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Abstract

Bayesian optimization (BO) is a sample-efficient approach to optimizing costly-to-
evaluate black-box functions. Most BO methods ignore how evaluation costs may
vary over the optimization domain. However, these costs can be highly heteroge-
neous and are often unknown in advance. This occurs in many practical settings,
such as hyperparameter tuning of machine learning algorithms or physics-based
simulation optimization. Moreover, those few existing methods that acknowledge
cost heterogeneity do not naturally accommodate a budget constraint on the total
evaluation cost. This combination of unknown costs and a budget constraint intro-
duces a new dimension to the exploration-exploitation trade-off, where learning
about the cost incurs a cost itself. Existing methods do not reason about the various
trade-offs of this problem in a principled way, leading often to poor performance.
We formalize this claim by proving that the expected improvement and the expected
improvement per unit of cost, arguably the two most widely used acquisition func-
tions in practice, can be arbitrarily inferior with respect to the optimal non-myopic
policy. To overcome the shortcomings of existing approaches, we propose the
budgeted multi-step expected improvement, a non-myopic acquisition function
that generalizes classical expected improvement to the setting of heterogeneous
and unknown evaluation costs. Finally, we show that our acquisition function
outperforms existing methods in a variety of synthetic and real problems.

1 Introduction

Bayesian optimization (BO) (Shahriari et al., 2016; Frazier, 2018) is a family of algorithms for opti-
mizing black-box functions that performs well when the number of evaluations is limited (Snoek et al.,
2012; Calandra et al., 2016; Griffiths and Hernández-Lobato, 2020). However, most BO algorithms
ignore the fact that the cost of evaluating the black-box objective function may vary substantially
across the optimization domain and is often unknown. Problems with this feature arise commonly in
practice. For instance, in the context of hyperparameter optimization of machine learning algorithms
(Swersky et al., 2013; Wu et al., 2020), certain values of hyperparameters such as the learning rate
may yield longer training times. Similarly, in materials design and robotics, simulation experiments
can take longer for certain parameter configurations (Field, 1999). Figure 1 illustrates heterogeneity
in evaluation costs from benchmark problems used in this paper, which can vary by an order of magni-
tude. Failing to account for these heterogeneous evaluation costs can lead to evaluating an expensive
point when another less expensive one would provide equal benefit towards finding the optimum.
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Figure 1: Evaluation times of the latent Dirichlet allocation, random forest, and energy-aware robot
pushing benchmark problems (described later in Section 5.1).

We consider budgeted BO of a black-box objective function, whose evaluation costs are unknown
and possibly heterogeneous across the domain. The goal is to find a point with the largest possible
objective value by querying the objective function at a sequence of adaptively chosen points, where
the total evaluation cost is subject to a budget constraint (this cost only affects evaluation, and not a
point’s quality upon implementation).

While some existing approaches do address heterogeneous evaluation costs, all do so heuristically,
e.g. by maximizing a traditional cost-agnostic acquisition function divided by the cost of evaluation
(Snoek et al., 2012; Poloczek et al., 2017; Wu et al., 2020; Lee et al., 2020b), or by rolling out a
heuristic base policy (Lee et al., 2021). Importantly, most of these approaches accommodate neither
budget constraints nor uncertainty about the cost function as part of the exploration-exploitation
trade-off. As we argue theoretically and demonstrate through experiments, this can lead to poor
performance. A notable exception is the concurrent work of Lee et al. (2021), which introduces
a budget-aware non-myopic acquisition function based on rollout of a heuristic base policy. This
work appeared while the present paper was under review.

Main Contributions. Motivated by the above shortcomings in existing work, we provide a principled
approach to budgeted BO with unknown and potentially heterogeneous evaluation costs. Our main
contributions are:

• We propose a Markov decision process (MDP) formulation of the budgeted BO problem with
unknown and heterogeneous evaluation costs. Our formulation allows for a random time
horizon (i.e., the last time before the budget is depleted), going beyond the fixed-horizon MDPs
formulated in existing work on non-myopic BO.

• Budgeted multi-step expected improvement (B-MS-EI), a novel look-ahead acquisition function
that generalizes classical expected improvement to the budgeted cost-heterogeneous setting.
B-MS-EI can be seen as a principled approximation of the optimal policy of our MDP.

• We prove that expected improvement (EI) and its cost-normalized variant, two popular existing
approaches, can be arbitrarily inferior with respect to the optimal non-myopic policy.

• An empirical evaluation on a number of synthetic and real-world experiments demonstrates that
B-MS-EI performs favorably with respect to other acquisition functions that are widely-used in
settings with heterogeneous costs.

The remainder of this work is organized as follows: In Section 2, we review related work. Our
problem setup is formalized in Section 3. In Section 4, we introduce B-MS-EI and discuss its efficient
maximization via one-shot multi-step Monte Carlo trees. Numerical experiments are presented in
Section 5. Finally, we discuss directions of future work and conclude in Section 6.

2 Related Work

Our work falls within the BO framework (Frazier, 2018), whose origins date back to the seminal work
of Kushner (1964). BO has been successful in a wide range of applications, such as hyperparameter
tuning of machine learning algorithms (Snoek et al., 2012; Wu et al., 2020), materials design (Zhang
et al., 2020), drug discovery (Griffiths and Hernández-Lobato, 2020), and robot locomotion (Calandra
et al., 2016; Wang and Jegelka, 2017).

Within the BO literature, the works most closely related to ours are those that acknowledge the
existence of costs for evaluating the objective function that are heterogeneous across the search space
and aim to devise algorithms that are cost-aware. Much of this work has occurred in the multi-fidelity

2



setting (Swersky et al., 2013; Kandasamy et al., 2016, 2017; Poloczek et al., 2017; Song et al., 2019;
Wu et al., 2020), i.e., where cheaper approximations of the objective function are available. The
only exceptions known to us are Snoek et al. (2012), Lee et al. (2020b), and Lee et al. (2021), which
consider the single-fidelity setting.

