryck et al., 2006), cell developmental processes can be
described through paths in hyperbolic space (Klimovskaia et al., 2019), and human actions can be
recognized in video using matrix manifolds (Lui, 2012). If appropriately chosen, manifold-informed
methods can lead to improved sample complexity and generalization, improved fit in the low parame-
ter regime, and guide inference methods to interpretable models. They can also be understood as a
geometric prior that encodes a practitioner’s assumption about the data and imposes an inductive bias.

However, conventional normalizing flows are not readily applicable to such manifold-valued data
since their implicit Euclidean assumption makes them unaware of the underlying geometry or borders
of the manifold. As a result they would yield distributions having some or all of their mass lying

∗Work done while at Facebook AI research.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

outside the manifold, rendering them ill-suited or even misspecified so that central concepts like the
reverse Kullback-Leibler (KL) divergence would not even be defined.

In this work, we propose a principled way to combine both of these aspects and parametrize flexible
probability distributions on Riemannian manifolds. Specifically, we introduce Riemmanian contin-
uous normalizing flows in which flows are defined via vector fields on manifolds and computed as
the solution to the associated ordinary differential equation (ODE) (see Figure 1 for an illustration).
Intuitively, our method operates by first parametrizing a vector field on the manifold with a neural
network, then sampling particles from a base distribution, and finally approximating their flow along
the vector field using a numerical solver. Both the neural network and the solver are aware of the
underlying geometry which ensures that the flow is always located on the manifold – yielding a
Riemannian method.

This approach allows us to combine multiple important advantages: One major challenge of normal-
izing flows lies in designing transformations that enable efficient sampling and density computation.
By basing our approach on continuous normalizing flows (CNFs) (Chen et al., 2019; Grathwohl et al.,
2018; Salman et al., 2018) we avoid strong structural constraints to be imposed on the flow, as is
the case for most discrete normalizing flows. Such unconstrained free-form flows have empirically
been shown to be highly expressive (Chen et al., 2020; Grathwohl et al., 2018). Moreover, projected
methods require a differentiable mapping from a Euclidean space to the manifold, yet such a function
cannot be bijective, which in turn leads to numerical challenges. By taking a Riemannian approach,
our method is more versatile since it does not rely on an ad-hoc projection map and simultaneously
reduces numerical artefacts that interfere with training. To the best of our knowledge, our method
is the first to combine these properties as existing methods for normalizing flows on manifolds are
either discrete (Bose et al., 2020; Rezende et al., 2020), projected (Gemici et al., 2016; Falorsi et al.,
2019; Bose et al., 2020) or manifold-specific (Sei, 2011; Bose et al., 2020; Rezende et al., 2020).

We empirically demonstrate the advantages of our method on constant curvature manifolds – i.e., the
Poincaré disk and the sphere – and show the benefits of the proposed approach compared to non-
Riemannian and projected methods for maximum likelihood estimation and reverse KL minimization.
We also apply our method to density estimation on earth-sciences data (e.g., locations of earthquakes,
floods and wildfires) and show that it yields better generalization performance and faster convergence.

2 Continuous Normalizing Flows on Riemannian Manifolds

Normalizing flows operate by pushing a simple base distribution through a series of parametrized
invertible maps, referred as the flow. This can yield a highly complex and multimodal distribution
which is typically assumed to live in a Euclidean vector space. Here, we propose a principled approach
to extend normalizing flows to manifold-valued data, i.e. Riemmanian continuous normalizing flows
(RCNFs). Following CNFs (Chen et al., 2019; Grathwohl et al., 2018; Salman et al., 2018) we define
manifold flows as the solutions to ODEs. The high-level idea is to parametrize flows through the
time-evolution of manifold-valued particles z – in particular via their velocity ż(t) = fθ(z(t), t) where
fθ denotes a vector field. Particles are first sampled from a simple base distribution, and then their
evolution is integrated by a manifold-aware numerical solver, yielding a new complex multimodal
distribution of the particles. This Riemannian and continuous approach has the advantages of allowing
almost free-form neural networks and of not requiring any mapping from a Euclidean space which
would potentially lead to numerical challenges.

For practical purposes, we focus our theoretical and experimental discussion on constant curvature
manifolds (see Table 1). In addition to being widely used in the literature (Nickel and Kiela, 2017;
Davidson et al., 2018; Mardia and Jupp, 2000; Hasnat et al., 2017), these manifolds are convenient
to work with since most related geometrical quantities are available in closed-form. However, our

Table 1: Summary of d-dimensional continuous constant (sectional) curvature manifolds.

Geometry Model Curvature Coordinates
√

det g = d Vol /d LebRd Compact

Euclidean Rd Real vector space K = 0 Cartesian z 1 No

Hyperbolic Bd
K Poincaré ball K < 0 Cartesian z

(
2 / 1 + K ‖z‖2

)d
No

Elliptic Sd
K Hypersphere K > 0 n-spherical ϕ K−

d−1
2

∏d−2
i=1 sin(ϕi)d−i−1 Yes

2

proposed approach is generic and could be used on a broad class of manifolds such as product and
matrix manifolds like tori and Grassmanians. For a brief overview of relevant concepts in Riemannian
geometry please see Appendix A.1 or Lee (2003) for a more thorough introduction.

In the following, we develop the key components which allow us to define continuous normalizing
flows that are aware of the underlying Riemannian geometry: flow, likelihood, and vector field.

Vector flows Flows in conventional normalizing flows are defined as smooth mappings φ : Rd → Rd

which transform a base distribution z ∼ P0 into a complex distribution Pθ. For normalizing flows to
be well-behaved and convenient to work with, the flow is required to be bijective and differentiable
which introduces significant structural constraints on φ. Continuous normalizing flows overcome this
issue by defining the flow φ : Rd × R→ Rd generated by an ordinary differential equation, allowing
for unrestricted neural network architectures. Here we show how vector fields can be used to define
similar flows φ :M× R→M on general Riemannian manifolds.

Consider the temporal evolution of a particle z(t) lying on a d-dimensional manifold M, whose
velocity is given by a vector field fθ(z(t), t). Intuitively, fθ(z(t), t) indicates the direction and speed
along which the particle is moving on the manifold’s surface. Classic examples for such vector fields
include weathercocks giving wind direction and compasses pointing toward the magnetic north pole
of the earth. Formally, let TzM denote the tangent space at z and TM = ∩z∈M TzM the associated
tangent bundle. Furthermore, let fθ : M× R 7→ TM denote a vector field onM. The particle’s
time-evolution according to fθ is then given by the following ODE

dz(t)
dt

= fθ(z(t), t). (1)

To transform a base distribution using this vector field, we are then interested in a particle’s position
after time t. When starting at an initial position z(0) = z0, the flow operator φ :M× R 7→ M gives
the particle’s position at any time t as z(t) = φ(z0, t). Leveraging the fundamental theorem of flows
(Lee, 2003), we can show that under mild conditions, this flow is bijective and differentiable. We
write C1 for the set of differentiable functions whose derivative are continuous.
Proposition 1 (Vector flows). Let M be a smooth complete manifold. Furthermore, let fθ be a
C1-bounded time-dependent vector field. Then there exists a global flow φ :M× R 7→ M such that
for each t ∈ R, the map φ(·, t) :M 7→ M is a C1-diffeomorphism (i.e. C1 bijection with C1 inverse).

Proof. See Appendix E.1 for a detailed derivation. �

Note that scaling the vector field as f αθ , α fθ results in a time-scaled flow φα(z, t) = φ(z, αt).
The integration duration t is therefore arbitrary. Without loss of generality we set t = 1 and write
φ , φ(·, 1). Concerning the evaluation of the flow φ, it generally does no accept a closed-form
solution and thus requires to be approximated numerically. To this extent we rely on an explicit and
adaptive Runge-Kutta (RK) integrator of order 4 (Dormand and Prince, 1980). However, standard
integrators used in CNFs generally do not preserve manifold constraints (Hairer, 2006) . To overcome
this issue we rely on a projective solver (Hairer, 2011). This solver works by conveniently solving the
ODE in the ambient Cartesian coordinates and projecting each step onto the manifold. Projections
onto Sd are computationally cheap since they amount to l2 norm divisions. No projection is required
for the Poincaré ball.

Likelihood Having a flow at hand, we are now interested in evaluating the likelihood of our
pushforward model Pθ = φ]P0. Here, the pushforward operator] indicates that one obtains samples
z ∼ φ]P0 as z = φ(z0) with z0 ∼ P0. For this purpose, we derive in the following the change in
density in terms of the geometry of the manifold and show how to efficiently estimate the likelihood.

