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Abstract

There are many reasons to expect an ability to reason in terms
of objects to be a crucial skill for any generally intelligent
agent. Indeed, recent machine learning literature is replete with
examples of the benefits of object-like representations: gen-
eralization, transfer to new tasks, and interpretability, among
others. However, in order to reason in terms of objects, agents
need a way of discovering and detecting objects in the visual
world - a task which we call unsupervised object detection.
This task has received significantly less attention in the liter-
ature than its supervised counterpart, especially in the case
of large images containing many objects. In the current work,
we develop a neural network architecture that effectively ad-
dresses this large-image, many-object setting. In particular, we
combine ideas from Attend, Infer, Repeat (AIR), which per-
forms unsupervised object detection but does not scale well,
with recent developments in supervised object detection. We
replace AIR’s core recurrent network with a convolutional
(and thus spatially invariant) network, and make use of an
object-specification scheme that describes the location of ob-
jects with respect to local grid cells rather than the image as
a whole. Through a series of experiments, we demonstrate
a number of features of our architecture: that, unlike AIR, it
is able to discover and detect objects in large, many-object
scenes; that it has a significant ability to generalize to im-
ages that are larger and contain more objects than images
encountered during training; and that it is able to discover and
detect objects with enough accuracy to facilitate non-trivial
downstream processing.

1 Introduction

The physical world can be naturally sub-divided into dis-
crete objects. Consequently, in the pursuit of constructing
ever more intelligent agents, devising methods for reasoning
and learning about objects should be regarded as an impor-
tant sub-goal. Indeed, recent work in machine learning is
replete with examples of the benefits of object-like represen-
tations (Diuk, Cohen, and Littman 2008; Chang et al. 2016;
Kansky et al. 2017; Santoro et al. 2017). For example, learn-
ing algorithms that operate on objects can yield significantly
improved sample complexity and generalizability (Chang
et al. 2016). Moreover, learning about objects can facilitate
transfer learning (Kansky et al. 2017); since the world decom-
poses naturally into objects, a common source of novel tasks
will involve familiar objects in new configurations. In such

settings, we can expect improved transfer performance from
algorithms that learn about objects, as object-level knowl-
edge learned from source tasks is likely to be useful for target
tasks. Finally, machine learning models that reason in terms
of objects may be more interpretable, since they are forced
to use a representation that is well understood by humans
(Zambaldi et al. 2018).

For systems that take raw pixels as input, reasoning and
learning in terms of objects requires an initial object detec-
tion step wherein the pixel-level information is transduced
into high-level object representations. Past machine learning
methods that reason in terms of objects have obtained objects
either using ad hoc, task/environment specific object detec-
tion methods (Garnelo, Arulkumaran, and Shanahan 2016;
Diuk, Cohen, and Littman 2008), or, in settings where it
is possible, using object representations provided directly
by the environment (Kansky et al. 2017). Alternatively, if
one has access to a large training set of images annotated
with ground-truth bounding boxes for the objects therein,
one could train any of a large number of sophisticated su-
pervised object detection architectures (Ren et al. 2015;
Redmon et al. 2016). However, obtaining such an annotated
dataset is expensive in terms of human labor. Thus, in the
current work, we are interested in a general-purpose object de-
tection method that can be applied in a wide range of settings
without supervision; in particular, without bounding box an-
notations. We call this task, which involves both discovering
which objects are common in a dataset and learning to detect
those objects in images, unsupervised object detection.

A recent approach called Attend, Infer, Repeat (AIR)
(Eslami et al. 2016) has shown promise at unsupervised
object detection, but (as we show empirically) has diffi-
culty scaling up to handle large images containing many
objects. In the current work we propose an alternative ar-
chitecture that avoids these scaling issues by taking in-
spiration from recent work on supervised object detec-
tion, which has relied heavily on spatially invariant com-
putations, particularly convolutions (LeCun et al. 1998;
Long, Shelhamer, and Darrell 2015). A computation is spa-
tially invariant if it applies an identical transformation to
many different local image regions. YOLO networks for ex-
ample use a convolutional neural network to map directly
from an input image to a set of detected objects (Redmon et
al. 2016).



The object detection task, supervised or not, has a num-
ber of features that make spatially invariant computations
appropriate. For one, to a large extent object detection can be
performed on local region of an image without having infor-
mation about the remainder of the image. Second, the ability
to detect objects in a given sub-region of an image is likely
to transfer well to detecting objects in other sub-regions. Ap-
proaches that do not make use of spatial invariance, such as
training a multi-layer perceptron to map from the image to
objects, thus miss out on a great deal of exploitable structure.

