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ABSTRACT

Attention-based sequence-to-sequence modeling provides a
powerful and elegant solution for applications that need to
map one sequence to a different sequence. Its success heav-
ily relies on the availability of large amounts of training data.
This presents a challenge for speech applications where la-
belled speech data is very expensive to obtain, such as auto-
matic speech recognition (ASR) and speech translation (ST).
In this study, we propose a general multi-task learning frame-
work to leverage text data for ASR and ST tasks. Two aux-
iliary tasks, a denoising autoencoder task and machine trans-
lation task, are proposed to be co-trained with ASR and ST
tasks respectively. We demonstrate that representing text in-
put as phoneme sequences can reduce the difference between
speech and text inputs, and enhance the knowledge transfer
from text corpora to the speech to text tasks. Our experiments
show that the proposed method achieves a relative 10∼15%
word error rate reduction on the English LIBRISPEECH task
compared with our baseline, and improves the speech transla-
tion quality on the MUST-C tasks by 3.6∼9.2 BLEU.

Index Terms— Multi-task learning, speech recognition,
speech translation

1. INTRODUCTION

Attention-based encoder-decoder modeling is a natural and
powerful paradigm for speech to text tasks, such as automatic
speech recognition (ASR) and speech translation (ST), and
that has led to significant progress [1, 2, 3, 4, 5, 6]. How-
ever, it relies on large amounts of supervised speech data,
which is expensive to transcribe and translate. In addition,
the amount of speech transcripts and speech translation labels
is dwarfed by the amount of text data available for language
model (LM) and machine translation (MT) training. For ex-
ample, the number of text tokens used for LM modeling is
two orders of magnitude larger than the number of tokens
from the corresponding speech corpus in the LIBRISPEECH
data corpus [7], as shown in Table 1.

Attention-based encoder-decoder models are not designed
to incorporate heterogeneous inputs and cannot benefit from

large amounts of low cost text data directly in speech appli-
cations. As expected, performance gaps can still be observed
between attention based encoder-decoder systems and con-
ventional systems with multiple components [8, 9, 10]. In
order to alleviate the data scarcity issue, different approaches
have been studied, including acoustic [11, 12] and linguistic
aspects [13, 14]. LM is the most commonly used method to
integrate linguistic information into ASR. Prior work focuses
on building LM with monolingual text data, and then integrate
LM or transfer knowledge from it into the decoder [13, 15,
16]. [17] generate synthetic data from text to augment speech
training corpus. Another direction is to leverage text data di-
rectly during training through multitask learning [18, 19, 20].
[19] use a common representation space to learn correspon-
dences between different modalities for spoken language un-
derstanding. [20] propose multi-modal data augmentation to
jointly train text and speech for ASR. [4, 21] are focused on
ST tasks and trained with an ASR system together, where
ASR is used as an auxiliary task. Hence, those methods can-
not be applied back to ASR systems.

In this study, we focus on leveraging text data to improve
linguistic modeling ability in speech to text tasks. We pro-
pose a general framework to leverage text data for ASR and
ST tasks. A denoising autoencoder task [22, 23] is introduced
to be jointly trained with the ASR task with monolingual data,
while a machine translation task is co-trained with ST task
with parallel data. Text input is represented as spoken form
using phoneme sequence and it effectively reduces the differ-
ence between speech input and text input. We also carefully
study different design choices for the joint training system,
including strategies to share the text and speech encoders and
comparing the joint training system with models initialized
from pre-trained components. Our experiments show the pro-
posed joint training systems can effectively reduce word error
rate (WER) for the ASR task by 10% to 15% and improve
BLEU score by 3.6∼9.2 for ST tasks.