Change in density In normalizing flows, we can compute the likelihood of a sample via the change
in density from the base distribution to the pushforward. Applying the chain rule we get

log pθ(z) − log p0(z0) = log

∣∣∣∣∣∣det
∂φ−1(z)
∂z

∣∣∣∣∣∣ = − log
∣∣∣∣∣det

∂φ(z0)
∂z

∣∣∣∣∣ . (2)

In general, computing the Jacobian’s determinant of the flow is challenging since it requires d
reverse-mode automatic differentiations to obtain the full Jacobian matrix, and O(d3) operations to

3

compute its determinant. CNFs side step direct computation of the determinant by leveraging the
time-continuity of the flow and re-expressing Equation 2 as the integral of the instantaneous change
in log density

∫ t
0
∂ log pθ(z(t))

∂t dt. However, standard CNFs make an implicit Euclidean assumption to
compute this quantity which is violated for general Riemannian manifolds. To overcome this issue
we express the instantaneous change in log-density in terms of the Riemannian metric. In particular,
let G(z) denote the matrix representation of the Riemannian metric for a given manifoldM, then
G(z) endows tangent spaces TzM with an inner product. For instance in the Poincaré ball Bd, it
holds that G(z) = (2 / 1 + K ‖z‖2) Id, while in Euclidean space Rd we have G(z) = Id, where Id
denotes the identity matrix. Using the Liouville equation, we can then show that the instantaneous
change in variable is defined as follows.
Proposition 2 (Instantaneous change of variables). Let z(t) be a continuous manifold-valued random
variable given in local coordinates, which is described by the ODE from Equation 1 with probability
density pθ(z(t)). The change in log-probability then also follows a differential equation given by

∂ log pθ(z(t))
∂t

= − div(fθ(z(t), t)) = −|G(z(t))|−
1
2 tr

(
∂
√
|G(z(t))|fθ(z(t), t)

∂z

)
(3)

= − tr
(
∂fθ(z(t), t)

∂z

)
− |G(z(t))|−

1
2

〈
fθ(z(t), t),

∂

∂z

√
|G(z(t))|

〉
. (4)

Proof. For a detailed derivation of Equation 3 see Appendix C. �

Note that in the Euclidean setting
√
|G(z)| = 1 thus the second term of Equation 4 vanishes and we

recover the formula from Grathwohl et al. (2018); Chen et al. (2019).

Estimating the divergence Even though the determinant of Equation 2 has been replaced in Equa-
tion 3 by a trace operator with lower computational complexity, we still need to compute the full
Jacobian matrix of fθ. Similarly to Grathwohl et al. (2018); Salman et al. (2018), we make use of
Hutchinson’s trace estimator to compute the Jacobian efficiently. In particular, Hutchinson (1990)
showed that tr(A) = Ep(ε)[εᵀAε] with p(ε) being a d-dimensional random vector such that E[ε] = 0
and Cov(ε) = Id. Leveraging this trace estimator to approximate the divergence in Equation 3 yields

div(fθ(z(t), t)) = |G(z(t))|−
1
2 Ep(ε)

[
εᵀ
∂
√
|G(z(t))|fθ(z(t), t)

∂z
ε

]
. (5)

We note that the variance of this estimator can potentially be high since it scales with the inverse of
the determinant term

√
|G(z(t))| (see Appendix D.2). By integrating Equation 3 over time with the

stochastic divergence estimator from Equation 5, we get the following total change in log-density
between the manifold-valued random variables z and z0

log
(

pθ(z)
p0(z0)

)
= −

∫ 1

0
div(fθ(z(t), t)) dt = −Ep(ε)

[∫ 1

0
|G(z(t))|−

1
2 εᵀ

∂
√
|G(z(t))|fθ(z(t), t)

∂z
ε dt

]
. (6)

It can be seen that Equation 6 accounts again for the underlying geometry through the metric G(z(t)).
Table 1 lists closed-form solutions of its determinant for constant curvature manifolds. Furthermore,
the vector-Jacobian product can be computed through backward auto-differentiation with linear
complexity, avoiding the quadratic cost of computing the full Jacobian matrix. Additionally, the
integral is approximated via the discretization of the flow returned by the solver.

Choice of base distribution P0 The closer the initial base distribution is to the target distribution,
the easier the learning task should be. However, it is challenging in practice to incorporate such
prior knowledge. We consequently use a uniform distribution on Sd since it is the most "uncertain"
distribution. For the Poincaré ball Bd, we rely on a standard wrapped Gaussian distribution NW

(Nagano et al., 2019; Mathieu et al., 2019) because it is convenient to work with.

Vector field Finally, we discuss the form of the vector field fθ :M× R→ TM which generates
the flow φ used to pushforward samples. We parametrize fθ via a feed-forward neural network which
takes as input manifold-valued particles, and outputs their velocities. The architecture of the vector
field has a direct impact on the expressiveness of the distribution and is thus crucially important. In
order to take into account these geometrical properties we make use of specific input and output
layers that we describe below. The rest of the architecture is based on a multilayer perceptron.

4

Input layer To inform the neural network about the geometry of the manifoldM, we use as first layer
a geodesic distance layer (Ganea et al., 2018; Mathieu et al., 2019) which generalizes linear layers to
manifolds, and can be seen as computing distances to decision boundaries onM. These boundaries
are parametrized by geodesic hyperplanes Hw, and the associated neurons hw(z) ∝ dM(z,Hw), with
dM being the geodesic distance. Horizontally stacking several of these neurons makes a geodesic
distance layer. We refer to Appendix E.2 for more details.

Output layer To constrain the neural net to TM, we output vectors in Rd+1 whenM = Sd, before
projecting them to the tangent space i.e. fθ(z) = projTzM neural_net(z). This is not necessary in Bd

since the ambient space is of equal dimension. Yet, velocities scale as ‖fθ(z)‖z = |G(z)|1/2 ‖fθ(z)‖2,
hence we scale the neural_net by |G(z)|−1/2 s.t. ‖fθ(z)‖z = ‖neural_net(z)‖2.

Regularity For the flow to be bijective, the vector field fθ is required to be C1 and bounded (cf
Proposition 1). The boundness and smoothness conditions can be satisfied by relying on bounded
smooth non-linearities in fθ such as tanh, along with bounded weight and bias at the last layer.

Training In density estimation and inference tasks, one aims to learn a model Pθ with parameters
θ by minimising a divergence L(θ) = D(PD || Pθ) w.r.t. a target distribution PD. In our case, the
parameters θ refer to the parameters of the vector field fθ. We minimize the loss L(θ) using first-
order stochastic optimization, which requires Monte Carlo estimates of loss gradients ∇θ L(θ). We
back-propagate gradients through the explicit solver with O(1/h) memory cost, h being the step size.
When the loss L(θ) is expressed as an expectation over the model Pθ, as in the reverse KL divergence,
we rely on the reparametrization trick (Kingma and Welling, 2014; Rezende et al., 2014). In our
experiments we will consider both the negative log-likelihood and reverse KL objectives

LLike(θ) = −Ez∼PD
[
log pθ(z)

]
and LKL(θ) = DKL (Pθ ‖ PD) = Ez∼Pθ

[
log pθ(z) − log pD(z)

]
. (7)

Additionally, regularization terms can be added in the hope of improving training and generalization.
See Appendix D for a discussion and connections to the dynamical formulation of optimal transport.

3 Related work

Here we discuss previous work that introduced normalizing flows on manifolds. For clarity we split
these into projected vs Riemannian methods which we describe below.

Projected methods These methods consist in parametrizing a normalizing flow on Rd and then
pushing-forward the resulting distribution along an invertible map ψ : Rd →M. Yet, the existence
of such an invertible map is equivalent toM being homeomorphic to Rd (e.g. being "flat"), hence
limiting the scope of that approach. Moreover there is no principled way to choose such a map, and
different choices lead to different numerical or computational challenges which we discuss below.

Exponential map The first generic projected map that comes to mind in this setting is the exponential
map expµ : TµM � Rd → M, which parameterizes geodesics starting from µ with velocity
v ∈ TµM. This leads to so called wrapped distributions PW

θ = expµ] P, with P a probability measure
on Rd. This approach has been taken by Falorsi et al. (2019) to parametrize probability distributions on
Lie groups. Yet, in compact manifolds – such as spheres or the SO(3) group – computing the density
of wrapped distributions requires an infinite summation, which in practice needs to be truncated.
This is not the case however on hyperbolic spaces (like the Poincaré ball) since the exponential map
is bijective on these manifolds. This approach has been proposed in Bose et al. (2020) where they
extend Real-NVP (Dinh et al., 2017) to the hyperboloid model of hyperbolic geometry. In addition to
this wrapped Real-NVP, they also introduced a hybrid coupling model which is empirically shown to
be more expressive. We note however that the exponential map is believed to be "badly behaved"
away from the origin (Dooley and Wildberger, 1993; Al-Mohy and Higham, 2010).

Stereographic map Alternatively to the exponential map, Gemici et al. (2016) proposed
to parametrize probability distributions on Sd via the stereographic projection defined as
ρ(z) = z2:d / (1 + z1) with projection point −{µ0} = (−1, 0, . . . , 0). Gemici et al. then push a proba-
bility measure P defined on Rd along the inverse of the stereographic map ρ, yielding PS

θ = ρ−1
]

P.

5

Figure 2: Probability densities on B2. Models have been
trained by maximum likelihood to fit NW(exp0(2 ∂x),Σ).
The black semi-circle indicates the disk’s border. The best
run out of twelve trainings is shown for each model.