In the current work, we propose Spatially Invariant Attend,
Infer, Repeat (SPAIR), an architecture for unsupervised ob-
ject detection that is able to handle large, many-object scenes.
At the core of SPAIR is a convolutional object detector, simi-
lar to that used in YOLO, which maps from images to objects.
In order to train this object detector without supervision,
we use it as the encoder network of a Variational Autoen-
coder (VAE) (Kingma and Welling 2013) which is trained
to reconstruct the input image, a tactic introduced by AIR.
Overall, SPAIR may be regarded as a VAE with a highly
structured, object-like latent representation and a spatially
invariant convolutional encoder network that effectively ex-
ploits the structure of objects in images.

Through a number of experiments, we demonstrate empir-
ically that whereas competing approaches struggle at unsu-
pervised object detection when images contain more than a
few objects, our architecture scales up well to as many ob-
jects as we tested it with. Moreover, our architecture’s ability
to exploit spatial invariance allows it to generalize well to
images that are larger and/or contain more objects than the
images it was trained on. Finally, we show that our network
is able to discover and detect objects with enough reliability
to facilitate non-trivial downstream tasks.

2 Related Work

One promising approach to unsupervised object detection is
known as Attend, Infer, Repeat (AIR) (Eslami et al. 2016).
AIR formulates a Variational Autoencoder (VAE) (Kingma
and Welling 2013) with a recurrent encoder network, an
object-like latent representation and a decoder network that
implements an image rendering process. Each processing
step, the recurrent encoder takes as input the image and the
recurrent hidden state, and outputs the size and position of
an object in the scene as well as a new recurrent hidden state.
For each image, the recurrent network is allowed to run for
multiple time steps; ideally, a separate object is addressed
on each time step, and the encoder can track which objects
have already been addressed through its hidden state. The
network is provided with facilities for halting computation
when it judges that all objects have been accounted for. Fi-
nally, a decoder network takes the latent object descriptions
and renders them into an output image. Weights of both the
encoder and decoder are trained to make the rendered image
as close as possible to the input image; through this training
process, it is expected that the encoder network becomes
an effective object detector, all without ground-truth object
bounding boxes.

However, one shortcoming of AIR is that it does not scale
well to large images with many objects. This is due to two

aspects of AIR’s formulation. First, the network has to learn
to account for a different object on each time step, but when
there are many objects, discovering how to do this becomes
a difficult exploration problem. Indeed, Eslami et al. (2016)
do not test the limits of AIR’s scalability, their largest exper-
iments assuming at most 3 objects per image. Second, the
computational complexity of a training step (in particular,
the image rendering step) scales as O(mno) where (m, n) is
the image shape, and o is the number of detected objects. If
the object density is assumed fixed, this becomes O(m2n2),
making it infeasible to train on large images.

Recent work on Neural Expectation Maximization (Greff,
van Steenkiste, and Schmidhuber 2017; van Steenkiste et
al. 2018) aims to achieve something similar to AIR, but has
comparable scaling issues. Related work from computer vi-
sion includes (Cao and Fei-Fei 2007; Kim and Torralba 2009;
Lee and Grauman 2009; Russell et al. 2006; Karpathy, Miller,
and Fei-Fei 2013), as well as work on co-segmentation (Zhu
et al. 2016) and unsupervised object recognition (Tuytelaars
et al. 2010).

3 Background: Variational Autoencoders

In this section we introduce the Variational Autoencoder
(VAE) framework (Kingma and Welling 2013), which pro-
vides the theoretical foundation for our approach. We focus
specifically on using VAEs to model images, though they can
be used for any kind of data.

Assume images are sampled from a generative model as
follows. A latent image representation z is sampled from
a prior distribution p(z); the image x is then produced ac-
cording to a likelihood distribution p(x|z). This likelihood
distribution is usually unknown so we approximate it using a
function p✓(x|z) parameterized by a vector ✓. The probability
of an image is then given by:

p✓(x) =

Z
p✓(x|z)p(z)dz

In general, we may be interested in:
1. Learning model parameters, ✓⇤ = argmax✓ log p✓(x)

2. Inferring a distribution over latent variables for an image,
p✓(z|x) = p✓(x|z)p(z)/p✓(x)

However, in many settings of interest, computing p✓(x) is
intractable. This makes directly maximizing p✓(x) impossi-
ble, and renders computing p✓(z|x) intractable as well since
it contains p✓(x) as a normalizing constant. In such settings,
variational methods offer a useful way forward.

