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Abstract

This paper introduces a conceptually simple,
scalable, and highly effective BERT-based en-
tity linking model, along with an extensive
evaluation of its accuracy-speed trade-off. We
present a two-stage zero-shot linking algo-
rithm, where each entity is defined only by
a short textual description. The first stage
does retrieval in a dense space defined by
a bi-encoder that independently embeds the
mention context and the entity descriptions.
Each candidate is then re-ranked with a cross-
encoder, that concatenates the mention and en-
tity text. Experiments demonstrate that this
approach is state of the art on recent zero-
shot benchmarks (6 point absolute gains) and
also on more established non-zero-shot eval-
uations (e.g. TACKBP-2010), despite its rel-
ative simplicity (e.g. no explicit entity em-
beddings or manually engineered mention ta-
bles). We also show that bi-encoder link-
ing is very fast with nearest neighbour search
(e.g. linking with 5.9 million candidates in
2 milliseconds), and that much of the ac-
curacy gain from the more expensive cross-
encoder can be transferred to the bi-encoder
via knowledge distillation. Our code and
models are available at https://github.
com/facebookresearch/BLINK.

1 Introduction

Scale is a key challenge for entity linking; there are
millions of possible entities to consider for each
mention. To efficiently filter or rank the candi-
dates, existing methods use different sources of
external information, including manually curated
mention tables (Ganea and Hofmann, 2017), incom-
ing Wikipedia link popularity (Yamada et al., 2016),
and gold Wikipedia entity categories (Gillick et al.,
2019). In this paper, we show that BERT-based
models set new state-of-the-art performance levels

∗Work done during internship with Facebook.

for large scale entity linking when used in a zero
shot setup, where there is no external knowledge
and a short text description provides the only infor-
mation we have for each entity. We also present an
extensive evaluation of the accuracy-speed trade-
off inherent to large pre-trained models, and show
is possible to achieve very efficient linking with
modest loss of accuracy.

More specifically, we introduce a two stage ap-
proach for zero-shot linking (see Figure 1 for an
overview), based on fine-tuned BERT architectures
(Devlin et al., 2019). In the first stage, we do re-
trieval in a dense space defined by a bi-encoder that
independently embeds the mention context and the
entity descriptions (Humeau et al., 2019; Gillick
et al., 2019). Each retrieved candidate is then ex-
amined more carefully with a cross-encoder that
concatenates the mention and entity text, follow-
ing Logeswaran et al. (2019). This overall approach
is conceptually simple but highly effective, as we
show through detailed experiments.

Our two-stage approach achieves a new state-of-
the-art result on TACKBP-2010, with an over 30%
relative error reduction. By simply reading the pro-
vided text descriptions, we are able to outperform
previous methods that included many extra cues
such as entity name dictionaries and link popular-
ity. We also improve the state of the art on existing
zero-shot benchmarks, including a nearly 6 point
absolute gain on the recently introduced Wikia
corpus (Logeswaran et al., 2019) and more than
7 point absolute gain on WikilinksNED Unseen-
Mentions (Onoe and Durrett, 2019).

Finally, we do an extensive evaluation of the
accuracy-speed trade-off inherent in our bi- and
cross-encoder models. We show that the two stage
methods scales well in a full Wikipedia setting,
by linking against all the 5.9M Wikipedia entities
for TACKBP-2010, while still outperforming exist-
ing model with much smaller candidate sets. We
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Figure 1: High level description of our zero-shot entity linking solution. From the top-left, the input gets encoded in
the same dense space where all entities representations lie. A nearest neighbors search is then performed (depicted
with a blue circle), k entities retrieved and supplied to the cross encoder. The latter attends over both input text and
entities descriptions to produce a probability distribution over the candidates.

also show that bi-encoder linking is very fast with
approximate nearest neighbor search (e.g. link-
ing over 5.9 million candidates in 2 milliseconds),
and that much of the accuracy gain from the more
expensive cross-encoder can be transferred to the
bi-encoder via knowledge distillation. We release
our code and models, as well as a system to link
entity mentions to all of Wikipedia (similar to
TagME (Ferragina and Scaiella, 2011)).1

2 Related Work

We follow most recent work in studying entity link-
ing with gold mentions.2 The entity linking task
can be broken into two steps: candidate generation
and ranking. Prior work has used frequency in-
formation, alias tables and TF-IDF-based methods
for candidate generation. For candidate ranking,
He et al. (2013), Sun et al. (2015), Yamada et al.
(2016), Ganea and Hofmann (2017), and Kolitsas
et al. (2018) have established state-of-the-art results
using neural networks to model context word, span
and entity. There is also recent work demonstrating
that fine-grained entity typing information helps
linking (Raiman and Raiman, 2018; Onoe and Dur-
rett, 2019; Khalife and Vazirgiannis, 2018).