Snoek et al. (2012) proposes the expected improvement per unit of cost (EI-PUC), i.e, EI(x)/c(x)1

where c(x) is the cost of evaluating the objective at x and EI(x) is the expected improvement. Lee
et al. (2020b) proposes a simple variation called the expected improvement per unit of cost with
cost cooling (EI-PUC-CC). EI-PUC-CC is defined by EI(x)/c(x)ν , where ν is the ratio between
the current remaining and initial budgets. The intuition behind the cost exponent is that evaluating
points with high cost should be discouraged early in the BO loop (when ν ≈ 1) and accommodated
as the budget is consumed and ν decreases to 0. However, neither EI-PUC nor EI-PUC-CC consider
uncertainty in the cost or measure the budget-dependent value of information in a principled way.

Work concurrent to ours, Lee et al. (2021), also tackles budgeted BO with heterogeneous costs using
a non-myopic strategy. However, our work differs in both the model and solution method. Lee
et al. (2021) uses a finite-horizon constrained MDP, while our model is an MDP with a random
horizon. We argue that the random horizon formulation is more natural: the formulation of Lee et al.
(2021) requires the addition of a zero reward, zero cost state to accommodate trajectories with a
small number of evaluations. Within this formulation, Lee et al. (2021) proposes a rollout acquisition
function with a particular heuristic base policy: h− 1 steps of EI-PUC followed by a last step of EI,
where h is the number of look-ahead steps performed. The acquisition function is essentially a single
step of policy improvement over the “EI-PUC followed by EI” heuristic (Sutton and Barto, 2018). In
contrast, our acquisition function aims to directly approximate the optimal policy.

The approach of dividing a cost-agnostic acquisition function by some cost term is widely used in
practice for addressing heterogeneity in costs, and is closely related to the use of “value divided by
cost” in knapsack problems (Badanidiyuru et al., 2013). In the knapsack problem, one selects items
to include into a knapsack to maximize the sum of the selected items’ values subject to a budget
constraint on the sum of the items’ costs. In this setting, myopically adding items to the knapsack that
maximize value divided by cost has strong theoretical guarantees: this algorithm provides at least 1/2
the optimal value (Williamson and Shmoys, 2011). However, this theoretical guarantee relies on the
additive nature of value in the knapsack problem. In contrast, in BO, the value obtained from multiple
evaluations is the maximum of the values of the evaluations, not their sum. Indeed, we show that in
this setting the “value divided by cost” approach can perform arbitrarily worse than the optimal policy.

Heterogeneous evaluation costs have also been considered in the multi-armed bandits literature
(Badanidiyuru et al., 2013; Xia et al., 2015, 2016). These works develop algorithms based on
optimistic policies that maximize some form of reward-to-cost ratio. As mentioned above, this type
of policy is sensible when the measure of performance is the cumulative regret but is not appropriate
in an optimization or “best-arm identification” setting.

Our work is also closely related to non-myopic BO (Gonzalez et al., 2016; Lam et al., 2016; Yue and
Kontar, 2020; Jiang et al., 2020a; Lee et al., 2020a; Jiang et al., 2020b; Lee et al., 2021), a class of
acquisition functions that account for future evaluations when quantifying a point’s acquisition value.
To the best of our knowledge, the work of Lee et al. (2021) discussed above is the only one among
these that is able to handle heterogeneous evaluation costs.

3 Budgeted Bayesian Optimization with Unknown Evaluation Costs

We now formally state the problem of budgeted BO with unknown evaluation costs. Given a compact
optimization domain X ⊂ Rd, our goal is to find a point x ∈ X with the largest possible objective
value by querying the black-box objective function, f : X → R, at a sequence of points {xi}ni=1,
subject to the constraint

∑n
i=1 c(xi) ≤ B, where c(x) is the cost of evaluating f at x and B is the

evaluation budget. The cost observation c(x) is revealed immediately after the evaluation of f(x) is
performed. However, the actual cost function c is unknown. As is typical in BO, we endow f and c
with a joint prior distribution, p. An observation in our setting is a triple (xi, yi, zi) ∈ X× R× R>0,

1This expression is for the case when c(x) is known. When c(x) is unknown and learned, then either the
expectation is taken over the distribution of improvement to cost ratios (as we do in our experiments) or the
denominator is replaced by the mean cost.
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where yi is an observation of the objective f at xi, and zi is an observation of the cost c for evaluating
f at xi.

3.1 MDP Formulation

The state of our MDP at step n is Dn, defined as the set of observations so far. These sets are defined
recursively by Dn = Dn−1 ∪ (xn, yn, zn) for n ≥ 1, where D0 is a set of initial observations. The
joint posterior distribution over f and c given Dn is denoted by p(· | Dn). The utility generated by
a particular state Dn is defined as the maximum observed objective value u(Dn) = max(x,y,z)∈Dn

y.
Note that this utility function encodes the fact that after evaluation, a point with maximum objective
value is desired regardless of its cost. We also let s(Dn) =

∑
(x,y,z)∈Dn

z denote the total cost of
observed points in Dn.

The sets of observations D1,D2, . . . are random due to the yet unobserved values of the objective and
cost functions. A policy π = {πk}∞k=1 is a sequence of functions, each mapping sets of observations
to points in X, so that xk = πk(Dk−1). Given a set of observations D such that s(D) ≤ B (i.e.,
there is nonnegative remaining budget), the value function of a policy π is defined as V π(D) =
Eπ
[
u(DNB

)− u(D0) | D0 = D
]
, where the random stopping time NB = sup{k : s(Dk) ≤ B} is

the largest time step k for which the budget constraint is still satisfied. The notation Eπ[ · ] indicates
an expectation taken over sequences of observation sets D1,D2, . . . ,DNB

selected by a policy π.
For a set D where s(D) > B (i.e., budget is exhausted), we define V π(D) = 0. Our goal is to find a
policy π that maximizes the increase in expected utility:

V ∗(D) = sup
π∈Π

V π(D), (1)

where Π is the set of all possible policies. The above problem is well-defined provided that NB <∞
for all policies π. This is the case, for example, when ln c follows a Gaussian process (GP) prior, a
modeling choice that we make in our numerical experiments. Since the horizon NB is random, the
formulation (1) can be viewed as a stochastic shortest path problem, rather than a standard finite or
discounted infinite horizon dynamic program (Bertsekas and Tsitsiklis, 1991). Note that at time k,
the set Dk contains all past observed costs and fully captures the remaining budget. This formulation
is capable of the following:

1. Through multi-step planning, it can navigate the trade-off of how to sequence high-cost and
low-cost evaluations in order to make the best use of the given budget.