Let q�(z|x) be a function, parameterized by a vector �,
that maps from an image x to a probability distribution over
latent variables z; we will use q� to approximate p✓(z|x). It
can be shown that for any ✓ and �, we have:

log p✓(x) = L(✓,�) + DKL(q�(z|x) k p✓(z|x))

where

L(✓,�) :=
Ez⇠q�(z|x) [log p✓(x|z)]� DKL(q�(z|x) k p(z)) (1)



Since the KL divergence is always positive, we have
log p✓(x) � L(✓,�), and therefore L(✓,�) is called the Evi-
dence Lower Bound (ELBO).

Variational methods proceed by maximizing L(✓,�) with
respect to both ✓ and �. The value ✓ thus obtained may be
used as an approximation of ✓⇤ since it is a maximum of
the ELBO. Moreover, since � maximizes L(✓,�) for our
chosen ✓, and p✓(x) does not change as � changes, it follows
that DKL(q�(z|x) k p✓(z|x)) is minimized with respect to
�. Therefore, q�(z|x) may be taken as an approximation of
p✓(z|x) and used for performing inference.

Under the VAE framework, p✓(x|z) and q�(z|x) are neural
networks, and L(✓, �) is maximized with respect to ✓ and �
by stochastic gradient ascent. While the second term in (1)
can usually be computed in closed form, the first term usually
cannot and must instead be estimated using samples from
q�(z|x). Backpropagating through this sampling process can
be achieved using any of a large number of techniques that
have been invented in recent years (Schulman et al. 2015).

Several parts of a VAE have counterparts in standard au-
toencoders. By inspection L(✓,�) may be seen to be the sum
of a term encouraging accurate reconstruction of the input
image x (analogous to the reconstruction training objective
in standard autoencoders) and a KL divergence regularization
term. Meanwhile, q�(z|x), z and p✓(x|z) correspond to the
encoder, bottle-neck layer, and decoder, respectively, from
standard autoencoders. Thus, we generally refer to q�(z|x) as
an encoder or encoder network, and to p✓(x|z) as a decoder
or decoder network.

4 Spatially Invariant Attend, Infer, Repeat

Our model, which we call Spatially Invariant Attend, Infer,
Repeat (SPAIR), is a VAE with a highly structured, object-
like latent representation z, a convolutional, object-detecting
encoder network q�(z|x), and a decoder network p✓(x|z)
that “renders” detected objects into a reconstructed image.
We now describe each of these components in detail.

4.1 Object-like Latent Representation

We first outline the representation scheme used by SPAIR
for describing objects in its latent layer. Given an image
with dimensions (Himg, Wimg, 3), it will be useful to spa-
tially divide the image into an (H, W ) grid of cells, where
H = dHimg/che, W = dWimg/cwe and ch/cw are fixed
integers giving the cell height/width in pixels. We will use a
representation that allows a single object per cell (the exten-
sion to multiple objects per cell is straightforward).

For a cell with indices (i, j), i 2 {0, . . . , H � 1}, j 2
{0, . . . , W �1}, the corresponding object is described by the
following variables:

zijwhat 2 RA zijdepth 2 R zijpres 2 {0, 1} zijwhere 2 R4

zijwhat is a vector with dimension A that stores appearance
information for the object. zijdepth is a real number specifying
the relative depth of the object; in the output image, objects
with lower depth appear on top of objects with higher depth.
zijpres is a binary variable specifying whether the object exists;

Figure 1: Diagram demonstrating the parameterization of
object bounding boxes in SPAIR. We focus on a single cell,
highlighted in black, with indices (i, j) = (1, 1). The red
box represents the bounding box for an object, with the red
dot as its center. Relationships between the quantities in this
diagram are given by Equations (2–6). To reduce clutter we
have omitted the ij superscripts on the variables.