Two recent results are most closely related to
our work. Logeswaran et al. (2019) proposed
the zero-shot entity linking task. They use cross-

1Our code and models are available at https://
github.com/facebookresearch/BLINK

2Kolitsas et al. (2018) study end-to-end linking. Our tech-
niques should be applicable to this setting as well, but we
leave this exploration to future work.

encoders for entity ranking, but rely on traditional
IR-techniques for candidate generation and did
not evaluate on large scale benchmarks such as
TACKBP. Gillick et al. (2019) show that dense em-
beddings work well for candidate generation, but
they did not do pre-training and included external
category labels in their bi-encoder architectures,
limiting their linking to entities in Wikipedia. Our
approach can be seen as generalizing both of these
lines of work, and showing for the first time that
pre-trained zero-shot architectures are both highly
accurate and computationally efficient at scale.

Humeau et al. (2019) studied different architec-
tures to use deep pre-trained bidirectional trans-
formers and performed detailed comparison of
three different architectures, namely bi-encoder,
poly-encoder, cross-encoder on tasks of sentence
selection in dialogues. Inspired by their work,
we use similar architectures to the problem of en-
tity linking, and in addition, demonstrate that bi-
encoder can be a strong model for retrieval. Instead
of using the poly-encoder as a trade-off between
cross-encoder and bi-encoder, we propose to train a
bi-encoder model with knowledge distillation (Bu-
ciluundefined et al., 2006; Hinton et al., 2015) from
a cross-encoder model to further improve the bi-
encoder’s performances.

3 Definition and Task Formulation

Entity Linking Given an input text document
D = {w1, ..., wr} and a list of entity mentions
MD = {m1, ...,mn}, the output of an entity

https://github.com/facebookresearch/BLINK
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linking model is a list of mention-entity pairs
{(mi, ei)}i∈[1,n] where each entity is an entry in a
knowledge base (KB) (e.g. Wikipedia), e ∈ E . We
assume that the title and description of the entities
are available, which is a common setting in entity
linking (Ganea and Hofmann, 2017; Logeswaran
et al., 2019). We also assume each mention has
a valid gold entity in the KB, which is usually re-
ferred as in-KB evaluation. We leave the out-of-KB
prediction (i.e. nil prediction) to future work.

Zero-shot Entity Linking We also study zero-
shot entity linking (Logeswaran et al., 2019). Here
the document setup is the same, but the knowledge
base is separated in training and test time. Formally,
denote Etrain and Etest to be the knowledge base
in training and test, we require Etrain ∩ Etest = ∅.
The set of text documents, mentions, and entity
dictionary are separated in training and test so that
the entities being linked at test time are unseen.

4 Methodology

Figure 1 shows our overall approach. The bi-
encoder uses two independent BERT transformers
to encode model context/mention and entity into
dense vectors, and each entity candidate is scored
as the dot product of these vectors. The candi-
dates retrieved by the bi-encoder are then passed to
the cross-encoder for ranking. The cross-encoder
encodes context/mention and entity in one trans-
former, and applies an additional linear layer to
compute the final score for each pair.

4.1 Bi-encoder

Architecture We use a bi-encoder architecture
similar to the work of Humeau et al. (2019) to
model (mention, entity) pairs. This approach al-
lows for fast, real-time inference, as the candidate
representations can be cached. Both input context
and candidate entity are encoded into vectors:

ym = red(T1(τm)) (1)

ye = red(T2(τe)) (2)

where τm and τe are input representations of men-
tion and entity respectively, T1 and T2 are two
transformers. red(.) is a function that reduces the
sequence of vectors produced by the transform-
ers into one vector. Following the experiments in
Humeau et al. (2019), we choose red(.) to be the
last layer of the output of the [CLS] token.