2. MODEL

The speech and text joint training framework is described in
Fig. 1. It consists of three components: speech encoder, text
encoder (within the dashed box) and decoder. Two types of



Fig. 1: Joint training framework. Text encoder (within dashed box) is dropped during inference.

input data are fed into the model: speech featureX = (x1, x2·
··, xN ), xn ∈ Rds and text form tokens Y = (y1, y2, ···, yM ).
The model output is a token sequenceW = (w1, w2, ···, wK),
where ds is the speech feature dimension, N , M and K are
the number of speech feature frames, number of text form to-
kens, number of transcription or translation tokens. The text
encoder is only used during training and dropped during infer-
ence. The training minimizes the loss L from two sub-tasks,
e.g., the ST (or ASR) task and the MT (or denoising autoen-
coder) task, as below :

L=−logP (W |X, θsenc, θdec)−logP (W |Y, θtenc, θdec) (1)

where θsenc, θ
t
enc and θdec are parameters for speech encoder,

text encoder and decoder respectively.

2.1. Transformer Encoders and Decoder

Two encoders and decoder are all transformer based mod-
els [24]. Following [25], the speech encoder has an extra sub-
sampling module, which consists of two 1-dimensional con-
volutional layers and each is with kernel width 3 and stride
2. The subsampling module outputs are combined with sinu-
soidal positional embeddings and fed into the following trans-
former layers. The text encoder and decoder consist of stan-
dard transformer layers. We use pre-layer normalization for
more stable training [26].

2.2. Input Text Representation

The input text to the joint training model comes from two
sources: the transcripts from the speech training corpora, and
text data from non-speech corpora. The text input is presented
as phoneme sequence instead of word tokens or subword to-
kens [20]. Phoneme sequence is the spoken form representa-
tion of the original text and is easier to be mapped to the corre-
sponding speech input. The conversion from text to phoneme
representation can be done through a grapheme to phoneme
system or simply a dictionary lookup. The phoneme set used
in this study is based on the Carnegie Mellon Pronouncing
Dictionary with 39 phonemes. Vowels carry a lexical stress
marker. We further extend the phoneme set by identifying the
first phoneme in the word with additional “ ” mark, which is
similar to the notation in sentence piece process.

2.3. Auxiliary Text Tasks

The MT task is chosen as an auxiliary task to be jointly trained
with the ST task. The input tokens are phoneme sequences
converted from the corresponding source text and the target is
represented as subword units derived from the corresponding
translation labels.

In the ASR task, the auxiliary task maps the input
phoneme sequence to the corresponding subword tokens
derived from transcripts. However, the task is too simple
since 76% of words in the Carnegie Mellon Pronouncing
Dictionary can be recovered from a phoneme sequence de-
terministically. It brings little help to the ASR task as shown
in the experiments in section 4. Hence, we modify this task
to a denoising autoencoder task [22, 23] and part of the input
phoneme tokens are masked as “〈NOISE〉”. The decoder has
to infer the target word based on the phonemes of this word
as well as neighbouring context. Hence, the monolingual
text data can be integrated into sequence to sequence ASR
modeling naturally and effectively.

Fig. 1 shows the ASR input/output. The input text is “It’s
delightful” and the corresponding target subword sequence
encoded with SentencePiece is “ IT ’ S DELIGHTFUL”. The
phoneme sequence corresponding to input text is “ IH1 T S
D IH0 L AY1 T F AH0 L”. Phoneme “AY1” is randomly se-

lected and masked with “〈NOISE〉” token, and the phoneme
sequence fed to the model becomes “ IH1 T S D IH0 L
〈NOISE〉 T F AH0 L”.

3. EXPERIMENTAL SETTINGS

3.1. Data

We conduct experiments on two datasets, LIBRISPEECH [7]
and MUST-C [27]. The detailed training data statistics are
presented in Table 1. The second column is the total num-
ber of hours for the speech training data. The third and fifth
columns are the number of (source) words.
ASR datasets: ASR is evaluated on the LIBRISPEECH dataset
and the co-training text data is the language model training
data coming with the LIBRISPEECH dataset.
ST datasets: ST is evaluated on three language pairs:
English-German (EN-DE), English-Spanish (EN-ES) and



Speech hours #W(m) Text #W(m)
LibriSpeech 960 9.4 Gutenberg 803.3
MuST-C

EN-DE 408 4.2 WMT17 105.2
EN-ES 504 5.2 WMT13 369.4
EN-FR 492 5.1 WMT14 1,018.5

Table 1: Data statistics for ST and ASR training sets.
“#W(m)” stands for “number of words (million)”.