2. It can reason about uncertainty when planning optimal cost-learning. For example, an ex-
ploratory evaluation may be worthwhile in a region with moderate estimated cost and high
model uncertainty: the evaluation may reveal the cost is lower than estimated, allowing us to
explore the region more fully for low cost.

3.2 Contrast with Value-to-Cost Ratio Methods

It is not surprising that cost-agnostic methods, such as expected improvement (EI), can perform poorly
when the evaluation cost is heterogeneous. In particular, ignoring cost can lead to evaluating exces-
sively high-cost points, depleting budget and limiting future evaluations. In an attempt to avoid this,
past work has focused on using a value-to-cost ratio (Snoek et al., 2012; Swersky et al., 2013; Kan-
dasamy et al., 2016, 2017; Poloczek et al., 2017; Song et al., 2019; Wu et al., 2020; Lee et al., 2020b).

We show here, however, that value-to-cost acquisition functions exhibit a complementary kind of
undesirable behavior: they may repeatedly measure excessively low-cost points that are also low-
value, leading to poor overall performance. In fact, the performance can be arbitrarily bad compared
with an optimal policy. Theorem 1 demonstrates this formally for the most widely-used of these
policies: measuring at the point that maximizes the expected improvement per unit of cost (EI-PUC),
and also for cost-agnostic expected improvement (EI).
Theorem 1. The approximation ratios provided by the EI and EI-PUC policies are unbounded.
That is, for any arbitrarily large ρ > 0 and each policy π ∈ {EI,EI-PUC}, there exists a Bayesian
optimization problem instance (a prior probability distribution over objective and cost functions, a
budget, and a set of initial observations D0) where V ∗(D0) > ρV π(D0).

Sketch of Proof. To show that EI-PUC has an unbounded approximation ratio, the detailed proof
of Theorem 1 (provided in Section A of the supplementary material) constructs a problem instance
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with a prior that is independent across a discrete domain with a known cost function. There are two
kinds of points: high-cost points with large prior variance; and low-cost points with low variance.
To support analysis, all points have the same mean.

The variance of the low-cost points is low enough that spending the entire budget on evaluating
them earns only a fraction of the value, in expectation, earned by evaluating a single high cost point.
The acquisition function EI-PUC, however, does not understand this. Its greedy nature leads it to
overvalue these points. Indeed, EI (the numerator of EI-PUC’s acquisition function) greedily values
improvement relative to the status quo, even though the status quo will likely be surpassed by other
later evaluations. This overvalues small improvements like those that result from low-variance points.

EI-PUC spends its entire budget on these low-cost low-variance points, earning almost no value.
In contrast, the optimal policy spends its entire budget on a single evaluation of the high-cost point,
obtaining substantially more value in expectation.

For the case of EI, we construct a similar example, with the change that the low-cost points now
have variance only slightly smaller than that of the high-cost points, while still being significantly
cheaper. Here, EI performs a single evaluation of the high-cost point and runs out of budget. On
the other hand, repeatedly measuring low-cost points is far superior to EI in expectation.

Figure 2 illustrates this phenomenon in a continuous one-dimensional setting with a Gaussian process
prior. Under the posterior in the first time slice, there is a lower-cost region on the left (x < 0.5) with
low-variance and a mean that is significantly below the best point observed. There is a higher-cost
region on the right (x > 0.5) where the mean and variance are both larger. These means and variances
are such that the global maximum of the function is likely to be in the right-hand region. In its first
two measurements, the EI-PUC strategy measures at two low-cost points, which results in reduction
of variance in this region but (as expected) no values that contend with the likely value of the global
maximum on the right. In contrast, in its first two measurements, our multi-step B-MS-EI strategy
evaluates on the right, finding values that are close to the global optimum.

In this example, EI-PUC encounters the same difficulty it faces in the proof of Theorem 1: It overval-
ues low-cost points that improve relative to the status quo but not relative to where we hope to be near
the end of the budget. While some budget remains to evaluate on the right after these evaluations,
the evaluations on the left are likely unproductive toward the goal of finding a global maximum.

3.3 Decomposition and Truncation

We now discuss how we can additively decompose and then truncate the problem in (1) so that it is
more amenable as a BO acquisition function. Let r(Dn−1,Dn) = u(Dn)− u(Dn−1) be the increase
in utility between successive states. Using a telescoping sum and rewriting the summation as an
infinite sum, we have

V ∗(D) = sup
π∈Π

Eπ
[ ∞∑
n=1

r(Dn−1,Dn)1{n≤NB}

∣∣∣D0 = D
]
. (2)

A truncated version of (2) that is useful within our scenario tree optimization approach described in
Section 4.2 is given by

VN (D) = sup
π∈Π

Eπ
[
N∑
n=1

r(Dn−1,Dn)1{n≤NB}

∣∣∣D0 = D
]
, (3)

where N is a fixed number of “look-ahead steps.” When for each c drawn from the prior, there exists
a lower bound on c(x) over X so that (1) is well-defined, it follows that the truncation becomes more
accurate when N becomes large: limN→∞ VN (D) = V ∗(D). This serves as the motivation for our
acquisition function described below.