Context and Mention Modeling The represen-
tation of context and mention τm is composed of
the word-pieces of the context surrounding the men-
tion and the mention itself. Specifically, we con-
struct input of each mention example as:

[CLS] ctxtl [Ms] mention [Me] ctxtr [SEP]

where mention, ctxtl, ctxtr are the word-pieces
tokens of the mention, context before and after the
mention respectively, and [Ms], [Me] are special
tokens to tag the mention. The maximum length
of the input representation is a hyperparameter in
our model, and we find that small value such as 32
works well in practice (see Appendix A).

Entity Modeling The entity representation τe is
also composed of word-pieces of the entity title
and description (for Wikipedia entities, we use the
first ten sentences as description). The input to our
entity model is:

[CLS] title [ENT] description [SEP]

where title, description are word-pieces tokens of
entity title and description, and [ENT] is a spe-
cial token to separate entity title and description
representation.

Scoring The score of entity candidate ei is given
by the dot-product:

s(m, ei) = ym · yei (3)

Optimization The network is trained to maxi-
mize the score of the correct entity with respect
to the (randomly sampled) entities of the same
batch (Lerer et al., 2019; Humeau et al., 2019).
Concretely, for each training pair (mi, ei) in a
batch of B pairs, the loss is computed as:

L(mi, ei) = −s(mi, ei) + log
B∑
j=1

exp (s(mi, ej))

(4)

Lerer et al. (2019) presented a detailed analysis
on speed and memory efficiency of using batched
random negatives in large-scale systems. In addi-
tion to in-batch negatives, we follow Gillick et al.
(2019) by using hard negatives in training. The
hard negatives are obtained by finding the top 10
predicted entities for each training example. We
add these extra hard negatives to the random in-
batch negatives.



Inference At inference time, the entity repre-
sentation for all the entity candidates can be pre-
computed and cached. The inference task is then
reduced to finding maximum dot product between
mention representation and entity candidate rep-
resentations. In Section 5.2.3 we present effi-
ciency/accuracy trade-offs by exact and approx-
imate nearest neighbor search using FAISS (John-
son et al., 2019) in a large-scale setting.

4.2 Cross-encoder

Our cross-encoder is similar to the ones described
by Logeswaran et al. (2019) and Humeau et al.
(2019). The input is the concatenation of the input
context and mention representation and the entity
representation described in Section 4.1 (we remove
the [CLS] token from the entity representation).
This allows the model to have deep cross attention
between the context and entity descriptions. For-
mally, we use ym,e to denote our context-candidate
embedding:

ym,e = red(Tcross(τm,e)) (5)

where τm,e is the input representation of mention
and entity, Tcross is a transformer and red(.) is the
same function as defined in Section 4.1.

Scoring To score entity candidates, a linear layer
W is applied to the embedding ym,e:

scross(m, e) = ym,eW (6)

Optimization Similar to methods in Section 4.1,
the network is trained using a softmax loss to max-
imize scross(mi, ei) for the correct entity, given a
set of entity candidates (same as in Equation 4).

Due to its larger memory and compute footprint,
we use the cross-encoder in a re-ranking stage, over
a small set (≤ 100) of candidates retrieved with
the bi-encoder. The cross-encoder is not suitable
for retrieval or tasks that require fast inference.

4.3 Knowledge Distillation

To better optimize the accuracy-speed trade-off, we
also report knowledge distillation experiments that
use a cross-encoder as a teacher for a bi-encoder
model. We follow Hinton et al. (2015) to use a soft-
max with temperature where the target distribution
is based on the cross-encoder logits.

Concretely, let z be a vector of logits for set of
entity candidates and T a temperature, and σ(z, T )

a (tempered) distribution over the entities with

σ(z, T ) =
exp (zi/T )∑
j exp (zj/T )

. (7)

Then the overall loss function, incorporating both
distillation and student losses, is calculated as

Ldist = H(σ(zt; τ), σ(zs; τ)) (8)

Lst = H(e, σ(zs; 1)) (9)

L = α · Lst + (1− α) · Ldist (10)

where e is the ground truth label distribution with
probability 1 for the gold entity, H is the cross-
entropy loss function, and α is coefficient for mix-
ing distillation and student loss Lst. The student
logits zs are the output of the bi-encoder scoring
function s(m, ei), the teacher logits the output of
the cross-encoder scoring funcion scross(m, e).

