
From Categorical Logic to Facebook Engineering

Peter O’Hearn
Facebook & University College London

Abstract

I chart a line of development from category-theoretic
models of programs and logics to automatic program
verification/analysis techniques that are in deployment at
Facebook. Our journey takes in a number of concepts
from the computer science logician’s toolkit – including
categorical logic and model theory, denotational seman-
tics, the Curry-Howard isomorphism, substructural logic,
Hoare Logic and Separation Logic, abstract interpretation,
compositional program analysis, the frame problem, and
abductive inference.

In the 1960s and early 1970s a deep connection be-
tween logic, types and categories was uncovered, which
has become a cornerstone of logic in computer science.
In particular, Lambek described how deductive systems
of logic corresponded to categorical structures – most
famously for intuitionistic logic and cartesian closed cat-
egories with finite coproducts, but also covering various
forms of substructural logic connecting to monoidal closed
categories [13], [14].

Around the same time, logicians were advancing a form
of possible world semantics for relevant logics [28], [26].
Relevant logics typically admitted the structural rule of
Contraction but not Weakening, but their semantics could
be immediately adapted to cover Contractionless logics and
even those without commutativity of conjunction.

And in yet another line of development the denotational
semantics of programming languages was being advanced
by Scott and Strachey [27].

I did research involving these topics as an academic,
and now I work for Facebook Engineering on automated
software tools to help engineers make more reliable code.
Some of the work we do on tools can be traced directly

c©2015 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.
In: 30th IEEE/ACM Symposium on Logic in Computer Science, 2015,
pp17-21. ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7174865

back to this foundational work in logic and semantics; the
talk describes the thread from the abstract semantic con-
cepts through to engineering tools in current deployment,
and in this accompanying paper I give a brief description
of the main points.

1) A Denotational Model: The starting point is a par-
ticular denotational model. Types A in the model denote
functions from finite sets (of locations, or resources) X
to sets AX; we think of AX as containing elements that
only access the resources in X . We can define operations
on types as follows

1X = {e}
(A×B)X = AX ×BX
(A⇒ B)X = AX ⇒ BX

0X = ∅
(A+B)X = AX +BX

(emp)X =

{
{e} if X = ∅
∅ otherwise

(A−∗B)X = ΠY⊥XAY ⇒ B(Y]X)

(A ∗B)X = {(Y,Z, a∈AY, b∈BZ) | X = Y] Z}
where ⇒, ×, + on the right are set-theoretic function
space, cartesian product and disjoint union.

The A ⇒ B function type is the familiar one from
typed λ-calculus. In contrast, A−∗B can be used to model
functions that only ever access disjoint resources from their
arguments; the quantification ΠY⊥X in the definition is
over finite sets Y disjoint from X . A×B is the cartesian
product, the type of arbitrary pairs, where A∗B is the type
of pairs that access disjoint resources (Y]Z in the defini-
tion denoting union of disjoint sets). For instance, a type of
locations can be modelled by Loc where LocX = X for
each X; then any (Y, Z, a, b) ∈ (Loc ∗ Loc)X must have
a, b being distinct locations from X: they are not “aliases”.
A version of this model was invented originally [17] to
interpret Reynolds’s Syntactic Control of Inferference, a
novel, early use of substructural type theory to control
sharing of resources [23].

Looking at the mathematical structure of this model,
in a way that abstracts from its details, leads to a new

mathematical logic, Bunched Logic. Category theory is the
key tool for performing this abstraction.