Data set
#params Dev Test

(m) clean other clean other
LAS [12] 360 - - 2.8 6.8
Transformer [25] 270 2.5 6.7 2.9 7.0
Transformer (M) 76 3.5 8.1 3.7 8.1
Joint Training (M) 76 3.0 7.4 3.3 7.6
Transformer (L) 161 3.3 7.9 3.6 8.0
Joint Training (L) 161 2.8 7.0 3.1 7.2

Table 2: WER results on Librispeech

English-French (EN-FR) on the tst-COMMON test set. WMT
parallel data is used as text training corpus. Case-sensitive
detokenized BLEU is reported by SACREBLEU.

Target subword units are learned from SentencePiece with
vocabulary size 10k and full character coverage on all train-
ing text data. The grapheme to phoneme conversion for the
input text is done through the “g2p en” Python package [28].
The input phoneme vocabulary size is 134. Input speech is
represented as 80D log mel-filterbank coefficients computed
every 10ms with a 25ms window. Global channel mean and
variance normalization is applied to the input speech features.
SpecAugment [12] is employed to augment audio data for
model training. LD and LB policies from [12] are applied
to LIBRISPEECH and MUST-C tasks respectively.

3.2. Model Setup

In all experiments, the speech encoder has 12 transformer
layers while the text encoder and decoder have 6 transformer
layers. Three model configurations are examined: small,
medium and large. The small configuration has a word em-
bedding size of 256 and transformer middle layer dimension
2048; medium configuration has word embedding size equal
to 512 and the middle layer dimension 2048; the large con-
figuration sets word embedding size to 768 and middle layer
dimension to 3072. The MUST-C models are using the small
configuration, while the medium and large configurations
are used for the LIBRISPEECH models. If not specifically
mentioned, the medium configuration is used by default in
LIBRISPEECH experiments. We use the Adam optimizer with
a learning rate 0.001 in all experiments. Label smoothing and
dropout rate are both set to 0.1. The LIBRISPEECH models

Data corpus #params(m) EN-DE EN-ES EN-FR
Transformer [29] 30 17.7 20.9 26.5
Transformer [5] - 22.9 28.0 32.7
Transformer [30] 435 25.2 - 34.5
Transformer 31 20.3 19.4 25.3
Joint Training 31 23.9 28.6 33.1

Table 3: BLEU results of three language pairs on the MuST-C
tst-COMMON.

Data set
Librispeech Dev MuST-C EN-DE

(WER) (BLEU)
clean other tst-COMMON

None 3.5 8.1 20.3
Character 3.8 8.6 23.1
Phoneme 3.0 7.4 23.9

Table 4: Comparison of the input text representations.

are trained with 240 epochs using 16 GPUs and the MUST-
C models are trained with 200 epochs using 8 GPUs. The
batch size is 40,000 frames for speech samples and 20,000
tokens for text samples per GPU. Speech input and text input
are used to update the model alternatively. The models are
trained with Fairseq [6]. The last 10 checkpoints are averaged
for inference with beam size 5.

4. EXPERIMENTAL RESULTS

We present our main ASR results in Table 2. The top of the
table shows results from literature. “Transformer” and “Joint
Training” are results from the baseline and the corresponding
jointly trained system. In the jointly trained system, 20% of
input tokens are masked. Two configurations: medium (row
3-4) and large (row 5-6 ), are studied. For both configurations,
the multi-task system outperforms the baseline system at all
4 test sets. The large configuration achieves the best results
with relative WER reductions varied from 10% to 15%.

Table 3 demonstrates the main results on three ST tasks.
The models are trained with the small configuration. The re-
sults from baseline (row 4) are comparable to results in [29],
though all baselines are trained from scratch with random
initialization. Row 5 demonstrates results from the jointly
trained models with extra WMT parallel text. The perfor-
mance is improved significantly that 3.6 to 9.2 BLEU score
increases are observed in different language pairs.
Impact of Input Token Representations In Table 4, we
compared the phoneme representation with character based
representation on both ASR and ST tasks. “None” represents
results from a system without text input. Results from the
character based text representation are listed in row “Charac-
ter”. For the ASR task, the WERs are even higher than re-
sults from the baseline system trained with speech data only.