5 Experiments

In this section, we perform an empirical study of
our model on three challenging datasets.

5.1 Datasets

The Zero-shot EL dataset was constructed by
Logeswaran et al. (2019) from Wikia.3 The task
is to link entity mentions in text to an entity dic-
tionary with provided entity descriptions, in a set
of domains. There are 49K, 10K, and 10K exam-
ples in the train, validation, test sets respectively.
The entities in the validation and test sets are from
different domains than the train set, allowing for
evaluation of performance on entirely unseen enti-
ties. The entity dictionaries cover different domains
and range in size from 10K to 100K entities.

TACKBP-2010 is widely used for evaluating en-
tity linking systems Ji et al. (2010).4 Following
prior work, we measure in-KB accuracy (P@1).
There are 1,074 and 1,020 annotated mention/entity
pairs derived from 1,453 and 2,231 original news
and web documents on training and evaluation
dataset, respectively. All the entities are from the
TAC Reference Knowledgebase which contains
818,741 entities with titles, descriptions and other
meta info.

3https://www.wikia.com.
4https://tac.nist.gov

https://www.wikia.com.
https://tac.nist.gov


Method Train Validation Test

BM25 76.86 76.22 69.13
Ours (bi-encoder) 93.12 91.44 82.06

Table 1: Recall@64 (%) on Zero-shot EL dataset, for
the BM25 approach and our dense space bi-encoder
based retrieval. Results on Train/Valideation/Test set
reported.

WikilinksNED Unseen-Mentions was created
by Onoe and Durrett (2019) from the original Wik-
ilinksNED dataset (Eshel et al., 2017), which con-
tains a diverse set of ambiguous entities spanning
a variety of domains. In the Unseen-Mentions ver-
sion, no mentions in the validation and test sets
appear in the training set. The train, validation
and test sets contain 2.2M, 10K, and 10K exam-
ples respectively. In this setting, the definition of
unseen-mentions is different from that in zero-shot
entity linking: entities in the test set can be seen
in the training set. However, in both definitions no
(mention, entity) pairs from test set are observed
in the training set. In the unseen-mentions test set,
about 25% of the entities appear in training set.

5.2 Evaluation Setup and Results

We experiment with both BERT-base and BERT-
large (Devlin et al., 2019) for our bi-encoders and
cross-encoders. The details of training infrastruc-
ture and hyperparameters can be found in Appendix
A. All models are implemented in PyTorch5 and
optimizied with Adam (Kingma and Ba, 2014). We
use (base) and (large) to indicate the version of our
model where the underlying pretrained transformer
model is BERT-base and BERT-large, respectively.

5.2.1 Zero-shot Entity Linking
First, we train our bi-encoder on the training set, ini-
tializing each encoder with pre-trained BERT base.
Hyper-parameters are chosen based on Recall@64
on validation datase. For specifics, see Appendix
A.2. Our bi-encoder achieves much higher recall
than BM25, as shown in Figure 2. Following Lo-
geswaran et al. (2019), we use the top 64 retrieved
candidates for the ranker, and we report Recall@64
on train, validation and test in Table 1.

After training the bi-encoder for candidate gen-
eration, we train our cross-encoder (initialized with
pre-trained BERT) on the top 64 retrieved candi-
dates from bi-encoder for each sample on the train-

5https://pytorch.org
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Figure 2: Top-k entity retrieval recall on validation
dataset of Zero-shot EL dataset

ing set, and evaluate the cross-encoder on the test
dataset. Overall, we are able to obtain a much better
end-to-end accuracy, as shown in Table 2, largely
due to the improvement on the retrieval stage.

Method U.Acc.

Logeswaran et al. (2019) 55.08
Logeswaran et al. (2019)(domain)† 56.58

Ours (base) 61.34
Ours (large) 63.03

Table 2: Performance on test domains on the Zero-shot
EL dataset. U.Acc. represents the unnormalized accu-
racy. † indicates model trained with domain adaptive
pre-training on source and target domain. Average per-
formance across a set of worlds is computed by macro-
averaging.