2) Doubly-Closed Categories and Bunched Logic:
Consider the category in which the objects are functions
from finite sets of locations to sets, and where a morphism
η from A to B is a collection of set-theoretic functions
ηX : AX ⇒ BX , indexed by finite sets X . That is,
we consider the product category SetC where C is the
powerset of a given set of locations. The central point is
that this category has two closed structures: a cartesian
closed structure and a symmetric monoidal closed struc-
ture. Writing A −→ B for the set of morphisms (hom set)
from A to B, saying we have these two closed structures
is to say that there are isomorphisms of hom sets

Γ×A −→ B
Γ −→ A⇒ B

Γ ∗A −→ B
Γ −→ A−∗B

for objects Γ, A and B, where we mean an isomorphism
here of maps of the form above the line with those below
(these isomorphisms additionally need to be what is called
natural in Γ and B). So the function types and their
corresponding products both fit together in the way that
in λ-calculus is understood via Currying. The difference
between these correspondences is that the product ∗ does
not admit projections or the duplication corresponding to
maps of the shape A ∗ B −→ A or A −→ A ∗ A, maps
which are present for the cartesian product ×.

This “doubly closed” structure leads to a type theory,
bunched type theory [16], [18], [22], where the two
isomorphisms just stated correspond to introduction rules
for function types. It also leads via the Curry-Howard
propositions as types correspondence to a logic, Bunched
Logic [19], [22], which mixes intuitionistic logic and what
nowadays is called multiplicative intuitionistic linear logic
(formerly, BCI logic, or symmetric Lambek calculus). Log-
ically, our isomorphisms of hom sets turn into statements
of variants of the deduction theorem of logic.

Summing up, a categorical model of bunched logic is a
cartesian closed category with finite coproducts possess-
ing an additional symmetric monoidal closed structure.
Any logical formula built using intuitionistic connectives
(1,∧,⇒, 0,∨) plus emp, ∗ and −∗ can be interpreted as
an object in such a category, and an entailment judgement
P ` Q is then interpreted in terms of the existence of
a morphism from the object determined by P to that by
Q; generally, with an appropriate proof theory, each proof
determines such a morphism. This perspective is described
briefly in the paper by O’Hearn and Pym introducing
Bunched Logic, and more fully in a comprehensive mono-
graph on the logic by Pym [22]. [Bunched Logic is named
by reference to tree-like structures (bunches) used in its
natural deduction and Gentzen proof theories; we do not
need to talk about bunches in this paper.]

If we restrict attention to posets (collapsed categories),
models for Bunched Logic can be stated as follows:

An algebraic model of Bunched Logic is a poset
that is a Heyting algebra together with an ad-
ditional ordered commutative monoid structure
(∗, emp) which is residuated (having the −∗
adjunct).

We have described how categorical structure extracted
from the denotational model described earlier can give rise
to a mathematical logic, but we have not said why such a
logic might be of interest. This stems from a connection
to the notion of shared resources, which was hinted at in
the model we began with, and developed further in a form
of semantics to which we now turn.

3) Possible Worlds and Resources: In a remarkable
coincidence of Australian discoveries around the same
time, the “ternary relation” semantics discovered by the
relevantists Routley and Meyer [26] was very closely
related to a general construction due to Day [9].

(A ∗B)X =
∫ Y Z

AY ×BZ × P(X,Y, Z)

x |= P ∗Q ⇔ ∃yz. y |= P ∧ z |= Q ∧ Rxyz

The denotational model of A ∗ B we gave earlier is an
instance of the first formula, which is sometimes referred
to as the Day convolution: the co-end

∫ Y Z is a category-
theoretic cousin of an existential type, and the particular
model earlier gives witnesses of the existential. P(X,Y, Z)
is what is called a promonoidal structure (in our partiular
case indicating that X = Y] Z). The second formula is
the interpretation of the relevantists’ “fusion” connective in
the ternary relation semantics, where R ⊆W 3 is a ternary
relation and the x, y, z ∈W are possible worlds.

Doubly-closed categories model the proof theory of (in-
tuitionistic) Bunched Logic using a variant on the Heyting
view of proofs as functions. Converting over to a possible
world semantics following the relevantists’ work leads to
a declarative semantics of Bunched Logic, advanced by
Pym, which he then justified intuitively by appeal to a
notion of resource: P ∗Q is true of a resource just when
it is possible to decompose the resource into parts that
make the conjuncts true. Pym gives explanations of all
the intuitionistic connectives as well as emp, ∗ and −∗
in terms of resource [22], [21]. Besides giving an inuitive
declarative reading of formulae, Pym’s semantics opened
the way for a semantics of a boolean variant as well.