4 Budgeted Multi-Step Expected Improvement

We now derive the budgeted multi-step expected improvement (B-MS-EI) acquisition function,
where the main idea is to solve the truncated problem given in (3). Accordingly, the acquisition
function is parameterized by N , the maximum number of look-ahead steps. In Section 4.2, we

5



0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.5

1.0

1.5

2.0

f(x
)

objective function
optimum
posterior mean
observed values
95% CI

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.5

1.0

1.5

2.0

f(x
)

latest observed value

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.5

1.0

1.5

2.0

f(x
)

latest observed value

0.0 0.2 0.4 0.6 0.8 1.0
x

0

2

4

6

c(
x)

cost function
remaining budget
posterior mean
observed values
95% CI

0.0 0.2 0.4 0.6 0.8 1.0
x

0

2

4

6

c(
x)

remaining budget
latest observed value

0.0 0.2 0.4 0.6 0.8 1.0
x

0

2

4

6

c(
x)

remaining budget
latest observed value

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.02

0.04

0.06

0.08

0.10

EI
-P

UC
(x

)

EI-PUC
optimum

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.02

0.04

0.06

0.08

0.10
EI

-P
UC

(x
)

EI-PUC
optimum

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.02

0.04

0.06

0.08

0.10

EI
-P

UC
(x

)

EI-PUC
optimum

(a) EI-PUC
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Figure 2: The top six panels show the EI-PUC strategy and the bottom six show our B-MS-EI
strategy. In each group, the top and middle rows show the posterior on the objective and cost,
respectively, and the bottom row shows the implied acquisition function. Time moves from left to
right, where the first column shows the initial posteriors, and the second and third columns show the
posteriors after one and two evaluations. EI-PUC evaluates low-variance, low-mean points that are
low-cost but unlikely to reveal values near the global optimum. In contrast, B-MS-EI discovers a
point near this global optimum within budget after two evaluations. While the remaining budget of
EI-PUC after two evaluations is still relatively large, we include additional plots in Section G of the
supplementary material showing that indeed B-MS-EI achieves a better objective value within budget.
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discuss how to approximately optimize this acquisition function using a scenario tree, leveraging
the technique developed in Jiang et al. (2020b), and in Section 4.3, we discuss how to set the budget
that defines our acquisition function when the actual remaining budget is too large to be meaningfully
taken into account by a computationally feasible number of look-ahead steps.

4.1 Dynamic Programming on the Truncated Problem

Our derivation of B-MS-EI starts with applying Bellman recursion to (3). To this end, we define the
one-step marginal value of a measurement at point x given an arbitrary set of observations D (i.e., a
state-action value function, or Q-function) to be

Q1(x | D) = Ey,z
[
r(D,D ∪ {(x, y, z)})1{s(D)+z≤B}

]
= Ey,z

[
(y − u(D))+ 1{s(D)+z≤B}

]
.

Proposition 1 below shows that, when f and ln c are drawn from independent GPs, Q1 admits an
analytic expression similar to the one of constrained expected improvement (Schonlau et al., 1998;
Gardner et al., 2014). The proof of this result can be found in Section B of the supplementary
material.
Proposition 1. Suppose that f and ln c follow independent Gaussian process prior distributions and
that D is an arbitrary set of observations. Define µfD(x) = E[f(x) | D], µln c

D (x) = E[ln c(x) | D],
σfD(x) = Var[f(x) | D]1/2, and σln c

D (x) = Var[ln c(x) | D]1/2. Then,

Q1(x | D) = EIf (x | D) Φ(ζ)1{s(D)≤B}

where EIf is the classical expected improvement computed with respect to f , ζ =
(
ln (B − s(D))−

µln c
D (x)

)
/σln c
D (x), and Φ is the standard normal cdf.

In contrast with homogeneous-cost non-myopic formulations, the indicator 1{s(D)≤B} truncates our
reward sequence at the random time before the budget is first depleted. Analogously, we can define
the n-step value function evaluated at x, Qn(x | D), as the expected difference in utility after using
the optimal policy to evaluate n additional points, among which x is the first of them. Using the
Bellman recursion, one can write Qn(x | D) as

Qn(x | D) = Q1(x | D) + Ey,z
[
max
x∈X

Qn−1 (x | D ∪ {(x, y, z)})
]
,

which holds for all n. Our acquisition function B-MS-EI is defined as QN , meaning that at every
step our sampling policy evaluates xn+1 ∈ argmaxx∈XQN (x | Dn).

4.2 Optimizing B-MS-EI via Budgeted One-Shot Multi-Step Trees

Maximizing our acquisition function is challenging as, in principle, this requires nested stochastic
optimization over a continuous domain. We build upon the multi-step scenario tree approach of
Jiang et al. (2020b) and devise an optimization method based on a sample average approximation of
maxx∈XQN (x | Dn). In our approach, each scenario is associated with its own decision variable,
allowing the problem to be cast as a single deterministic optimization problem over a higher-
dimensional domain instead of a sequence of nested stochastic optimization problems. We tackle
the higher-dimensional problem using modern tools of automatic differentiation and batched linear
algebra operations (Balandat et al., 2020). We begin by noting that, if we apply Bellman’s recursion
repeatedly, QN can be rewritten as

QN (x | D) = Q1(x | D) + Ey,z
[
max
x2

{
Q1 (x2 | D1) + Ey,z

[
max
x3

{
Q1

(
x3 | D2

)
+ · · ·

}]}]
.

Now we consider the Monte Carlo approximation of QN (x | D) given by

Q̂N (x |D)

= Q1(x |D) +
1

m1

m1∑
j1

[
max
x
j1
2

{
Q1(xj12 |Dj11 ) +

1

m2

m2∑
j2

[
max
x
j1j2
3

{
Q1(xj1j23 |Dj1j22 )+· · ·

}]}]
,

where mi, i = 1, . . . , N − 1, is the number of samples used in step i, and the sets of observations
are defined recursively by the equations Dj1i = D ∪

{(
x, yj1i , z

j1
i

)}
and

Dj1...jii = Dj1...ji−1

i ∪
{(
x
j1...ji−1

i , yj1...jii , zj1...jii

)}
,
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Figure 3: An illustration of the scenario tree representa-
tion of our acquisition function forN = 5 stages, where
(m1,m2,m3,m4) = (4, 2, 2, 1). Some paths down the
tree stop accumulating value earlier than others due to
the budget being exhausted, i.e., when s(Dj1...jii ) > B
(ending in red circle nodes). Other paths may terminate
due to the maximum look-ahead N before the budget is
exhausted (ending in black square nodes), representing
some approximation error due to the truncation.
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with fantasy samples (i.e., samples drawn from the model) (yj1...jii , zj1...jii ) ∼ p(· |
x
j1...ji−1

i ,Dj1...ji−1

i ) obtained via the reparametrization trick2 (Kingma and Welling, 2013; Wil-
son et al., 2018).