We also report cross-encoder performance on
the same retrieval method (BM25) used by Lo-
geswaran et al. (2019) in Table 3, where the perfor-
mance is evaluated on the subset of test instances
for which the gold entity is among the top 64 can-
didates retrieved by BM25. We observe that our
cross-encoder obtains slightly better results than
reported by Logeswaran et al. (2019), likely due to
implementation and hyper-parameter details.

5.2.2 TACKBP-2010
Following prior work (Sun et al., 2015; Cao et al.,
2018; Gillick et al., 2019; Onoe and Durrett, 2019),
we pre-train our models on Wikipedia6 data. Data
and model training details can be found in Ap-
pendix A.1.

6https://www.wikipedia.org/

https://pytorch.org
https://www.wikipedia.org/


Method Valid Test

TF-IDF† 26.06
Ganea and Hofmann (2017)† 26.96 -
Gupta et al. (2017)† 27.03 -
Logeswaran et al. (2019) 76.06 75.06

Ours (base) 78.24 76.58

Table 3: Normalized accuracy on validation and test
set on Zero-shot EL, where the performance is eval-
uated on the subset of test instances for which the
gold entity is among the top-k candidates retrieved
during candidate generation. † indicates methods re-
implemented by Logeswaran et al. (2019).

After training our model on Wikipedia, we fine-
tune the model on the TACKBP-2010 training
dataset. We use the top 100 candidates retrieved
by the bi-encoder as training examples for the
cross-encoder, and chose hyper-parameters based
on cross validation. We report accuracy results in
Table 4. For ablation studies, we also report the
following versions of our model:

1. bi-encoder only: we use bi-encoder for candi-
date ranking instead of cross-encoder.

2. Full Wikipedia: we use 5.9M Wikipedia ar-
ticles as our entity Knowlegebase, instead of
TACKBP Reference Knowledgebase.

3. Full Wikipedia w/o finetune: same as above,
without fine-tuning on the TACKBP-2010
training set.

As expected, the cross-encoder performs better
than the bi-encoder on ranking. However, both
models exceed state-of-the-art performance levels,
demonstrating that the overall approach is highly
effective. We observe that our model also per-
forms well when we change the underlying Knowl-
edgebase to full Wikipedia, and even without fine-
tuning on the dataset. In Table 5 we show that our
bi-encoder model is highly effective at retrieving
relevant entities, where the underlying Knowledge-
base is full Wikipedia.

There are however many other cues that could
potentially be added in future work. For exam-
ple, Khalife and Vazirgiannis (2018) report 94.57%
precision on the TACKBP-2010 dataset. However,
their method is based on the strong assumption that
a gold fine-grained entity type is given for each
mention (and they do not attempt to do entity type

Method Accuracy

He et al. (2013) 81.0
Sun et al. (2015) 83.9
Yamada et al. (2016)† 85.5
Globerson et al. (2016)† 87.2
Sil et al. (2018) 87.4
Nie et al. (2018)† 89.1
Raiman and Raiman (2018) 90.9
Cao et al. (2018)† 91.0
Gillick et al. (2019) 87.0

Ours 94.5
Ours (bi-encoder only) 92.9
Ours (full Wiki) 92.8
Ours (full Wiki, w/o finetune) 91.5

Table 4: Accuracy scores of our proposed model and
models from prior work on TACKBP-2010. † indicates
methods doing global resolution of all mentions in a
document. Our work focuses on local resolution where
each mention is modeled independently.

Method Recall@100

AT-Prior† 89.5
AT-Ext† 91.7
BM25† 68.9
Gillick et al. (2019) 96.3

Ours (full wiki) 98.3

Table 5: Retrieval evaluation comparison for TACKBP-
2010. † indicates alias table and BM25 baselines imple-
mented by (Gillick et al., 2019). AT-Prior: alias table
ordered by prior probabilities; AT-Ext: alias table ex-
tended with heuristics.

prediction). Indeed, if fine-grained entity type in-
formation is given by an oracle at test time, then
Raiman and Raiman (2018) reports 98.6% accu-
racy on TACKBP-2010, indicating that improving
fine-grained entity type prediction would likely im-
prove entity linking. Our results is achieved with-
out gold fine-grained entity type information. In-
stead, our model learns representations of context,
mention and entities based on text only.