An algebraic model of boolean Bunched Logic
is a poset that is a boolean algebra together
with an additional ordered commutative monoid
structure (∗, emp) which is residuated (having
the −∗ adjunct).

Any ternary relation model satisfying axioms forcing com-
mutativity and associativity of ∗ gives rise to a model of

boolean Bunched Logic.
Separation Logic is an extension of Hoare Logic based

on a particular ternary-relation model of Bunched Logic
where the “resources” are “heaplets”, portions of global
program heaps.

4) Separation Logic: Separation Logic was developed
originally in three papers by O’Hearn, Reynolds, Ishtiaq
and Yang [24], [12], [15]. The early work on Separation
Logic up until 2002 was summed up systematically in
an influential survey paper by Reynolds, published in the
LICS’02 proceedings [25].

Mathematically, we can say that a heaplet h : L ⇀f V
is a finite partial function from locations to values. The
ternary relation Rhh1h2 says that heaplets h1 and h2
have disjoint domains and that h is their union. The
ternary-relation semantics above then specializes to the
conjunction of Separation Logic. With this semantics we
can describe heap partitionings as in the following picture:
the formula x 7→ y ∗ y 7→ x of a separating conjunction of
points-to facts corresponds to

Separation Logic provided a new modular way of
reasoning about programs with pointers and dynamic allo-
cation. Its key inference rule

{P}C{Q}
{P ∗ F}C{Q ∗ F} Frame Rule

allows a description of unaltered state F to be tacked on to
a specification, in away that lets the specifications them-
selves to concentrate on only those cells that a program
touches (the footprint). The rule is named after the frame
problem from artificial intelligence, where F is the frame
(evoking the idea of the frame as the unchanging part in
an animation).

A typical instance of the frame rule

{tree(i)}DispTree(i){emp}
{tree(i) ∗ tree(j)}DispTree(i){emp ∗ tree(j)}

is used during the proof of a recursive procedure to dispose
all the nodes in a tree, where correctness relies on the
fact that the recursive call on one subtree, described by
assertion tree(i), does not affect the other, described by
the frame tree(j).

5) Automation, Frame Inference and Abduction: The
first Separation Logic verification tool, Smallfoot [1], [2],
used a fragment of Separation Logic (symbolic heaps)
shown to be decidable by Berdine and Calcagno. Proofs
of imperative statements in Smallfoot themselves worked
imperatively, utilizing the separating conjunction to update

formulae in-place in a way reminiscent of the imperative
in-place update of concrete program execution.

Crucially, in-place reasoning worked modularly, for ap-
plications of entire procedures, and not only for individual
heap operations. Essential for this was the identification by
Calcagno and O’Hearn of the notion of frame inference,
as a way of automating the use of the frame rule.

Frame Inference: find F making A ` B∗F true.
In automating a proof of tree disposal as above, the
question would be

tree(i) ∗ tree(j) ` tree(i) ∗ F

an evident solution of which is F = tree(j). Calcagno de-
signed and implemented the first frame-inferring theorem
prover based on using information from failed entailment
proofs to find frames. Frame inference is the workhorse
of a number of automated reasoning tools, particularly for
interprocedural program analysis.