4567
Negative log-likelihood

0

50

100

150

NF
E

Unscaled
Rescaled

Figure 3: Ablation study of the vector field archi-
tecture for the Riemannian model. Models have
been trained to fit a NW(exp0(∂x),Σ).

0 500 1000 1500
epochs

1.8

2.0

2.2

2.4

2.6

Ne
ga

tiv
e

Lo
g-

lik
el

ih
oo

d = 1
Naive
Wrapped
Riemannian

0 500 1000 1500
epochs

2.0

2.5

3.0

3.5

4.0

4.5

5.0
= 2

0 500 1000 1500
epochs

2

4

6

8

10
= 3

Figure 4: Negative Log-likelihood of CNFs trained to fit a NW(exp0(α ∂x),Σ) target on B2.

However, the stereographic map ρ is not injective, and projects −µ0 to∞. This implies that spherical
points close to the projection point −{µ0} are mapped far away from the origin of the plane. Modelling
probability distributions with mass close to {−µ0}may consequently be numerically challenging since
the norm of the Euclidean flow would explode. Similarly, Rezende et al. (2020) introduced flows
on hyperspheres and tori by using the inverse tangent function. Although this method is empirically
shown to perform well, it similarly suffers from numerical instabilities near singularity points.

Riemannian methods In contrast to projected methods which rely on mapping the manifold to
a Euclidean space, Riemannian methods do not. As a consequence they side-step any artefact
or numerical instability arising from the manifold’s projection. Early work (Sei, 2011) proposed
transformations along geodesics on the hypersphere by evaluating the exponential map at the gradient
of a scalar manifold function. Recently, Rezende et al. (2020) introduced ad-hoc discrete Riemannian
flows for hyperspheres and tori based on Möbius transformations and spherical splines. We contribute
to this line of work by introducing continuous flows on general Riemannian manifolds. In contrast to
discrete flows (e.g. Bose et al., 2020; Rezende et al., 2020), time-continuous flows as ours alleviate
strong structural constraints on the flow by implicitly parametrizing it as the solution to an ODE
(Grathwohl et al., 2018). Additionally, recent and concurrent work (Lou et al., 2020; Falorsi and
Forré, 2020) proposed to extend neural ODEs to smooth manifolds.

4 Experimental results

We evaluate the empirical performance of the above-mentioned models on hyperbolic and spherical
geometry. We will first discuss experiments on two synthetic datasets where we highlight specific
pathologies of the naive and projected methods via unimodal distributions at the point (or the limit)
of the pathology. This removes additional modelling artefacts that would be introduced through
more complex distributions and allows to demonstrate advantages of our approach on the respective
manifolds. We further show that these advantages also translate to substantial gains on highly
multi-modal real world datasets.

For all projected models (e.g. stereographic and wrapped cf Section 3), the vector field’s architecture
is chosen to be a multilayer perceptron as in Grathwohl et al. (2018), whilst the architecture described
in Section 2 is used for our Riemannian (continuous normalizing flow) model. For fair comparisons,

6

St
er

eo
gr

ap
hi

c
R

ie
m

an
ni

an

Base P0 Model Pθ Target PD

Figure 5: Probability distributions on S2. Models
trained to fit a vMF(µ = −µ0, κ = 10).

model Stereographic Riemannian
Loss κ

LLike
100 35.80±5.24 −1.76±0.06
50 17.11±4.61 −1.07±0.04
10 2.42±1.42 0.52±0.02

LKL
100 1.11±0.11 0.04±0.01
50 0.46±0.05 0.03±0.01
10 0.11±0.00 0.01±0.01

Table 2: Performance of continuous flows on S2

with vMF(µ = −µ0, κ) targets (the smaller the bet-
ter). When models perfectly fit the target PD, then
LLike = H[PD] which decreases with κ, explaining
LLike’s results for the Riemannian model.

we also parametrize projected models with a CNF. Also, all models are chosen to have approximately
the same number of parameters. All models were implemented in PyTorch (Paszke et al., 2017) and
trained by stochastic optimization with Adam (Kingma and Ba, 2015). All 95% confidence intervals
are computed over 12 runs. Please refer to Appendix G for full experimental details. We open-source
our code for reproducibility 2.

Hyperbolic geometry and limits of conventional and wrapped methods First, we aim to show
that conventional normalizing flows are ill-suited for modelling target manifold distributions. These
are blind to the geometry, so we expect them to behave poorly when the target is located where the
manifold behaves most differently from a Euclidean space. We refer to such models as naive and
discuss their properties in more detail in Appendix B.1. Second, we wish to inspect the behaviour of
wrapped models (see Section 3) when the target is away from the exponential map origin.

To this extent we parametrize a wrapped Gaussian target distribution NW(exp0(α ∂x),Σ) =
expµ]N(α ∂x,Σ) defined on the Poincaré disk B2 (Nagano et al., 2019; Mathieu et al., 2019).
The scalar parameter α allows us to locate the target closer or further away from the origin of the
disk. We put three CNFs models on the benchmark; our Riemannian (from Section 2), a conventional
naive and a wrapped model. The base distribution P0 is a standard Gaussian for the naive and
wrapped models, and a standard wrapped Gaussian for the Riemannian model. Models are trained by
maximum likelihood until convergence. Throughout training, the Hutchinson’s estimator is used to
approximate the divergence as in Equation 5. It can be seen from Figure 4 that the Riemannian model
indeed outperforms the naive and wrapped models as we increase the values of α – i.e., the closer we
move to the boundary of the disk. Figure 2 shows that qualitatively the naive and wrapped models
seem to indeed fail to properly fit the target when it is located far from the origin. Additionally, we
assess the architectural choice of the vector field used in our Riemannian model. In particular, we
conduct an ablation study on the rescaling of the output layer, by training for 10 iterations a rescaled
and an unscaled version of our model. Figure 3 shows that the number of function evaluations (NFE)
tends to be large and sometimes even dramatically diverges when the vector field’s output is unscaled.
In addition to increasing the computational cost, this in turns appears to worsen the convergence’s
speed of the model. This further illustrates the benefits of our vector field parameterization.

Spherical geometry and limits of the stereographic projection model Next, we evaluate the
ability of our model and the stereographic projection model from Section 3 to approximate distribu-
tions on the sphere which are located around the projection point −µ0. We empirically assess this
phenomenon by choosing the target distribution to be a Von-Mises Fisher (Downs, 1972) distribution
vMF(µ, κ) located at µ = −µ0, and with concentration κ (which decreases with the variance). Along
with the stereographic projection method, we also consider our Riemannian model from Section 2.
We neither included the naive model since it is misspecified here (leading to an undefined reverse KL
divergence), nor the wrapped model as computing its density requires an infinite summation (see
Section 3). The base distribution P0 is chosen to be a standard Gaussian on R2 for the stereographic

2https://github.com/facebookresearch/riemannian_cnf

7

https://github.com/facebookresearch/riemannian_cnf

Table 3: Negative test log-likelihood of continuous normalizing flows on S2 datasets.

Volcano Earthquake Flood Fire

Mixture vMF � −0.38±0.19 0.60±0.01 1.10±0.02 −0.21±0.01

Stereographic � −0.07±0.17 0.43±0.04 1.03±0.05 −0.45±0.06

Riemannian � −0.67±0.11 0.16±0.03 0.86±0.05 −0.64±0.03

Learning curves

0 500 1000
epochs

0
1
2
3

0 500 1000
epochs

0

1

2

0 500 1000
epochs

1

2

0 500 1000
epochs

1
0
1
2

Data size 829 6124 4877 12810

model and a uniform distribution on S2 for the Riemannian model. Models are trained by computing
the exact divergence. The performance of these two models are quantitatively assessed on both the
negative log-likelihood and reverse KL criteria.

Figure 5 shows densities of the target distribution along with the base and learned distributions. We
observe that the stereographic model fails to push mass close enough to the singularity point −µ0,
as opposed to the Riemannian model which perfectly fits the target. Table 2 shows the negative
log-likelihood and reverse KL losses of both models when varying the concentration parameter κ of
the vMF target. The larger the concentration κ is, the closer to the singularity point −µ0 the target’s
mass gets. We observe that the Riemannian model outperforms the stereographic one to fit the target
for both objectives, although this performance gap shrinks as the concentration gets smaller. Also,
we believe that the gap in performance is particularly large for the log-likelihood objective because it
heavily penalizes models that fail to cover the support of the target. When the vMF target is located
away from the singularity point, we noted that both models were performing similarly well.

Density estimation of spherical data Finally, we aim to measure the expressiveness and modelling
capabilities of our method on real world datasets. To this extent, we gathered four earth location
datasets, representing respectively volcano eruptions (NOAA, 2020b), earthquakes (NOAA, 2020a),
floods (Brakenridge, 2017) and wild fires (EOSDIS, 2020). We approximate the earth’s surface (and
thus also these data points) as a perfect sphere. Along our Riemannian CNF, we also assess the fitting
capacity of a mixture of von Mises-Fisher (vMF) distributions and a stereographic projected CNF.
The locations of the vMF components are learned via stochastic Riemannian optimization (Bonnabel,
2013; Bécigneul and Ganea, 2019). The learning rate and number of components are selected by
hyperparameter grid search. In our experiments, we split datasets randomly into training and testing
datasets, and fit the models by maximum likelihood estimation on the training dataset. CNF models
are trained by computing the exact divergence.