4.3 Budget Scheduling via Rollout of Base Sampling Policy

Let Bn = B −∑n
i=1 zi be the remaining budget at time n. Since the number of look-ahead steps, N ,

that can be performed in practice is relatively small due to computational limits, Bn may be too large
to be taken into account by our acquisition function in a meaningful way, especially during the first
few evaluations (if the remaining budget is too large relative to the number of look-ahead steps, then
the evaluation costs have little effect in our sampling decisions). Therefore, instead of using the actual
remaining budget at step n, our acquisition function uses a fantasy budget set by a heuristic rule.

We propose a heuristic budgeting rule based on the use of a base sampling policy that can be computed
quickly. We fantasize N sequential evaluations under this base sampling policy. More specifically, for
each of theN steps, we draw fantasy objective and cost values at the point recommended by this policy
using the (joint) posterior distribution, then we update the posterior distribution by incorporating these
fantasy evaluations, and repeat. The sum of the resulting N fantasy costs determines a cumulative
cost incurred by the base sampling policy. Our acquisition function then sets the budget to be the
minimum between this cumulative cost and the true remaining budget. This budget is used by our
method as if it were the actual budget until depletion, and then the heuristic rule is used again to
compute a new fantasy budget. The intuition behind this heuristic is that our acquisition function will
try to find the best non-myopic decision using the same budget as the base sampling policy, and thus
should perform evaluations that are better or at least as good as those of the base sampling policy. In
our experiments, we use EI-PUC-CC as the base policy.

5 Experiments

We demonstrate the efficacy of B-MS-EI on four synthetic and four real-world experiments. We
report the performance of two variants of our acquisition function, the main variant that uses multiple
fantasy samples per step, and the multi-step path variant (Jiang et al., 2020b), which is based on a
degenerate tree with one fantasy sample per step. For each of these variants, we consider both N = 2
and N = 4 look-ahead steps. We denote the multi-step path variant with N steps as N -B-MS-EIp
and the former simply as N -B-MS-EI.

In addition, we report the performance of three baseline acquisition functions from the literature:
expected improvement (EI), expected improvement per unit of cost (EI-PUC) (Snoek et al., 2012; Lee
et al., 2020b), and expected improvement per unit of cost with cost cooling (EI-PUC-CC) (Lee et al.,
2020b). EI-PUC and EI-PUC-CC are currently the de-facto standard approach to cost-aware BO.
Since Lee et al. (2020b) assumes that the cost is known (while our experiments are run in the setting
of unknown costs), we also integrate with respect to the uncertainty on the cost when computing

2Note that since we employ Monte Carlo sampling to approximate QN (x | Dn), the independence assump-
tion between f and c in Proposition 1 is not necessary for our approach, and one can jointly model f and c
(e.g. with a multi-task GP) if there is reason to believe that these functions are correlated, as is often the case in
practice. For instance, randomness in training jobs based on variations in test-train splits or weight initialization
may interact with adaptive learning rate scheduling and thus affect both model performance and training time.
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Figure 4: Log-regret of our non-myopic budget-aware BO method (4-B-MS-EI) compared with
baseline acquisition functions on a range of problems.

these acquisition functions. Closed form analytical expressions for these acquisition functions can be
found in Section C of the supplementary material.

5.1 Description of Benchmark Problems

Synthetic Test Problems. The first four problems use synthetic objective functions commonly
found in the literature: Dropwave, Alpine1, Ackley, and Shekel5 (defined in Section D of the
supplementary material). Each objective function is accompanied by a cost function of the form
c(x) = exp

[
α
d

∑d
i=1 cos

(
β(xi − x∗i + γ)

)]
, where x∗ is the objective function’s maximizer. In

each replication we use a different cost function, obtained by sampling α, β, and γ uniformly at
random over appropriate intervals. Our results thus average over a variety of cost functions. As these
parameters vary, cost functions with different characteristics arise. More concretely, α controls the
magnitude of the difference between the minimum and maximum costs; β controls the variability of
the cost; and γ controls the cost at the optimum. In particular, if γ = 0, then x∗ is the most expensive
point, whereas if γ = π, then x∗ is the cheapest point. This family of cost functions emulates a wide
range of possible scenarios.

AutoML Benchmarks. We consider three AutoML benchmark problems: LDA, CNN, and RF-
Boston. The LDA and CNN problems use publicly available data sets from the HPOLib (The HPOlib
authors, 2014) and HPOLib1.5 (The HPOlib1.5 authors, 2017) hyperparameter optimization libraries.
Following Eggensperger et al. (2018), we use surrogates of the underlying objective and cost functions
to emulate the computationally expensive process of training the corresponding models. Details on
the construction of the surrogates can be found in Section E of the supplementary material.

The first data set, originally introduced by Hoffman et al. (2010), was obtained by evaluating an
online latent Dirichlet allocation algorithm for topic modeling with 3 hyperparameters: mini-batch
size S ∈ [1, 16384] (on a log2 scale), and learning rate parameters κ ∈ [0.5, 1.0] (controls speed at
which information is forgotten) and τ0 ∈ [1, 1024] (on a log2 scale, downweights early iterations).
These evaluations are expensive and heterogeneous, ranging from 2 to 10 hours each (see Figure 1).

The second data set was obtained by training a 3-layer convolutional neural network on the CIFAR-10
dataset with 5 hyperparameters: “initial learning rate” ∈ [10−6, 1.0] (on a log10 scale), “batch size”
∈ [32, 512], and “number of units in layer k” ∈ [16, 256] (on a log2 scale), for k = 1, 2, 3. T

Finally, the RF-Boston problem considers optimization of the 5-fold cross validation error when
using a random forest (RF) regressor on the Boston dataset, both of which are from sklearn
(Pedregosa et al., 2011). We tune the following hyperparameters of the RF regressor: “n_estimators”
∈ [1, 256] (rounded to the nearest integer), “max_depth” ∈ [1, 64] (rounded to nearest integer), and
“max_features” ∈ [0.1, 1] (on a log10 scale). The cost of each is evaluation is proportional to the
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training time of the model under the evaluated set of hyperparameters (we scale it by training time of
a single initial evaluation).