Smallfoot required the user to provide preconditions and
postconditions for procedures, as well as loop invariants.
The first step towards higher automation was the inference
of loop invariants, following the usual strategy of abstract
interpretation [8]. This was done by adapting ideas from
Distefano’s PhD thesis [10] to the assertion language of
Smallfoot [11]

The next step forward for automation was to infer
preconditions. The basic strategy came from O’Hearn’s
notion of local reasoning [15]: the idea was to aim for
a canonical precondition, describing the footprint of a
piece of code, and then using a standard forwards abstract
interpretation to obtain a postcondition. A beginning was
made by Yang, based on the idea of synthesizing 7→-facts
(describing heap cells) from failed program-proof attempts
and using these to discover preconditions to allow the
proofs to go through [5]. Then, a breakthrough was made
by Distefano who showed how to use

Abduction: find M making A ∗M ` B true
in concert with frame inference to automatically stitch
together specifications in a bottom-up interprocedural pro-
gram analysis. Calcagno, Distefano, O’Hearn and Yang
then worked on the implementation and the theory of a
compositional program analysis method based on abduc-
tion and frame inference [6].

Abduction was originally formulated by the philosopher
Charles Peirce as part of his explanation of the scientific
process: abductive inference concerned the generation of
hypotheses. In retrospect, it seems a natural fit to use ab-
duction to generate preconditions for computer programs.

6) Industrial Application: With abduction plus frame
inference, scalability to large code bases became possible.
Procedures could be analyzed in isolation with compact
specifications concentrating on the footprints, and changes

to the large bases could be analyzed incrementally. Be-
cause preconditons and loop invariants were inferred, anal-
ysis could be applied to bare code, without waiting for the
programmer to insert specifications.

Spurred by these advances, Calcagno and Distefano
made the brave decision to form a startup company,
Monoidics, to push the ideas further, and they pursuaded
O’Hearn to join them. Monoidics’ INFER static analyzer
[3] is now being further developed inside Facebook, fol-
lowing the aquisition of Monoidics in 2013 [7].

As of this writing INFER is deployed and running
to verify select properties of modifications to Facebook’s
mobile code (the properties include null dereferences and
resource and memory leaks). Because of the compositional
way that the analysis works, a code change can be analyzed
without re-analyzing an entire codebase. In a typical month
there are thousands of such code modifications analyzed
by INFER, during which time there are millions of calls to
an internal theorem prover that solves frame inference and
abduction problems for a fragment of Separation Logic.
Hundreds of potential bugs reported by INFER are fixed
each month by developers before they ever get committed
to Facebook code and deployed to mobile phones.

See [4] for more information on the deployment of
INFER within Facebook.

In this short paper I have described a journey from ab-
stract theory through to industrial application. A message
I wish to convey is that logic in computer science is a
rich area with a breadth of ideas, and drawing upon this
breadth can boost impact beyond what might be possible
from subareas in isolation. In the particular story the key
concepts underpinning application are Separation Logic,
Frame Inference, Abduction, Abstract Interpretation, and
Compostionality, with category-theoretic models and logic,
and the Curry-Howard isomorphism connecting proposi-
tions and types, playing earlier enabling roles. I make no
claim whatsoever that every bit of the theory at each stage
is necessary to the application. In fact, it is natural and
even desirable in linking theory and practice that not all
of the ideas present one stage of development are necessary
to refer to when working at another. In any case, we have
here but one story of applying ideas from logic in computer
science; there are and will be many others.

References

[1] J. Berdine, C. Calcagno, and P.W. O’Hearn. Symbolic execution
with separation logic. In K. Yi, editor, APLAS 2005, volume 3780
of LNCS, 2005.

[2] J. Berdine, C. Calcagno, and P.W. O’Hearn. Smallfoot: Automatic
modular assertion checking with separation logic. In 4th FMCO,
pp115-137, 2006.

[3] C. Calcagno and D. Distefano. Infer: An automatic program verifier
for memory safety of C programs. In NASA Formal Methods -

Third International Symposium, NFM 2011, Pasadena, CA, USA,
April 18-20, 2011. Proceedings, pages 459–465, 2011.

[4] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer,
M. Luca, P.W. O’Hearn, I. Papakonstantinou, J. Purbrick, and
D. Rodriguez. Moving fast with software verification. In NASA For-
mal Methods - 7th International Symposium, NFM 2015, Pasadena,
CA, USA, April 27-29, 2015, Proceedings, pages 3–11, 2015.