We observe from Table 3 that for all datasets, the Riemannian model outperforms its stereographic
counterpart and the mixture of vMF distributions by a large margin. It can also be seen from the
learning curves that the Riemannian model converges faster. Figure 6 shows the learned spherical
distributions along with the training and testing datasets. We note that qualitatively the stereographic
distribution is generally more diffuse than its Riemannian counterpart. It also appears to allocate
some of its mass outside the target support, and to cover less of the data points. Additional figures are
shown in Appendix H.

Limitations In the spherical setting, the stochastic estimator to approximate the divergence from
Equation 5 exhibits high variance. Its variance scales with the inverse of

√
|G(z)| = sin(θ), which

becomes too large around the north pole and thus requires the use of the exact estimator. On large-
scale datasets, where the stochastic estimator has important runtime advantages, this issue could be
alleviated by choosing a different vector field basis than the one induced by some local coordinates
(e.g. Falorsi and Forré, 2020). For the Poincaré ball, no such variance behavior of the stochastic
estimator exists and it can readily be applied to large-scale data.

8

St
er

eo
gr

ap
hi

c
R

ie
m

an
ni

an

Earthquake Flood Fire

Figure 6: Density estimation for earth sciences data. Blue and red dots represent training and testing datapoints,
respectively. Heatmaps depict the log-likelihood of the trained models.

Compared to a well-optimized linear layer, the use of the geodesic distance layer (see Section 2)
induces an extra computational cost as shown in Figure 7. Empirically, the geodesic layer helps to
improve performance in the hyperbolic setting but had less of an effect in the spherical setting. As
such, the geodesic layer can be regarded as an optional component that can improve the quality of the
model at an additional computational cost.

5 Discussion

In this paper we proposed a principled way to parametrize expressive probability distributions on
Riemannian manifolds. Specifically, we introduced Riemmanian continuous normalizing flows in
which flows are defined via vector fields on manifolds and computed as the solution to the associated
ODE. We empirically demonstrated that this method can yield substantial improvements when
modelling data on constant curvature manifolds compared to conventional or projected flows.

Broader impact

The work presented in this paper focuses on the learning of well-specified probabilistic models for
manifold-valued data. Consequently, its applications are especially promising to advance scientific
understanding in fields such as earth and climate science, computational biology, and computer
vision. As a foundational method, our work inherits the broader ethical aspects and future societal
consequences of machine learning in general.

Acknowledgments

We are grateful to Adam Foster, Yann Dubois, Laura Ruis, Anthony Caterini, Adam Golinski, Chris
Maddison, Salem Said, Alessandro Barp, Tom Rainforth and Yee Whye Teh for fruitful discussions
and support. EM research leading to these results received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007- 2013) ERC grant

9

agreement no. 617071 and he acknowledges Microsoft Research and EPSRC for funding EM’s
studentship.

References
Al-Mohy, A. H. and Higham, N. J. (2010). A New Scaling and Squaring Algorithm for the Matrix

Exponential. SIAM Journal on Matrix Analysis and Applications, 31(3):970–989.

Ambrosio, L. (2003). Optimal transport maps in Monge-Kantorovich problem.

Avron, H. and Toledo, S. (2011). Randomized algorithms for estimating the trace of an implicit
symmetric positive semi-definite matrix. Journal of the ACM, 58(2).

Bécigneul, G. and Ganea, O.-E. (2019). Riemannian Adaptive Optimization Methods.
arXiv:1810.00760 [cs, stat].

Benamou, J.-D. and Brenier, Y. (2000). A computational fluid mechanics solution to the Monge-
Kantorovich mass transfer problem. Numerische Mathematik, 84(3):375–393.

Blumenson, L. E. (1960). A derivation of n-Dimensional spherical coordinates. The American
Mathematical Monthly, 67(1):63–66.

Bonnabel, S. (2013). Stochastic gradient descent on Riemannian manifolds. IEEE Transactions on
Automatic Control, 58(9):2217–2229.

Bose, A. J., Smofsky, A., Liao, R., Panangaden, P., and Hamilton, W. L. (2020). Latent Variable
Modelling with Hyperbolic Normalizing Flows. arXiv:2002.06336 [cs, stat].

Brakenridge, G. (2017). Global active archive of large flood events. http://floodobservatory.
colorado.edu/Archives/index.html. Dartmouth Flood Observatory, University of Col-
orado,.

Chen, R. T. Q., Behrmann, J., Duvenaud, D., and Jacobsen, J.-H. (2020). Residual Flows for Invertible
Generative Modeling. arXiv:1906.02735 [cs, stat].

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. (2019). Neural Ordinary Differential
Equations. arXiv:1806.07366 [cs, stat].

Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T., and Tomczak, J. M. (2018). Hyperspherical
Variational Auto-Encoders. arXiv:1804.00891 [cs, stat].

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). Density estimation using Real NVP.
arXiv:1605.08803 [cs, stat].

Dooley, A. and Wildberger, N. (1993). Harmonic analysis and the global exponential map for compact
Lie groups. Functional Analysis and Its Applications, 27(1):21–27.

Dormand, R. J. and Prince, J. P. (1980). A family of embedded Runge-Kutta formulae. Journal of
Computational and Applied Mathematics, pages 19–26.

Downs (1972). Orientational statistics. Biometrika, 59.

Drucker, H. and Cun, Y. L. (1992). Improving Generalization Performance Using Double Backpropa-
gation. IEEE Transactions on Neural Networks and Learning Systems, 3(6):991–997.

EOSDIS (2020). Active fire data. https://earthdata.nasa.gov/earth-observation-data/
near-real-time/firms/active-fire-data. Land, Atmosphere Near real-time Capability
for EOS (LANCE) system operated by NASA’s Earth Science Data and Information System
(ESDIS).

Falorsi, L., de Haan, P., Davidson, T. R., and Forré, P. (2019). Reparameterizing Distributions on Lie
Groups. arXiv:1903.02958 [cs, math, stat].

Falorsi, L. and Forré, P. (2020). Neural Ordinary Differential Equations on Manifolds.
arXiv:2006.06663 [cs, stat].

10

http://floodobservatory.colorado.edu/Archives/index.html
http://floodobservatory.colorado.edu/Archives/index.html
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data

Finlay, C., Jacobsen, J.-H., Nurbekyan, L., and Oberman, A. M. (2020). How to train your neural
ODE. arXiv:2002.02798 [cs, stat].

Ganea, O.-E., Bécigneul, G., and Hofmann, T. (2018). Hyperbolic Neural Networks.
arXiv:1805.09112 [cs, stat].

Gemici, M. C., Rezende, D., and Mohamed, S. (2016). Normalizing Flows on Riemannian Manifolds.
arXiv:1611.02304 [cs, math, stat].

Grathwohl, W., Chen, R. T. Q., Bettencourt, J., Sutskever, I., and Duvenaud, D. (2018). FFJORD:
Free-form Continuous Dynamics for Scalable Reversible Generative Models. arXiv:1810.01367
[cs, stat].

Hairer, E. (2006). Geometric Numerical Integration : Structure-Preserving Algorithms for Ordinary
Differential Equations. Springer Series in Computational Mathematics ; 31. Springer, Berlin, 2nd
ed. edition.

Hairer, E. (2011). Solving Differential Equations on Manifolds. page 55.

Hamelryck, T., Kent, J. T., and Krogh, A. (2006). Sampling Realistic Protein Conformations Using
Local Structural Bias. PLoS Computational Biology, 2(9).

Hasnat, M. A., Bohné, J., Milgram, J., Gentric, S., and Chen, L. (2017). Von Mises-Fisher Mixture
Model-based Deep learning: Application to Face Verification. arXiv:1706.04264 [cs].

Hutchinson (1990). A stochastic estimator of the trace of the influence matrix for laplacian smoothing
splines. Communications in Statistics - Simulation and Computation, 19(2):433–450.

Karpatne, A., Ebert-Uphoff, I., Ravela, S., Babaie, H. A., and Kumar, V. (2017). Machine Learning
for the Geosciences: Challenges and Opportunities. arXiv:1711.04708 [physics].

Kingma, D. P. and Ba, J. (2015). Adam: A Method for Stochastic Optimization. arXiv:1412.6980
[cs].

Kingma, D. P. and Welling, M. (2014). Auto-Encoding Variational Bayes. arXiv:1312.6114 [cs,
stat].

Klimovskaia, A., Lopez-Paz, D., Bottou, L., and Nickel, M. (2019). Poincaré Maps for Analyzing
Complex Hierarchies in Single-Cell Data. Preprint, Bioinformatics.

Lee, J. M. (2003). Introduction to Smooth Manifolds. Number 218 in Graduate Texts in Mathematics.
Springer, New York.