Energy-Aware Robot Pushing. We consider a version of the robot pushing problem introduced
by Wang and Jegelka (2017), where a robot pushes an object from its origin, winit = (0, 0), to a
target wtarget ∈ R2. In the our version, we draw 20 different target locations uniformly at random
over {(w1, w2) ∈ R2 : 1 < |w1|, |w2| < 5}, which are distributed equally across the replications
performed. The parameters to be optimized are the location of the robot, z ∈ [−5, 5]2, and the
duration of the push, t ∈ [1, 30]. The objective to minimize is the distance from the object’s location
after being pushed, wpush(z, t), and the target location, i.e., f(z, t) = ‖wtarget −wpush(z, t)‖2. The
cost function is given by c(z, t) = ‖wpush(z, t)‖+ ε, where ε is a constant, and represents the energy
spent by the robot by pushing the object.

5.2 Results and Discussion

Figure 4 plots a 95% confidence interval on mean log-regret versus the budget used thus far. We
perform experiments using a single budget in each problem; the goal is to minimize regret at the
point when the budget is fully exhausted at the right-hand edge of each plot. To focus attention
on these budgets, we plot results over the range from 20% to 100% of this overall budget. The
results for N = 2 look-ahead steps are deferred Section G to the supplementary material to improve
readability and also because they are outperformed by the N = 4 counterparts for most problems.
All implementations use BoTorch (Balandat et al., 2020). The objective and log-cost functions are
modeled using independent GPs. Additional details and runtimes can also be found in Section G of
the supplementary material. An implementation of our algorithms and numerical experiments can be
found at https://github.com/RaulAstudillo06/BudgetedBO.

B-MS-EI (red and purple lines) performs favorably compared to existing methods. In some cases
(Dropwave and CNN) EI performs worst, while in other cases (Alpine, Shekel, LDA), one of the value-
to-cost ratio methods (EI-PUC or EI-PUC-CC) performs worst. B-MS-EI is more computationally
intensive to optimize than the standard approaches. The average walltime per acquisition of 4-B-
MS-EI, the most expensive variant of our algorithm, ranges from 42 seconds to 7 minutes across
the problems, whereas the average walltimes for EI, EI-PUC, and EI-PUC-CC, range from 1 to 30
seconds. However, optimization times on the order of minutes3 are acceptable when the acquisition
function is applied to real-world problems where the function evaluation often takes much longer
(e.g., in Figure 1, LDA evaluations require up to 10 hours). In such settings, extra computational time
spent optimizing the acquisition function more than pays for itself with improved query efficiency and
the savings in objective function evaluation time that results. Nevertheless, there are opportunities to
reduce the computational requirements of B-MS-EI; possibilities include re-using the optimized tree
for multiple steps or devising better initial conditions for optimization. We leave these for future work.

6 Conclusion

We introduced the problem of budgeted BO under unknown and potentially heterogeneous evaluation
costs. This arises in a wide range of practical settings where BO is applied. However, the most
common paradigm for cost-aware BO, the value-to-cost ratio, fails to account for uncertainty in the
cost function as well as the presence of the budget constraint as part of the exploration-exploitation
trade-off in a principled way, as we show in Theorem 1. In this work, we provided a dynamic pro-
gramming formulation of this problem, along with a non-myopic acquisition function that addresses
the shortcomings of the existing methods. Our acquisition function is derived by truncating the
aforementioned dynamic program, and is approximately maximized following a one-shot multi-step
tree approach. Our experiments show that our acquisition function outperforms existing methods on
a number of synthetic and real-world examples that exhibit heterogeneity in evaluation costs. In the
future, we hope to extend our approach to the multi-fidelity setting, where evaluation costs play an
even larger role.

3These times are not unusual for advanced BO methods; see, e.g., Section 4 of Wu and Frazier (2019).
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A Proof of Theorem 1

Theorem 1. The approximation ratios provided by the EI and EI-PUC policies are unbounded. That
is, for any ρ > 0 and each policy π ∈ {EI,EI-PUC}, there exists a Bayesian optimization problem
instance (a prior probability distribution over objective and cost functions, a budget, and a set of
initial observations D0) where

V ∗(D0) > ρV π(D0).

Proof. We prove the result in two parts, first focusing on EI-PUC, and then on EI.

Part 1: EI-PUC. To show the result for EI-PUC, we construct a problem instance with a discrete
finite domain and no observation noise. Let ε and δ be two strictly positive real numbers and let
K = d(1 + δ)/εe. Suppose the domain is X = {0, 1, . . . ,K + 1} and that the overall budget of
the problem is 1 + δ. The prior on f(x) is independent across x ∈ X, all points have zero mean
under the prior, and the costs c(x) are all known. We assume that the point x = 0 has already been
measured and has value f(0) = 0. The next K points are “low-variance, low-cost” and the final point
is “high-variance, high-cost.”

• For low-variance, low-cost points, x ∈ {1, . . . ,K}, f(x) is normally distributed with mean
0 and variance ε2 and c(x) = ε. Thus, EI(x)/c(x) for these arms is E[(f(x) − 0)+]/ε =
E[εZ+]/ε = E[Z+], where Z is a standard normal random variable.

• For the high-variance, high-cost point, x = K+ 1, f(x) is normally distributed with mean 0
and variance 1, and c(x) = 1 + δ. Thus, EI(x)/c(x) for these arms is E[(f(x)− 0)+]/(1 +
δ) = E[Z+]/(1 + δ).

One feasible policy for the problem is to “measure the high-variance point once.” Under this policy,
the budget is exhausted after the first measurement and the overall value is E[Z+].

Let us consider the EI-PUC policy. By the calculation above, on the first evaluation, it measures a
low-variance arm. Then, after that, the remaining budget is strictly less than 1 + δ and it can only
measure low-variance, low-cost points. It measures N = b(1 + δ)/εc such points in total (since there
is no observation noise, EI of a measured point is zero and a new point is measured each time). We
show, in a calculation below, that the value of this policy goes to 0 as ε→ 0 while we hold δ fixed.
That is, we show that

lim
ε→0

V EI-PUC(D0) = 0. (4)

There are no policies other than the two just described, so the “measure the high-variance point once”
policy becomes optimal for all ε sufficiently close to 0. Thus, limε→0 V

∗(D0) = E[Z+] > 0. Thus,
given any finite strictly positive ρ, there is a ε small enough whose corresponding problem instance
satisfies

V ∗(D0) > ρV EI-PUC(D0).