5.2.3 WikilinksNED Unseen-Mentions

Similarly to the approach described in Section
5.2.2, we train our bi-encoder and cross-encoder
model first on Wikipedia examples, then fine-tune
on the training data from this dataset. We also
present our model trained on Wikipedia examples



Method Training Test

MOST FREQUENT Wiki 54.1
COSINE SIMILARITY Wiki 21.7
GRU+ATTN
(Mueller and Durrett, 2018) in-domain 41.2
GRU+ATTN Wiki 43.4
CBoW+WORD2VEC in-domain 43.0
CBoW+WORD2VEC Wiki 38.0
Onoe and Durrett (2019) Wiki 62.2

Ours in-domain 74.7
Ours Wiki 75.2
Ours Wiki (bi-encoder) 71.5
Ours Wiki and in-domain 76.8

Table 6: Accuracy on the WikilinksNED Unseen-
Mentions test set. The numbers of baseline models
are from (Onoe and Durrett, 2019). The column Train-
ing indicates the source of data used in training: Wiki
means Wikipedia examples; in-domain means exam-
ples in the training set.

and applied directly on the test set as well as our
model trained on this dataset directly without train-
ing on Wikipedia examples. We report our models’
performance of accuracy on the test set in Table 6,
along with baseline models presented from Onoe
and Durrett (2019). We observe that our model
out-performs all the baseline models.

Inference time efficiency To illustrate the effi-
ciency of our bi-encoder model, we profiled re-
trieval speed on a server with Intel Xeon CPU E5-
2698 v4 @ 2.20GHz and 512GB memory. At infer-
ence time, we first compute all entity embeddings
for the pool of 5.9M entities. This step is resource
intensive but can be paralleled. On 8 Nvidia Volta
v100 GPUs, it takes about 2.8 hours to compute
all entity embeddings. Given a query of mention
embedding, we use FAISS (Johnson et al., 2019)
IndexFlatIP index type (exact search) to obtain
top 100 entity candidates. On the WikilinksNED
Unseen-Mentions test dataset which contains 10K
queries, it takes 9.2 ms on average to return top 100
candidates per query in batch mode.

We also explore the approximate search options
using FAISS. We choose the IndexHNSWFlat in-
dex type following Karpukhin et al. (2020). It takes
additional time in index construction while reduces
the average time used per query. In Table 7, we see
that HNSW1

7 reduces the average query time to
2.6 ms with less than 1.2% drop in accuracy and re-

7Neighbors to store per node: 128, construction time
search depth: 200, search depth: 256; construction time: 2.1h.

Method Acc R@10 R@30 R@100 ms/q

Ex. Search 71.5 92.7 95.4 96.7 9.2
HNSW1 71.1 91.6 94.2 95.5 2.6
HNSW2 70.7 91.0 93.9 94.6 1.4

Table 7: Exact and approximate candidate retrieval us-
ing FAISS. Last column: average time per query (ms).
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Figure 3: Overall model accuracy based on different
choices of k (number of retrieved entities from bien-
coder), on the Unseen-Mentions dataset.

call, and HNSW2
8 further reduce the query time

to 1.4 ms with less than 2.1% drop.

Influence of number of candidates retrieved
In a two-stage entity linking systems, the choice of
number of candidates retrieved influences the over-
all model performance. Prior work often used a
fixed number of k candidates where k ranges from
5 to 100 (for instance, Yamada et al. (2016) and
Ganea and Hofmann (2017) choose k = 30, (Lo-
geswaran et al., 2019) choose k = 64). When k is
larger, the recall accuracy increases, however, the
ranking stage accuracy is likely to decrease. Fur-
ther, increasing k would often increase the run-time
on the ranking stage. We explore different choices
of k in our model, and present the recall@K curve,
ranking stage accuracy and overall accuracy in Fig-
ure 3. Based on the overall accuracy, we found that
k = 10 is optimal.

5.3 Knowledge Distillation

In this section, we present results on knowledge
distillation, using our cross-encoder as a teacher
model and bi-encoder as a student model.

8Neighbors to store per node: 128, construction time
search depth: 200, search depth: 128; construction time: 1.8h.



Mention Bi-encoder Cross-encoder

But surely the biggest surprise is Ronaldos drop in
value, despite his impressive record of 53 goals and
14 assists in 75 appearances for Juventus.