Lou, A., Lim, D., Katsman, I., Huang, L., Jiang, Q., Lim, S.-N., and De Sa, C. (2020). Neural
manifold ordinary differential equations.

Lui, Y. M. (2012). Advances in matrix manifolds for computer vision. Image and Vision Computing,
30(6):380–388.

Mardia, K. V. and Jupp, P. E. (2000). Directional Statistics. Wiley Series in Probability and Statistics.
J. Wiley, Chichester ; New York.

Mathieu, E., Lan, C. L., Maddison, C. J., Tomioka, R., and Teh, Y. W. (2019). Continuous Hierarchical
Representations with Poincar\’e Variational Auto-Encoders.

Nagano, Y., Yamaguchi, S., Fujita, Y., and Koyama, M. (2019). A Wrapped Normal Distribution on
Hyperbolic Space for Gradient-Based Learning. arXiv:1902.02992 [cs, stat].

Nickel, M. and Kiela, D. (2017). Poincar\’e Embeddings for Learning Hierarchical Representations.
arXiv:1705.08039 [cs, stat].

NOAA (2020a). Global significant earthquake database. https://data.nodc.noaa.gov/
cgi-bin/iso?id=gov.noaa.ngdc.mgg.hazards:G012153. National Geophysical Data Cen-
ter / World Data Service (NGDC/WDS): NCEI/WDS Global Significant Earthquake Database.
NOAA National Centers for Environmental Information.

11

https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.hazards:G012153
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.hazards:G012153

NOAA (2020b). Global significant volcanic eruptions database. https://data.nodc.noaa.gov/
cgi-bin/iso?id=gov.noaa.ngdc.mgg.hazards:G10147. National Geophysical Data Center
/ World Data Service (NGDC/WDS): NCEI/WDS Global Significant Volcanic Eruptions Database.
NOAA National Centers for Environmental Information.

Novak, R., Bahri, Y., Abolafia, D. A., Pennington, J., and Sohl-Dickstein, J. (2018). Sensitivity and
Generalization in Neural Networks: An Empirical Study.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., and Lakshminarayanan, B. (2019).
Normalizing Flows for Probabilistic Modeling and Inference. arXiv:1912.02762 [cs, stat].

Papamakarios, G., Pavlakou, T., and Murray, I. (2018). Masked Autoregressive Flow for Density
Estimation. arXiv:1705.07057 [cs, stat].

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga,
L., and Lerer, A. (2017). Automatic differentiation in PyTorch. In NIPS-W.

Pennec, X. (2006). Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric
Measurements. Journal of Mathematical Imaging and Vision, 25(1):127–154.

Petersen, P. (2006). Riemannian Geometry. Springer-Verlag New York.

Rezende, D. J. and Mohamed, S. (2016). Variational Inference with Normalizing Flows.
arXiv:1505.05770 [cs, stat].

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic Backpropagation and Approximate
Inference in Deep Generative Models. arXiv:1401.4082 [cs, stat].

Rezende, D. J., Papamakarios, G., Racanière, S., Albergo, M. S., Kanwar, G., Shanahan, P. E., and
Cranmer, K. (2020). Normalizing Flows on Tori and Spheres. arXiv:2002.02428 [cs, stat].

Salman, H., Yadollahpour, P., Fletcher, T., and Batmanghelich, K. (2018). Deep Diffeomorphic
Normalizing Flows. arXiv:1810.03256 [cs, stat].

Sei, T. (2011). A Jacobian Inequality for Gradient Maps on the Sphere and Its Application to
Directional Statistics. Communications in Statistics - Theory and Methods, 42(14):2525–2542.

Skopek, O., Ganea, O.-E., and Bécigneul, G. (2019). Mixed-curvature Variational Autoencoders.

Ungar, A. A. (2008). A gyrovector space approach to hyperbolic geometry. Synthesis Lectures on
Mathematics and Statistics, 1(1):1–194.

12

https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.hazards:G10147
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.hazards:G10147

Appendix for
Riemannian Continuous Normalizing Flows

A Constant curvature manifolds

In the following, we provide a brief overview of Riemannian geometry and constant curvature
manifolds, specifically the Poincaré ball and the hypersphere models. We will use ‖·‖ and 〈·, ·〉 to
denote the Euclidean norm and inner product. For norms and inner products on tangent spaces TzM,
we write ‖·‖z and 〈·, ·〉z where z ∈ M.

A.1 Review of Riemannian geometry

A real, smooth manifold M is a set of points z, which is "locally similar" to a linear space. For
every point z of the manifoldM is attached a real vector space of the same dimensionality asM
called the tangent space TzM. Intuitively, it contains all the possible directions in which one can
tangentially pass through z. Taking the disjoint union of all tangent spaces yields the tangent bundle
TM = ∩z∈MTzM. For each point z of the manifold, the metric tensor g(z) defines an inner product
on the associated tangent space as g(z) = 〈·, ·〉z : TzM×TzM→ R. The matrix representation of
the Riemannian metric G(z), is defined such that

∀u,v ∈ TzM×TzM, 〈u,v〉z = g(z)(u,v) = uT G(z)v.

A Riemannian manifold is then given as a tuple (M, g) (Petersen, 2006). The metric tensor gives
a local notion of angle, length of curves, surface area and volume, from which global quantities
can be derived by integrating local contributions. A norm is induced by the inner product on TzM:
‖·‖z =

√
〈·, ·〉z . An infinitesimal volume element is induced on each tangent space TzM, and thus

a measure dVol(z) =
√
|G(z)| dLeb(z) on the manifold, with Leb(z) being the Lebesgue measure.

The length of a curve γ : t 7→ γ(t) ∈ M is given by L(γ) =
∫ 1

0 ‖γ
′(t)‖γ(t)dt. The concept of straight

lines can then be generalized to geodesics, which are constant speed curves giving the shortest
path between pairs of points z,y of the manifold: γ∗ = arg min L(γ) with γ(0) = z, γ(1) = y and
‖γ′(t)‖γ(t) = 1. A global distance is thus induced onM given by

dM(z,y) = inf L(γ).

EndowingM with that distance consequently defines a metric space (M, dM). The concept of moving
along a "straight" curve with constant velocity is given by the exponential map. In particular, there
is a unique unit speed geodesic γ satisfying γ(0) = z with initial tangent vector γ′(0) = v. The
corresponding exponential map is then defined by expz(v) = γ(1). The logarithm map is the inverse
logz = exp−1

z : M → TzM. The expz map is well-defined on the full tangent space TzM for all
z ∈ M if and only ifM is geodesically complete, i.e. if all geodesics can "run" indefinitely. This is
the case for the Poincaré ball and hypersphere.

A.2 The Poincaré ball model of hyperbolic geometry

In the following, we provide a brief overview of key concepts related to hyperbolic geometry. A d-
dimensional hyperbolic space is a complete, simply connected, d-dimensional Riemannian manifold
with constant negative curvature K. The Poincaré ball is one model of this geometry, and is formally
defined as the Riemannian manifold Bd

K = (Bd
K , gK). Here Bd

K denotes the open ball of radius 1/
√
|K|,

and gK the metric tensor gK(z) = (λK
z)2
ge(z), where λK

z = 2
1+K‖z‖2

and ge denotes the Euclidean
metric tensor, i.e. the usual dot product. The induced invariant measure Vol is absolutely continuous
with respect to the Lebesgue measure Leb, and its density is given by dVol

dLeb (z) =
√
|G(z)| = (λK

z)d for
all z ∈ Bd

K . As motivated by Skopek et al. (2019), the Poincaré ball Bd
K can conveniently be described

through the formalism of gyrovector spaces (Ungar, 2008). These can be seen as an analogy to the
way vector spaces are used in Euclidean geometry, but in the non-Euclidean geometry setting. In

1

particular, the Möbius addition ⊕K of z,y in Bd
K is defined as

z ⊕K y =
(1 − 2K 〈z,y〉 − K‖y‖2)z + (1 + K‖z‖2)y

1 − 2K 〈z,y〉 + K2‖z‖2‖y‖2
.

Then the exponential map can be expressed via this Möbius addition as

expK
z (v) = z ⊕K

(
tanh

(
√
−K

λK
z ‖v‖

2

)
v

√
−K‖v‖

)
where x = −z ⊕K y for all x,y ∈ Bd

K .

A.3 The hypersphere model of elliptic geometry

In the following, we discuss key concepts related to positively curved spaces known as elliptic spaces,
and in particular to the hypersphere model. The d-sphere, or hyperpshere, is a compact submanifold of
Rd+1 with positive constant curvature K whose support is defined by Sd

K = {z ∈ Rd+1 | 〈z, z〉 = 1/K}.
It is endowed with the pull-back metric of the ambient Euclidean space.