To complete the proof for EI-PUC, we now show (4). Under the EI-PUC policy, the values {yn}Nn=1
from the sequence of measured points (after the initial point x = 0) are independent and identically
distributed normal random variables, with mean 0 and variance ε2. The expected value under this
policy is then E[M ], where M = max {0, y1, . . . , yN}.
Let t be an arbitrary positive real number. Using Jensen’s inequality, we obtain

exp
(
E[tM ]

)
≤ E

[
exp(tM)

]
= E

[
max {1, exp(ty1), . . . , exp(tyN )}

]
≤ E

[
1 +

N∑
n=1

exp(tyn)

]
= 1 +N exp(t2ε2/2)

≤ (N + 1) exp(t2ε2/2),

where we note in the last step that exp(t2ε2/2) ≥ 1.
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Thus, E[M ] ≤ ln(N + 1)/t+ (tε2)/2, and taking t =
√

2 ln(N + 1)/ε we obtain

E[M ] ≤ ε
√

2 ln(N + 1) ≤ ε
√

2 ln

(
1 + δ + ε

ε

)
.

Using L’Hôpital’s rule, we see that the right hand side of the above inequality converges to 0 as ε→ 0
and, therefore, so does E[M ].

Part 2: EI. We now show the result for EI. We consider almost the same setup as in the example
above, with the only difference being that the low-cost points now have variance (1− ε)2.

This time EI(x) = (1− ε)E[Z+] for the low-cost points and EI(x) = E[Z+] for the high-cost point.
Hence, the EI policy evaluates the high-cost point and exhausts the budget after that single evaluation,
thus implying that V EI(D0) = E[Z+].

Now consider the policy that measures low-cost points only. The expected value under this policy
is E[M ], where where M = max {0, y1, . . . , yN}, and y1, . . . , yN are independent identically
distributed normal random variables with mean 0 and variance (1− ε)2.

We have

E[M ] ≥ E
[

max
n=1,...,N

yn

]
≥ (1− ε)

√
a lnN ≥ (1− ε)

√
a ln

(
1 + δ

ε
− 1

)
,

where a = (π ln 2)−1 and the second inequality follows by Theorem 1 in Kamath (2015). The
expression on the right-hand side of the above inequality goes to∞ as ε→ 0. Since V ∗(D0) ≥ E[M ],
it follows that, for any ρ > 0, there exists ε small enough whose corresponding problem instance
satisfies

V ∗(D0) > ρV EI(D0),

which completes the proof.

B Proof of Proposition 1

Proposition 1. Suppose that f and ln c follow independent Gaussian process prior distributions and
that D is an arbitrary set of observations. Define µfD(x) = E[f(x) | D], µln c

D (x) = E[ln c(x) | D],
σfD(x) = Var[f(x) | D]1/2, and σln c

D (x) = Var[ln c(x) | D]1/2. Then,

Q1(x | D) =

{
EIf (x | D) Φ

(
ln((B−s(D))−µln c

D (x)

σln c
D (x)

)
, if s(D) < B,

0, otherwise,

where

EIf (x | D) = ∆(x)Φ

(
∆D(x)

σfD(x)

)
+ σf (x)ϕ

(
∆D(x)

σfD(x)

)
is the classical expected improvement computed with respect to f ; ϕ and Φ are the standard normal
pdf and cdf, respectively; and ∆D(x) = µf (x)− u(S).

Proof. Recall that
Q1(x | D) = E

[
(f(x)− u(D))+ 1{s(D)+c(x)≤B}

]
.

But, since f and ln c are assumed to be independent,

Q1(x | D) = E
[
(f(x)− u(D))+

]
E
[
1{s(D)+c(x)≤B}

]
= EIf (x | D)P (s(D) + c(x) ≤ B) .

Now note that, if s(D) ≥ B, then P (s(D) + c(x) ≤ B) = 0. If, on the other hand, s(D) < B, then

P (s(D) + c(x) ≤ B) = P (ln c(x) ≤ ln (B − s(D)))

= Φ

(
ln ((B − s(D))− µln c

D (x)

σln c
D (x)

)
,

which concludes the proof.
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C Closed-Form Expressions of EI-PUC and EI-PUC-CC

Recall that the EI-PUC and EI-PUC-CC acquisition functions are defined by

EI-PUC(x | D) = ED
[{f(x)− f∗n}+

c(x)

]
,

and

EI-PUC-CC(x | D) = ED
[{f(x)− f∗n}+

c(x)ν

]
,

respectively, where ν is the ratio between the remaining budget and the initial budget.

Here we show that, under the same conditions of Proposition 1, EI-PUC and EI-PUC-CC have
closed form expressions. This is summarized in Proposition 2 below. Note that this result gives the
closed-form expression of EI-PUC as a special case by taking ν = 1.
Proposition 2. Let ν be an arbitrary positive real number and suppose that the conditions in
Proposition 1 are satisfied. Then,

ED
[{f(x)− f∗n}+

c(x)ν

]
= EIf (x | D) exp(−νµln c

D (x) + ν2σln c
D (x)2/2),

Proof. Since f and ln c are assumed to be independent,

ED
[{f(x)− f∗n}+

c(x)ν

]
= ED

[
{f(x)− f∗n}+

]
ED [1/c(x)ν ]

= EIf (x | D)ED [exp(−ν ln c(x))] .

The well-known formula for the moment generating function of normal random variable gives

ED
[
exp(−ν ln c(x))

]
= exp

(
−νµln c

D (x) + ν2σln c
D (x)2/2

)
,

which completes the proof.

D Synthetic Test Problems Details

Below we provide additional details on the synthetic test problems used in the numerical experiments.

Dropwave:

• f(x) =
(

1 + 12
√
x2

1 + x2
2

)
/
(
0.5(x2

1 + x2
2) + 2

)
.

• X = [−5.12, 5.12]2.
• α ∈ [0.75, 1.5], β ∈ [2π/5.12, 6π/5.12], γ ∈ [0, 2π].