[5] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Footprint
analysis: A shape analysis that discovers preconditions. In SAS:
Static Analysis, 14th International Symposium, volume 4634 of
LNCS, pages 402–418, 2007.

[6] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Composi-
tional shape analysis by means of bi-abduction. J. ACM, 58(6):26,
2011. Preliminary versin in POPL’09.

[7] Josh Constine. Facebook acquires assets of UK
mobile bug-checking software developer Monoidics.
http://techcrunch.com/2013/07/18/facebook-monoidics.

[8] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. 4th POPL, pp238-252, 1977.

[9] B. J. Day. On closed categories of functors. In S. Mac Lane,
editor, Reports of the Midwest Category Seminar, volume 137 of
Lecture Notes in Mathematics, pages 1–38. Springer-Verlag, Berlin-
New York, 1970.

[10] D. Distefano. On model checking the dynamics of object-based
software: a foundational approach. PhD thesis, University of
Twente, 2003.

[11] D. Distefano, P. O’Hearn, and H. Yang. A local shape analysis
based on separation logic. 16th TACAS, pp287–302, 2006.

[12] S. Isthiaq and P. W. O’Hearn. BI as an assertion language for
mutable data structures. In 28th POPL, pages 36–49, 2001.

[13] J. Lambek. Deductive Systems and Categories I,II, and III. J. Math.
Systems Theory; 1968, 1969, 1972.

[14] J. Lambek and P. Scott. Introduction to Higher-Order Categorical
Logic. Cambridge University Press, 1986.

[15] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about
programs that alter data structures. In 15th CSL, pp1–19, 2001.

[16] P. W. O’Hearn. Resource interpretations, bunched implications and
the αλ-calculus. In Typed λ-calculus and Applications, J-Y Girard
editor, L’Aquila, Italy, April 1999. Lecture Notes in Computer
Science 1581.

[17] P. W. O’Hearn. A model for syntactic control of interference.
Mathematical Structures in Computer Science, 3(4):435–465, 1993.

[18] P. W. O’Hearn. On bunched typing. Journal of Functional
Programming, 2003. 13(4): 747-796.

[19] P. W. O’Hearn and D. J. Pym. The logic of bunched implications.
Bulletin of Symbolic Logic, 5(2):215–244, June 99.

[20] P. W. O’Hearn and R. D. Tennent, editors. Algol-like Languages.
Two volumes, Birkhauser, Boston, 1997.

[21] D. Pym, P. W. O’Hearn, and H. Yang. Possible worlds and
resources: The semantics of BI. Theoretical Computer Science,
315(1):257–305, May 2004.

[22] D.J. Pym. The Semantics and Proof Theory of the Logic of Bunched
Implications. Applied Logic Series. Kluwer Academic Publishers,
2002.

[23] J. C. Reynolds. Syntactic control of interference. In 5th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 39–46, Tucson, Arizona, January 1978. ACM, New
York. Also in [20], vol 1.

[24] J. C. Reynolds. Intuitionistic reasoning about shared mutable
data structure. In Jim Davies, Bill Roscoe, and Jim Woodcock,
editors, Millennial Perspectives in Computer Science, pages 303–
321, Houndsmill, Hampshire, 2000. Palgrave.

[25] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In 17th LICS, pp 55-74, 2002.

[26] R. Routley and R. K. Meyer. The semantics of entailment, I. In
H. Leblanc, editor, Truth, Syntax and Modality, pages 199–243.
North-Holland, 1973.

[27] D. S. Scott and C. Strachey. Toward a mathematical semantics for
computer languages. pages 19–46. Proceedings of the Symposium

on Computers and Automata. Also Technical Monograph PRG-6,
Oxford University Computing Laboratory, Programming Research
Group, Oxford.

[28] A. Urquhart. Semantics for relevant logics. Journal of Symbolic
Logic, pages 1059–1073, 1972.