Sphere In the two-dimensional setting d = 2, we rely on polar coordinates to parametrize the
sphere S2. These coordinates consist of polar θ ∈ [0, π] and azimuth ϕ ∈ [0, 2π) angles. The
ambient Cartesian coordinates are then given by r(θ, ϕ) = (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)). We
have

√
|G(θ, ϕ)| = sin(θ). Applying the generic divergence formula (see Equation 11) yields the

celebrated spherical divergence formula

div(g) =
1

sin(θ)
∂

∂θ

(
sin(θ) gθ(θ, ϕ)

)
+

1
sin(θ)

∂

∂ϕ
(gϕ(θ, ϕ)) .

Hypersphere For higher dimensions, we can rely on the n-spherical coordinate system in which the
coordinates consist of d − 1 angular coordinates ϕ1, . . . , ϕd−2 ∈ [0, π] and ϕd−2 ∈ [0, 2π) (Blumenson,
1960). Then we have

√
|G(ϕ)| = sind−2(ϕ1) sind−3(ϕ2) . . . sin(ϕd−2).

Using the ambient cartesian coordinates, the exponential map is given by

expc
µ(v) = cos

(√
K‖v‖

)
µ + sin

(√
K‖v‖

) v
√

K‖v‖

for all z ∈ Sd
K and v ∈ TzSd

K .

B Probability measures on Riemannian manifolds

In what follows, we discuss core concepts of probability measures on Riemannian manifolds and
show how naive methods lead to ill- and mis-specified models on manifolds.

Probability measures and random vectors can intrinsically be defined on Riemannian manifolds so as
to model uncertainty on non-flat spaces (Pennec, 2006). The Riemannian metric G(z) induces an
infinitesimal volume element on each tangent space TzM, and thus a measure on the manifold,

d Vol(z) =
√
|G(z)| d Leb,

with Leb the Lebesgue measure. Manifold-valued random variables would naturally be characterized
by the Radon-Nikodym derivative of a measure ν w.r.t. the Riemannian measure Vol (assuming
absolute continuity)

p(z) =
dν

d Vol
(z).

B.1 Ambient Euclidean probability distributions

Unfortunately, conventional probabilistic models implicitly assume a flat geometry. This in turn cause
these models to either be misspecified or ill-suited to fit manifold distributions. Below we discuss the
reasons why.

2

Let PD be a target probability measure that we aim to approximate, and which is defined on a
d-dimensional manifoldM ⊆ RD. Furthermore, we assume it admits a Radon-Nikodym derivative
pD with respect to the manifold invariant measure Vol, denoting PD � Vol with� denoting absolute
continuity. Conventional normalizing flows implicitly assume the parametrized probability measure
Pθ to have support on the ambient space RD and to be absolutely continuous with respect to the
Lebesgue measure LebRD . We denote its density by pθ.

Next, assume D = d, such as forM = Bd ⊆ Rd. With z the d-dimensional Cartesian coordinates, we
have d Vol

d LebRd
(z) =

√
|G(z)|. One could then see the manifold-valued target PD as being a probability

measure on Rd with a density w.r.t. the Lebesgue measure given by
dPD

d LebRd
(z) = pD(z)

√
|G(z)| , p̃D(z).

In general PD � Pθ which implies that the forward Kullback-Leibler divergence, or negative
log-likelihood up to constants, is defined and given by

LLike(θ) = DKL (PD ‖ Pθ) + H(PD) = EPD

[
log

(
p̃D(z)
pθ(z)

)]
+ H(PD) = −EPD

[
log

pθ(z)
√
|G(z)|

]
.

Minimising LLike(θ) amounts to pushing-forward Pθ’s mass so that empirical observations zi ∼ PD
have a positive likelihood under Pθ. Yet, in general the model (Pθ) has (most of his) mass outside the
manifold’s support which may cause such a naive approach to be ill-suited. More crucially it implies
that in general the model’s mass is not covering the full target’s support. In that case, the reverse
Kullback-Leibler divergence DKL (Pθ ‖ PD) = LKL(θ) is not even defined.

Next, consider the case whereM is a submanifold embedded in RD with D > d, such asM = Sd

where D = d + 1. In this setting the naive model Pθ is even misspecified since it is defined on a
different probability space than the target. In the limit supp(Pθ)→M, Pθ is not defined because we
have that

∫
RD Pθ → ∞. The target does consequently not belong to the model’s class.

C Instantaneous change of variable

In the following we derive the instantaneous change of density that a manifold-valued random variable
induces when its dynamics are governed by an ODE. We show that in the Riemannian setting this
instantaneous change of density can be expressed in terms of the manifold’s metric tensor.

Proof of Proposition 2

Proof. For a time dependant particles z(t), whose dynamics are given by the following ODE
dz(t)

dt
= f (z(t), t)

the change in density is given by the Liouville equation (or Fokker–Planck equation without the
diffusion term); ∀z ∈ M,∀t ∈ [0,T]

∂

∂t
p(z, t) = − div(p(z, t)f (z, t))

= −
〈 ∂
∂z

p(z, t),f (z, t)
〉
z
− p(z, t) div(f (z, t))

where the last step was obtained by applying the divergence product rule. By introducing the time
dependence in z(t) and differentiating with respect to time we get
∂

∂t
p(z(t), t) =

〈 ∂
∂z

p(z(t), t),
∂

∂t
z(t)

〉
z(t)

+
∂

∂t
p(z(t), t)

=
〈 ∂
∂z

p(z(t), t),f (z(t), t)
〉
z(t)
−

〈 ∂
∂z

p(z(t), t),f (z(t), t)
〉
z(t)
− p(z(t), t) div(f (z(t), t))

= −p(z(t), t) div(f (z(t), t))
Hence the evolution of the log density is given by

∂

∂t
log p(z(t), t) = − div(f (z(t), t)). (8)

�

3

Divergence computation For a Riemannian manifold (M, g), with local coordinates z, the diver-
gence of a vector field f is given by

div(f (z, t)) =
1

√
|G(z)|

d∑
i=1

∂

∂zi

(√
|G(z)| f i(z, t)

)
(9)

=
1

√
|G(z)|

d∑
i=1

(√
|G(z)|

∂

∂zi f i(z, t) + f i(z, t)
∂

∂zi

√
|G(z)|

)

=

d∑
i=1

∂

∂zi f i(z, t) +
1

√
|G(z)|

d∑
i=1

f i(z, t)
∂

∂zi

√
|G(z)|

= tr
(
∂

∂z
f (z, t)

)
+

1
√
|G(z)|

〈
f (z, t),

∂

∂z

√
|G(z)|

〉
. (10)

We note that in Equation 9, fi are the components of the vector field f with respect to the local
unnormalized covariant basis (ei)d

i=1 =
((

∂
∂zi

)
z

)d

i=1
. However it is convenient to work with local basis

having unit length vectors. If we write êi for this normalized basis, and f̂ i for the components of f
with respect to this normalized basis, we have that

f =
∑

i

f i ei =
∑

i

f i ‖ei‖
ei

‖ei‖
=

∑
i

f i
√

Gii
ei

‖ei‖
=

∑
i

f̂ i êi

using one of the properties of the metric tensor. By dotting both sides of the last equality with the
contravariant element êi we get that f̂ i = f i √Gii. Substituting in Equation 9 yields

div
(
f̂ (z, t)

)
=

1
√
|G(z)|

d∑
i=1

∂

∂zi

√
|G(z)|
Gii(z)

f̂ i(z, t)

 . (11)

Combining Equations 8 and 11 and we finally get

∂ log p(z(t), t)
∂t

= −
1

√
|G(z)|

d∑
i=1

∂

∂zi

√
|G(z)|
Gii(z)

f̂ i(z, t)

 . (12)

We rely on this Equation 12 for practical numerical experiments.

D regularization

D.1 l2-norm

Henceforth we motivate the use of an l2 norm regularization in the context of continuous normalizing
flows. We do so by highlighting a connection with the dynamical formulation of optimal transport,
and by proving that this formulation still holds in the manifold setting.

Monge-Kantorovich mass transfer problem Let (M, dM) be a metric space, and c :M×M→
[0,+∞) a measurable map. Given probability measures p0 and pT onM, Monge’s formulation of the
optimal transportation problem is to find a transport map φ∗ :M→M that realizes the infimum

inf
φ

∫
M

c(φ(z), z) p0(dz) s.t. pT] = p0.

It can be shown that this yields a metric on probability measures, and for c = d2
M

, it is called the L2

Kantorovich (or Wasserstein) distance

dW2 (p0, pT)2 = inf
φ

∫
M

dM(φ(z), z)2 p0(dz). (13)

By reintroducing the time variable in the L2 Monge-Kantorovich mass transfer problem, the optimal
transport map φ∗ can be reformulated as the generated flow from an optimal vector field f .

4

Proposition 3 (Dynamical formulation from (Benamou and Brenier, 2000)). Indeed we have

dW2 (p0, pT)2 = inf
1
T

∫ T

0
‖f‖2pt

dt = inf
1
T

∫ T

0

∫
M

〈f (z, t),f (z, t)〉z pt(dz) dt (14)

where the infimum is taken among all weakly continuous distributional solutions of the continuity
equation ∂

∂t pt = − div(ptf) such that p(0) = p0 and p(T) = pT . Writing φ∗t = φ∗(·, t) the flow
generated by the optimal ODE, then the optimal transport map is given by φ∗ = φ∗T .