Alpine1:

• f(x) =
∑d
i=1 |xi sin(xi) + 0.1xi|.

• X = [−10, 10]d.
• α ∈ [0.75, 1.5], β ∈ [2π, 6π], γ ∈ [0, 2π].
• In our experiment, we set d = 3.

Ackley:

• f(x) = 20 exp

(
− 1

5

√
1
d

∑D
i=1 x

2
i

)
+ exp

(
1
D

∑D
i=1 cos(2πxi)

)
− 20− exp(1).

• X = [−1, 1]d.
• α ∈ [0.75, 1.5], β ∈ [2π, 6π], γ ∈ [0, 2π].
• In our experiment, we set d = 3.
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Shekel5:

• f(x) =
∑5
j=1

(∑4
i=1 (xi − Cij)2

+ bj

)−1

, where b = (1, 2, 2, 4, 4)/10, and

C =

4 1 8 6 3
4 1 8 6 7
4 1 8 6 3
4 1 8 6 7

 .

• X = [0, 10]4.

• α ∈ [0.75, 1.5],β ∈ [2π/4, 3π/4], γ ∈ [0, 2π].

E AutoML Surrogate Models

The LDA and CNN problems use surrogate models to emulate the computationally expensive process
of training the corresponding ML model. The objective and cost surrogate models for CNN are
obtained directly from the HPOLib library, and were originally constructed by fitting independent
random forest regression models to the objective and cost evaluations over a uniform grid of points.
These evaluations are obtained by training a 3-layer convolutional neural network on the CIFAR-10
dataset. For the LDA problem, we fit independent GPs to the objective and log-cost evaluations over
a uniform grid of size 288, and then use the resulting posterior means as the surrogate models. These
surrogate models can be found at https://github.com/RaulAstudillo06/BudgetedBO.

F Acquisition Function Optimization

All acquisition functions are optimized as follows. First, we evaluate the acquisition value at 200d
points over X, and 10d of these points are selected using the initialization heuristic described in
Appendix F.1 of Balandat et al. (2020). Then, we run L-BFGS-B (Byrd et al., 1995) starting from each
point. The point with highest acquisition value of the 10d points resulting after running L-BFGS-B is
then chosen as the next point to evaluate.

For the variants of B-MS-EI, the 200d initial points are chosen using the warm-start initialization
strategy described in Appendix D of Jiang et al. (2020b). This strategy uses the solution found when
optimizing B-MS-EI during the previous iteration and identifies the branch originating at the root of
the tree whose fantasy sample is closest to the value actually observed when evaluating the suggested
candidate on the true function. For the other acquisition functions, the 200d initial points are chosen
using a Sobol sampling design.

G Additional Plots, Initial Design, Hyperparameter Estimation, Runtimes,
and Licenses

In each experiment, an initial stage of evaluations is performed using 2(d+1) points chosen according
to a quasi-random Sobol sampling design over X. Experiments are replicated either 100 (Ackley
and Robot Pushing) or 200 (all other test problems) independent trials and we report the average
performance and 95% confidence intervals. For all algorithms, the objective function and the log-cost
are modeled using independent GPs with constant mean and Matérn 5/2 covariance function. The
length scales of these GP models are estimated via maximum a posteriori (MAP) estimation with
Gamma priors.

The average runtimes of the algorithms in each problem are summarized in Table 1. Figure 5 plots a
95% confidence interval on mean log-regret versus the budget. In contrast with the plots in the main
paper, these plots also include the results for the 2-step variants of our algorithm. Figure 6 below
shows the additional evaluations performed by EI-PUC and B-MS-EI within budget in the problem
discussed in Figure 2 of the main paper.

The BoTorch package is publicly available under the MIT License. The datasets obtained from the
HPOLib and HPOLib 1.5 libraries are publicly available under the GNU General Public License. The
source code of the robot pushing problem is publicly available under the MIT License.
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EI EI-PUC EI-PUC-CC 2-B-MS-EIp 2-B-MS-EI 4-B-MS-EIp 4-B-MS-EI

Dropwave 4.1 5.5 6.2 24.1 26.7 42.6 87.2
Alpine1 7.2 9.9 10.8 36.44 44.1 106.1 236.7
Ackley 6.4 7.3 5.7 16.6 26.0 95.8 103.5
Shekel5 4.5 5.5 5.6 18.3 12.8 105.8 165.5
LDA 5.4 5.9 5.5 20.7 29.6 141.9 202.1
CNN 11.7 26.9 19.3 79.3 95.0 286.1 443.2
Robot 5.9 4.0 4.7 32.2 34.3 108.2 193.7
Boston 1.8 1.6 1.5 15.7 19.7 65.1 90.5

Table 1: Average per-acquisition runtimes (in seconds) of the algorithms in each problem.
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Figure 5: Log-regret of our non-myopic budget-aware BO methods compared with baseline acquisi-
tion functions on a range of problems.

H Budgets Analysis

To understand the effect of the budget on the performance of B-MS-EI, we evaluate its performance
in three of our test problems (Dropwave, LDA, and Robot Pushing) using half of the original budget.
We also report the performance of EI-PUC-CC, which is the only other benchmark method that is
budget-aware. For comparison, we also include the performance of both algorithms under the original
budget. The results of this experiment are shown in Figure 7. Remarkably, B-MS-EI seems to benefit
from knowing the budget constraint in advance. This does not seem to be the case for EI-PUC-CC,
however.
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Figure 7: Performance of B-MS-EI (B-MS-EIp for Dropwave and Robot Pushing) and EI-PUC-CC
in three of our test problems under two different budgets. In contrast with EI-PUC-CC, B-MS-EI
seems to benefit from knowing the budget constraint in advance.
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Figure 6: Additional plots showing the evaluations performed within budget by EI-PUC and B-MS-EI.
Subsequent evaluations are not plotted because the budget is exhausted after their completion and thus
are not taken into account to report performance (i.e., the cost of the next point suggested exceeds the
remaining budget). Note that EI-PUC performs two additional evaluations within budget, whereas
B-MS-EI performs only one additional evaluation. B-MS-EI achieves a better final performance
within budget than the one achieved by EI-PUC.
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