Ronaldo
(Brazilian footballer)

Cristiano Ronaldo

... they spent eleven days in the United Kingdom
and Spain, photographing things like Gothic statues,
bricks, and stone pavements for use in textures.

Gothic fiction Gothic art

To many people in many cultures, music is an im-
portant part of their way of life. Ancient Greek and
Indian philosophers defined music as tones ...

Acient Greek Ancient Greek philosophy

Table 8: Examples of top entities predicted by Bi-encoder model and Cross-encoder model. Mentions in the
examples are written in ornage and the correct entity prediction in bold.

We experiment knowledge distillation on the
TACKBP-2010 and the WikilinksNED Unseen-
Mentions dataset. We use the bi-encoder pretrained
on Wikipedia as the student model, and fine-tune
it on each dataset with knowledge distillation from
the teacher model, which is the best performing
cross-encoder model pretrained on Wikipedia and
fine-tuned on the dataset.

We also fine-tune the student model in our ex-
periments on each dataset, without the knowledge
distillation component, as baseline models. As we
can see in Table 9, the bi-encoder model trained
with knowledge distillation from cross-encoder out-
performs the bi-encoder without knowledge distilla-
tion, providing another point in the accuracy-speed
trade-off curve for these architectures.

Dataset bi-encoder teacher bi-encoder-KD

Unseen 74.4 76.8 75.7
TAC2010 92.9 94.5 93.5

Table 9: Knowledge Distillation Results. The teacher
model is the cross-encoder, and bi-encoder-KD is the
bi-encoder model trained with knowledge distillation.

6 Qualitative Analysis

Table 8 presents some examples from our bi-
encoder and cross-encoder model predictions, to
provide intuition for how these two models con-
sider context and mention for entity linking.

In the first example, we see that the bi-encoder
mistakenly links “Ronaldo” to the Brazilian foot-
ball player, while the cross-encoder is able to use
context word “Juventus” to disambiguate. In the
second example, the cross-encoder is able to iden-
tify from context that the sentence is describing art

instead of fiction, where the bi-encoder failed. In
the third example, the bi-encoder is able to find the
correct entity “Ancient Greek,”; where the cross-
encoder mistakenly links it to the entity “Ancient
Greek philosophy,” likely because that the word
“philosophers” is in context. We observe that cross-
encoder is often better at utilizing context infor-
mation than bi-encoder, but can sometimes make
mistakes because of misleading context cues.

7 Conclusion

We proposed a conceptually simple, scalable, and
highly effective two stage approach for entity
linking. We show that our BERT-based model
outperforms IR methods for entity retrieval, and
achieved new state-of-the-art results on recently
introduced zero-shot entity linking dataset, Wik-
ilinksNED Unseen-Mentions dataset, and the more
established TACKBP-2010 benchmark, without
any task-specific heuristics or external entity knowl-
edge. We present evaluations of the accuracy-speed
trade-off inherent to large pre-trained models, and
show that it is possible to achieve efficient linking
with modest loss of accuracy. Finally, we show
that knowledge distillation can further improve bi-
encoder model performance. Future work includes:

• Enriching entity representations by adding en-
tity type and entity graph information;

• Modeling coherence by jointly resolving men-
tions in a document;

• Extending our work to other languages and
other domains;

• Joint models for mention detection and entity
linking.
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A Training details and hyper-parameters
Optimization

• Computing infrastructure: we use 8 Nvidia
Volta v100 GPUs for model training.

• Bounds for each hyper parameter: see Table
10. In addition, for our bi-encoders, we use
a max number of tokens of [32, 64, 128] for
context/mention encoder and 128 for candi-
date encoder. In our knowledge distillation
experiments, we set α = 0.5, and T in [2, 5].
We use grid search for hyperparameters, for a
total number of 24 trials.

• Number of model parameters: see Table 11.

• For all our experiments we use accuracy on
validation set as criterion for selecting hyper-
parameters.