The RHS of Equation (14) can then be approximated with no extra-cost with a Monte Carlo estimator
given samples from pt = φt]p0.

Manifold Setting Let’s now focus on the setting whereM is a Riemannian manifold.
Proposition 4 (Optimal map (Ambrosio, 2003)). Assume that M is a C3, complete Riemannian
manifold with no boundary and dM is the Riemannian distance. If p0, pT have finite second order
moments and p0 is absolutely continuous with respect to volM, then there exists a unique optimal
transport map φ for the Monge-Kantorovich problem with cost c = d2

M
. Moreover there exists a

potential h :M 7→ R such that
φ∗(z) = expz(−∇h(z)) volM − a.e..

Proposition 3 has been stated and proved for the caseM = Rd. Below we extend the proof given by
Benamou and Brenier (2000) for the manifold setting.

Proof of Proposition 3. We follow the same reasoning as the one developed for the Euclidean setting.
Let’s first upper bound the Wasserstein distance, and then state the optimal flow which yields equality.
We have

1
T

∫ T

0

∫
M

‖f (z, t)‖2z pt(dz) dt =
1
T

∫ T

0

∫
M

‖f (φ(z, t)), t)‖2z p0(dz) dt

=
1
T

∫ T

0

∫
M

∥∥∥∥∥ ∂∂t
φ(z, t)

∥∥∥∥∥2

z
p0(dz) dt

≥

∫
M

dM(φ(z,T), φ(z, 0))2 p0(dz) dt

=

∫
M

dM(φ(z,T), z)2 p0(dz) dt

≥

∫
M

dM(φ(z), z)2 p0(dz) dt

= dW2 (p0, pT)2.

Thus, the optimal choice of flow φ is given by

φ(z, t) = expz
(t
T

logz(φ∗(z))
)
, (15)

since φ(z, 0) = z, φ(z,T) = φ∗(z) and∥∥∥∥∥ ∂∂t
φ(z, t)

∥∥∥∥∥
z

=

∥∥∥∥∥ ∂∂t
φ(z, t = 0)

∥∥∥∥∥
z

=
∥∥∥logz(φ∗(z)

∥∥∥
z

= dM(φ∗(z), z).

�

Note that the optimal flow from Equation 15 yields integral paths γ(t) = φ(z, t) that are geodesics and
have constant velocity.

Motivation Regularizing the vector field with the RHS of Equation 14 would hence tend to make
the generated flow φT closer to the optimal map ψ∗. By doing so, one hopes to increase smoothness
of f and consequently lower the solver NFE given a fixed tolerance.

This has been observed in the Euclidean setting by Finlay et al. (2020). They empirically showed that
regularizing the loss of a CNF with the vector field’s l2 norm improves training speed. Motivated
by the successful use of gradient regularization (Novak et al., 2018; Drucker and Cun, 1992), they
showed that additionally regularizing the Frobenius norm of the vector field’s Jacobian helps. In
the following subsection we remind that this regularization term can also be motivated from an
estimator’s variance perspective.

5

D.2 Frobenius norm

Hutchinson’s estimator Hutchinson’s estimator (Hutchinson, 1990) is a simple way to obtain a
stochastic estimate of the trace of a matrix. Given a d-dimensional random vector ε ∼ p such that
E[ε] = 0 and Cov(ε) = Id, we have

tr(A) = Eε∼p[εT Aε].

Rademacher and Gaussian distributions have been used in practice. For a Rademacher, the variance
is given by (Avron and Toledo, 2011)

Vε∼p[εT Aε] = 2 ‖A‖F − 2
∑

i

A2
ii,

whereas for a Gaussian it is given by

Vε∼p[εT Aε] = 2 ‖A‖F .

Divergence computation As reminded in Appendix C by Equation 10, computing the vector field
divergence div(f (z, t)) involves the computation of the trace of vector field’s Jacobian tr

(
∂
∂zf (z, t)

)
.

As highlighted in Grathwohl et al. (2018); Salman et al. (2018), one can rely on the Hutchinson’s
estimator to estimate this trace with A = ∂

∂zf (z, t).

The variance of this estimator thus depends on the Frobenius norm of the vector’s field Jacobian
‖ ∂
∂zf (z, t)‖F , as noted in Grathwohl et al. (2018). Regularizing this Jacobian should then improve

training by reducing the variance of the divergence estimator.

E Vector flows and neural architecture

Hereafter we discuss about flows generated by vector fields, and neural architectural choices that we
make for their parametrization. Properties of vector fields have direct consequences on the properties
of the generated flow and in turn on the associated pushforward probability distributions. In particular
we derive sufficient conditions on the flow so that it is global, i.e. is a bijection mapping the manifold
to itself.

E.1 Existence and uniqueness of a global flow

We start by discussing about vector flows and sufficient conditions on their uniqueness and existence.

Local flow First we remind the Fundamental theorem of flows (Lee, 2003) which gives the existence
and uniqueness of a smooth local flow.
Proposition 5 (Fundamental theorem of flows). LetM be a smooth complete manifold with local
coordinates z. Let fθ :M× R 7→ TM a C1 time- dependent vector field and z0 ∈ M. Then there
exists an open interval I with 0 ∈ I, an open subset U ⊆ M containing z0, and a unique smooth map
φ : I × U 7→ M called local flow which satisfies the following properties. We write φt(z) = φ(z, t).

1. ∂
∂tφ(z, t) = fθ(φ(z, t), t) for all z, t ∈ U × I, and φ0 = idM.

2. For each t ∈ I, the map φt : U 7→ M is a local C1-diffeomorphism.

Note that with such assumptions, the existence and uniqueness of flows φt are only local.

Global flow We would like the flow φ to be defined for all times and on the whole manifold, i.e. a
global flow φ :M× R 7→ M. Fortunately, ifM is compact (such as n-spheres and torii), then the
flow is global (Lee, 2003). We show below that another sufficient condition for the flow to be global
is that the vector field be bounded.
Proposition 6 (Global Flow). LetM be a smooth complete manifold. Let fθ :M× R 7→ TM be
a C1 bounded time-dependent vector field. Then the domain of the flow φ is R ×M, i.e. the flow is
global.
Corollary 6.1. For each t ∈ R, the map φt :M 7→ M is a C1-diffeomorphism.

6

Proof of Proposition 6. Let c > 0 s.t. ‖f‖ < c , and z0 ∈ M be an initial point. Proposition 5 gives the
existence of an open interval I = (a, b), a neighbourhood U of z0 and a local flow φ : (a, b)×U 7→ M.
We write γ = φ(z0, ·). The maximal interval of γ is (a, b), which means that γ cannot be extended
outside (a, b). Suppose that b < ∞.

The integral path γ is Lipschitz continuous on (a, b) since we have

dM(γ(t), γ(s)) ≤
∫ t

s
‖γ′(t)‖ dt =

∫ t

s
‖f (γ(t), t)‖ dt ≤ c |t − s| (16)

for all s < t ∈ (a, b).

Let (tn) be a sequence in (a, b) that converges to b. Then since (tn) is a convergent sequence, it must
also be a Cauchy sequence. Then γ(tn) is also a Cauchy sequence by Equation 16. Since M is
geodesically complete, it follows by Hopf-Rinow theorem that (M, dM) is complete, hence that γ(tn)
converges to a point p ∈ M.

Now suppose that (sn) is another sequence in (a, b) that converges to b. Then by Equation 16
limn→∞ d(γ(sn), γ(tn)) = 0, thus γ(sn) also converges to limn→∞ γ(tn) = p. So for every sequence
(tn) in (a, b) that converges to b, we have that (γ(tn)) converges to p. Therefore by the sequential
criterion for limits, we have that γ has the limit p at the point b. Therefore, define γ(b) = p and so γ
is continuous at b which is a contradiction. �

E.2 Geodesic distance layer

The expressiveness of CNFs directly depends on the expressiveness of the vector field and conse-
quently on its architecture. Below we detail and motivate the use of a geodesic distance layer, as an
input layer for the vector field neural architecture.

Linear layer A linear layer with one neuron can be written in the form ha,p(z) = 〈a, z − p〉, with
orientation and offset parameters a,p ∈ Rd. Stacking l such neurons h yields a linear layer with width
l. This neuron can be rewritten in the form

ha,p(z) = sign (〈a, z − p〉) ‖a‖ dE

(
z,HK

a,p

)
where Ha,p = {z ∈ Rp | 〈a, z − p〉 = 0} = p + {a}⊥ is the decision hyperplane. The third term is the
distance between z and the decision hyperplane HK

a,p and the first term refers to the side of HK
a,p

where z lies.