Data set
Librispeech Dev MuST-C EN-DE

(WER) (BLEU)
clean other tst-COMMON

No Share 3.0 7.4 22.7
Share 3.0 7.4 23.9

Table 5: Comparison of encoder parameter sharing strategies

Data set
Librispeech Dev MuST-C EN-DE

(WER) (BLEU)
Masking ratio clean other tst-COMMON
0.0 3.3 8.2 23.9
0.1 2.9 7.6 23.8
0.2 3.0 7.4 23.2
0.3 3.0 7.8 23.1

Table 6: Comparison of different masking ratios.

Though the ST result using character representation is better
than the baseline, it is 0.8 BLEU lower than the phoneme rep-
resentation based system. It is clear that organizing the input
text in spoken form is critical for the speech-text multi-task
learning, and it makes the knowledge transfer from text to
speech more effective.
Encoder Parameter Sharing Strategies Speech to text tasks
obtain linguistic information from text corpora via a shared
decoder. It is natural to ask if sharing parameters between two
encoders would improve performance further. We compare
systems with shared encoder (“Share”) and dedicated encoder
(“No Share”) in Table 5. Shared encoder means parameters
in all 6 transformer layers in the text encoder are shared with
the last 6 layers of the speech encoder. Sharing parameters
between encoders is helpful for the MUST-C task. 1.2 BLEU
decrease is observed without parameter sharing between two
encoders. On the other hand, the ASR task is not sensitive to
the parameter sharing that different strategies give compara-
ble results.
Impact of Masking In Table 6, different input text mask-
ing ratios are examined for both ASR and ST tasks. Without
masking (row 1), the jointly trained ASR model performs no
better than the Transformer baseline (as shown in Table 4 row
“None”). The best WER is achieved when 20% input tokens
are masked. It confirms our assumption that mapping from
phoneme sequence to the corresponding (sub)word sequence
is too simple that the model can accomplish it without learn-
ing much of the language context. Masking some phonemes
forces the model to learn better language context represen-
tation. For the ST task, masking degrades speech transla-
tion performance. We hypothesis that the English to German
translation task is challenging, and the decoder needs to un-
derstand language context to associate the input phoneme se-
quence with the target subword sequence.
Comparison with Pre-Trained Models Compared to multi-

model Encoder Decoder Joint Training BLEU
I × × × 20.3
II X × × 22.7
III × X × 22.3
IV X X × 22.9
V × × X 23.9
VI X X X 24.0

Table 7: Comparison of models initialized with pre-trained
model on the MuST-C EN-DE task.

task learning, another important direction is to learn different
tasks individually, and then finetune the pre-trained model
for downstream tasks. We compare these two approaches in
Table 7. Two pre-trained components are used. The speech
encoder is pre-trained on the ASR task and the decoder
through a MT task. In row “II” and “III”, ST models are
initialized with pre-trained encoder and decoder respectively.
In both cases, more than 2 BLEU score improvements are
observed. Combining both pre-trained models, another 0.2
BLEU score gain is achieved in row “IV” compared with
results in row “II”. Row “V” is the result from the jointly
trained model, which outperforms the ST model with both
encoder and decoder initialized from pre-trained models by
another 1.0 BLEU. In row “VI”, the pre-trained model is
finetuned using joint training, it is slightly better than the
model trained from scratch in row “V”. It shows that the
jointly trained model could achieve good results even without
pre-trained components.

5. CONCLUSION

In this study, we propose a general multi-task learning frame-
work to leverage text data for ASR and ST tasks. The ASR
task is co-trained with a denoising autoencoder task using
monolingual text, while a MT task is jointly trained with
the ST task with parallel data. Text input is represented as
phoneme sequences to reduce the difference between speech
input and text input. We examined different factors that im-
pact the performance of the jointly trained system. Our exper-
imental results show substantial WER reduction is achieved
on the LIBRISPEECH dataset and large BLEU score gain is
obtained in the MUST-C datasets.
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