Parameter Bounds

Learning rate [2e−6, 5e−6, 1e−5, 2e−5]
Bi-encoder batch size [128, 256]
Cross-encoder batch size [1, 5]

Table 10: Bounds of hyper-parameters in our models

Model Number of parameters

Bi-encoder (base) 220M
Cross-encoder (base) 110M
Bi-encoder (large) 680M
Cross-encoder (large) 340M

Table 11: Number of parameters in our models

A.1 Training on Wikipedia data
We use Wikipedia data to train our models first,
then fine-tune it on specific dataset. This approach
is used in our experiments on TACKBP-2010 and
WikilinksNED Unseen-Mentions datasets.

We use the May 2019 English Wikipedia dump
which includes 5.9M entities, and use the hyper-
links in articles as examples (the anchor text is the
mention). We use a subset of all Wikipedia linked
mentions as our training data for the bi-encoder
model (A total of 9M examples). We use a holdout
set of 10K examples for validation. We train our
cross-encoder model based on the top 100 retrieved
results from our bi-encoder model on Wikipedia
data. For the training of the cross-encoder model,
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we further down-sample our training data to obtain
a training set of 1M examples.

Bi-encoder (large) model Hyperparameter con-
figuration for best model: learning rate=1e−5,
batch size=128, max context tokens=32. Average
runtime for each epoch: 17.5 hours/epoch, trained
on 4 epochs.

Cross-encoder (large) model Hyperparameter
configuration for best model: learning rate=2e−5,
batch size=1, max context tokens=32. Average run-
time for each epoch: 37.2 hours/epoch, trained on
1 epoch.

A.2 Zero-shot Entity Linking Dataset

Dataset available at https://github.com/
lajanugen/zeshel. There are 49K, 10K, and
10K examples in the train, validation, test sets re-
spectively. Training details:

Bi-encoder (base) model Hyperparameter con-
figuration for best model: learning rate=2e−5,
batch size=128, max context tokens=128. Average
runtime: 28.2 minutes/epoch, trained on 5 epochs.

Bi-encoder (large) model Hyperparameter con-
figuration for best model: learning rate=1e−5,
batch size=128, max context tokens=128. Average
runtime: 38.2 minutes/epoch, trained on 5 epochs.

Cross-encoder (base) model Hyperparameter
configuration for best model: learning rate=1e−5,
batch size=1, max context tokens=128. Average
runtime: 2.6 hours/epoch, trained on 2 epochs.

Cross-encoder (large) model Hyperparameter
configuration for best model: learning rate=1e−5,
batch size=1, max context tokens=128. Average
runtime: 8.5 hours/epoch, trained on 2 epochs.

A.3 TACKBP-2010 Dataset

Dataset available at https://catalog.ldc.
upenn.edu/LDC2018T16. There are 1,074
and 1,020 annotated examples in the train and test
sets respectively. We use a 10-fold cross-validation
from training set. Training details:

Bi-encoder (large) model Hyperparameter con-
figuration for best model: learning rate=2e−6,
batch size=128, max context tokens=32. Average
runtime: 9.0 minutes/epoch, trained on 10 epochs.

Bi-encoder (large) model with Knowledge Dis-
tillation Hyperparameter configuration for best
model: learning rate=2e−5, batch size=128, max
context tokens=32, T = 2, α = 0.5. Average run-
time: 11.2 minutes/epoch, trained on 10 epochs.

Cross-encoder (large) model Hyperparameter
configuration for best model: learning rate=1e−5,
batch size=1, max context tokens=128. Average
runtime: 20.4 minutes/epoch, trained on 10 epochs.

A.4 WikilinksNED Unseen-Mentions Dataset
The train, validation and test sets contain 2.2M,
10K, and 10K examples respectively. We use a
subset of 100K examples to fine-tune our model
on this dataset, as we found more examples do not
help. Training details:

Bi-encoder (large) model Hyperparameter con-
figuration for best model: learning rate=2e−6,
batch size=128, max context tokens=32. Average
runtime for each epoch: 3.2 hours/epoch, trained
on 1 epochs.

Bi-encoder (large) model with Knowledge Dis-
tillation Hyperparameter configuration for best
model: learning rate=5e−6, batch size=128, max
context tokens=32, T = 2, α = 0.5. Average run-
time: 6.5 hours/epoch, trained on 1 epochs.

Cross-encoder (large) model Hyperparameter
configuration for best model: learning rate=2e−6,
batch size=5, max context tokens=128. Average
runtime: 4.2 hours/epoch, trained on 1 epochs.
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