Poincaré ball Ganea et al. (2018) analogously introduced a neuron f K
a,p : Bd

K → Rp on the Poincaré
ball,

hK
a,p(z) = sign

(〈
a, logK

p(z)
〉
p

)
‖a‖p dK(z,HK

a,p) (17)

with HK
a,p =

{
z ∈ Bd

K |
〈
a, logK

p(z)
〉

= 0
}

= expK
p({a}⊥). A closed-formed expression for the distance

dK(z,HK
a,p) was also derived, dK(z,HK

a,p) = 1
√
|K|

sinh−1
(

2
√
|K||〈−p⊕Kz,a〉|

(1+K‖−p⊕Kz‖2)‖a‖

)
in the Poincaré ball. To

avoid an over-parametrization of the hyperplane, we set p = exp0(a0), and a = Γ0→p(a0) with Γ
parallel transport (under Levi-Civita connection). We observed that the term ‖a‖p from Equation
17 was sometimes causing numerical instabilities, and that when it was not it also did not improve
performance. We consequently removed this scaling term. The hyperplane decision boundary HK

a,p is
called gyroplane and is a semi-hypersphere orthogonal to the Poincaré ball’s boundary.

Hypersphere In hyperspherical geometry, geodesics are great circles which can be parametrized
by a vector w ∈ Rd+1 as Hw = {z ∈ Sd | 〈w, z〉 = 0}. The geodesic distance between z ∈ Sd and the
hyperplane Hw is then given by

d(z,Hw) =

∣∣∣∣∣∣sin−1
(
〈w, z〉
√
〈w,w〉

)∣∣∣∣∣∣ .
In a similar fashion, a neuron is now defined by

hw(z) = ‖w‖2 sin−1
(
〈w, z〉
√
〈w,w〉

)
.

7

Geodesic distance layer One can then horizontally-stack l neurons to make a geodesic distance
layer g : M 7→ Rl (Mathieu et al., 2019). Any standard feed-forward neural network can then be
vertically-stacked on top of this layer.

F Extensions

F.1 Product of manifolds

Having described CNFs for complete smooth manifolds in Section 2, we extend these for product
manifoldsM =M1 × · · · ×Mk. For instance a d-dimensional torus is defined as Td = S1 × · · · × S1︸ ︷︷ ︸

d

.

Any density pθ(z1, . . . ,zK) can decomposed via the chain rule of probability as

pθ(z1, . . . ,zK) =
∏

k
pθk (zk | z1, . . . ,zk−1)

where each conditional pθk (zk | z1, . . . ,zk−1) is a density on Mk. As suggested in Rezende et al.
(2020), each conditional density can be implemented via a flow φk :Mk 7→ Mk generated by a vector
field fk, whose parameters θk are a function of (z1, . . . ,zk−1). Such a flow φ = φ1 ◦ · · · ◦ φk is called
autoregressive (Papamakarios et al., 2018) and conveniently has a lower triangular Jacobian, which
determinant can be computed efficiently as the product of the diagonal term.

G Experimental details

Below we fully describe the experimental settings used to generate results introduced in Section 4.
We open-source our code for reproducibility purposes 3.

Architecture The architecture of the vector field fθ is given by a multilayer perceptron (MLP) with
3 hidden layers and 64 hidden units – as in (Grathwohl et al., 2018) – for projected (e.g. stereographic
and wrapped cf Section 3) and naive (cf Appendix B.1) models. We rely on tanh activation. For
our Riemmanian continuous normalizing flow (RCNF), the input layer of the MLP is replaced by a
geodesic distance layer (Ganea et al., 2018; Mathieu et al., 2019) (see Appendix E.2).

Objectives We consider two objectives, a Monte Carlo (MC) estimator of the negative log-
likelihood

L̂Like(θ) = −

B∑
i=1

log pθ(zi) with zi ∼ PD

and a MC estimator of the reverse KL divergence

L̂KL(θ) =

B∑
i=1

log pθ(hθ(εi)) − log pD(hθ(εi))

with zi ∼ Pθ being reparametrized as zi = hθ(εi) and εi ∼ P.

Optimization All models are trained by the stochastic optimizer Adam (Kingma and Ba, 2015)
with parameters β1 = 0.9, β2 = 0.999, batch-size of 400 data-points and a learning rate set to 1e−3.

Training We rely on the Dormand-Prince solver (Dormand and Prince, 1980), an adaptive Runge-
Kutta 4(5) solver, with absolute and relative tolerance of 1e − 5 to compute approximate numerical
solutions of the ODE. Each solver step is projected onto the manifold.

G.1 Hyperbolic geometry and limits of conventional and wrapped methods

In this experiment the target is set to be a wrapped normal on B2 (Nagano et al., 2019; Mathieu
et al., 2019) with density NW(exp0(α ∂x),Σ) = expµ]N(α ∂x,Σ) with Σ = diag(0.3, 1.0). The scalar
parameter α allows us to locate the target closer or further away from the origin of the disk. Through
this experiment we consider three CNFs:

3https://github.com/facebookresearch/riemannian_cnf

8

https://github.com/facebookresearch/riemannian_cnf

• Naive: PN
θ = φR2

]
N(0, 1)

• Wrapped: PW
θ = (exp0 ◦ φ

R2
)]N(0, 1)

• Riemannian: PR
θ = φB2

]
NW(0, 1)

with φR2
a conventional CNF on R2, φB2

our RCNF introduced in Section 2, N(0, 1) the standard
Gaussian and NW(0, 1) the standard wrapped normal. For the RCNF we scale the vector field as

fθ(z) = |G(z)|−1/2 neural_net(z) =

(
1 − ‖z‖2

2

)2

neural_net(z).

These three models are trained for 1500 iterations, by minimizing the negative log-likelihood (see
Figure 4).When training, the divergence is approximated by the (Hutchinson) stochastic estimator
from Equation 5.

G.2 Spherical geometry

Through the following spherical experiments we consider the two following models

• Stereographic: PS
θ = (ρ−1 ◦ φR2

)]N(0, 1)

• Riemannian: PR
θ = φS2

]
U(S2)

with ρ−1 the inverse of the stereographic projection, φR2
a conventional CNF on R2, φS2

our RCNF,
N(0, 1) the standard Gaussian andU(S2) the uniform distribution on S2. For the RCNF we project
the output layer of the vector field as

fθ(z) = projTzS2 neural_net(z) =
neural_net(z)
‖neural_net(z)‖2

so as to enforce output vectors to be tangent. All spherical experiments were performed using the
exact divergence estimator.

Limits of the stereographic projection model In this experiment the target is chosen to be a
vMF(µ, κ) located at µ = −µ0 with −{µ0} = (−1, 0, . . . , 0). Both models are trained for 3000
iterations by minimizing the negative log-likelihood and the reverse KL divergence.

Density estimation of spherical data Finally we consider four earth location datasets, representing
respectively volcano eruptions (NOAA, 2020b), earthquakes (NOAA, 2020a), floods (Brakenridge,
2017) and wild fires (EOSDIS, 2020). Concerning the CNFs, these models are trained by minimizing
the negative log-likelihood for 1000 epochs. We observed that training models with a solver’s
tolerance of 1e − 5 was computationally intensive so we lowered this tolerance to 1e − 3 during
training, while keeping it to 1e − 5 for evaluation. We additionally, observed that annealing the
learning rate such that α(t) = 0.98(t/300)α0 with α0 = 1e−3 helped training convergence.

Concerning the mixture of von Mises-Fisher distributions, the parameters are learned by minimizing
the negative log-likelihood with Riemannian Adam (Bécigneul and Ganea, 2019). The number of
epochs is set to 10000 for all datasets but for the Volcano eruption one which requires 30000 for the
vMF model to converge. The learning rate and number of components are selected by performing a
hyperparameter grid search.

H Additional figures

9

0.1 0.2 0.3 0.4 0.5 0.6
compute time (s)

20

10

5

2Ne
ga

tiv
e

lo
g-

lik
el

ih
oo

d =1
Naive
Wrapped
Riemannian
(geodesic layer)
Riemannian

0.25 0.50 0.75 1.00 1.25
compute time (s)

=2

0.25 0.50 0.75 1.00 1.25 1.50
compute time (s)

=3

Figure 7: Ablation study of the geodesic layer computational impact for the Riemannian model. Negative
Log-likelihood of Riemannian CNFs trained to fit a NW(exp0(α ∂x),Σ) target on B2.

E
ar

th
qu

ak
e

Fl
oo

d

Stereographic

Fi
re

Riemannian

Figure 8: Density estimation for earth sciences data with Robinson projection. Blue and red dots represent
training and testing datapoints, respectively. Heatmaps depict the log-likelihood of the trained models.

10

	Introduction
	Continuous Normalizing Flows on Riemannian Manifolds
	Related work
	Experimental results
	Discussion
	Constant curvature manifolds
	Review of Riemannian geometry
	The Poincaré ball model of hyperbolic geometry
	The hypersphere model of elliptic geometry

	Probability measures on Riemannian manifolds
	Ambient Euclidean probability distributions

	Instantaneous change of variable
	regularization
	l2-norm
	Frobenius norm

	Vector flows and neural architecture
	Existence and uniqueness of a global flow
	Geodesic distance layer

	Extensions
	Product of manifolds

	Experimental details
	Hyperbolic geometry and limits of conventional and wrapped methods
	Spherical geometry

	Additional figures