objects with zijpres = 0 do not appear in the output image.
zijwhere decomposes as zijwhere = (zijy , zijx , zijh , zijw ). zijy and zijx
parameterize the position of the object according to:

b̃ijy = �(zijy )
⇣
b̃max
y � b̃min

y

⌘
+ b̃min

y (2)

bijy = (i + b̃ijy )ch (3)

b̃ijx = �(zijx )
⇣
b̃max
x � b̃min

x

⌘
+ b̃min

x (4)

bijx = (j + b̃ijx )cw (5)

where � denotes the sigmoid function, and bmin
⇤ and bmax

⇤
are fixed real numbers that impose bounds on the distance
between the center of the object and the cell. See Figure
1 for a visual depiction of the relationships between these
variables. zijh and zijw parameterize the size of the object as:

bijh = �(zijh )ah bijw = �(zijw )aw (6)

for fixed real numbers ah and aw. Specifying object size with
respect to ah and aw (as opposed to the the size of the input
image) ensures that zijh and zijw are meaningful regardless of
the size of the image the network is applied to1.

4.2 Prior Distribution on Objects

A crucial component of a VAE is the prior distribution p(z)
over the latent variables. For all real-valued variables, we

1(ah, aw) can be interpreted as the dimensions of an anchor box
as used in supervised object detection (Ren et al. 2015)



assume independent Normal distributions:

zijwhere ⇠ N(µwhere, �where)

zijwhat ⇠ N(µwhat, �what)

zijdepth ⇠ N(µdepth, �depth)

where the Normal parameters are hyperparameters.
For the binary random variables zijpres, we design a prior that

puts pressure on the network to reconstruct the image using
as few objects as possible (i.e. as few zijpres = 1 as possible),
similar to the prior used by AIR. This pressure is necessary
for the network to extract quality object-like representations;
without it, the network is free to set all zijpres = 1, and use
multiple latent objects to explain each object in the image.

We first gather all zijpres into a binary vector zpres with di-
mension HW . To generate zpres, we first sample the number
of non-zero entries according to a count distribution, and
then draw zpres uniformly from all binary vectors with the
sampled number of non-zero entries. We choose a count dis-
tribution that puts most of the probability mass at low values;
in particular, we use a Geometric distribution, truncated and
normalized to have support {0, 1, . . . , HW}. See Appendix
A for the full prior and its derivation.

4.3 Encoder Network

Our goal is to design an encoder network q�(z|x) with spa-
tially invariant properties. To this end, a convolutional neural
network econv� (x) is first used to map from the image x to a
feature volume with spatial dimensions (H, W ). Next, this
volume is processed sequentially cell-by-cell to produce ob-
jects (in the format described in Section 4.1) starting from the
top-left and proceeding row-by-row toward the bottom-right.

Processing a cell runs as follows. First, a multi-
layer perceptron elat� produces parameters (µij

where, �
ij
where),

(µij
depth, �

ij
depth) and �ij

pres for distributions over zijwhere, zijdepth

and zijpres, respectively. As input, elat� accepts the feature vec-
tor (output of econv) at the current cell as well as sampled
objects at nearby cells that have already been processed. elat

can thus be thought of as encompassing a set of “lateral”
connections which facilitate conditioning between nearby ob-
jects. In an ablation study (Section 5.5), we show empirically
that these lateral connections are crucial for performance.

Next, values are sampled from the distributions:

zijwhere ⇠ N(µij
where, �

ij
where)

zijdepth ⇠ N(µij
depth, �

ij
depth)

zijpres ⇠ Bernoulli(�ij
pres)

The sampled value of zijwhere is then used along with a spatial
transformer T (Jaderberg et al. 2015) to extract a glimpse
from the image. This glimpse is processed by an object en-
coder network eobj� to yield parameters for a distribution over
zijwhat, which is subsequently sampled:

µij
what, �

ij
what = eobj� (T (x, zijwhere))

zijwhat ⇠ N(µij
what, �

ij
what)

4.4 Decoder Network

The decoder network is responsible for rendering the de-
tected objects back into an image. First, an object decoder
network dobj✓ processes all zijwhat to yield a reconstruction of
the appearance of each object:

oij , ↵ij = dobj✓ (zijwhat)

where oij is a volume with shape (Hobj , Wobj , 3) (for fixed
integers Hobj , Wobj) giving RGB values for the object,
and ↵ij is volume with shape (Hobj , Wobj , 1) giving trans-
parency values for the object.

Appearances of all objects are then stitched together to
yield a final image, with zijwhere used along with a spatial trans-
former to give the objects the correct size and location. ↵ij

is multiplied by zijpres to ensure that objects with zijpres = 0

are not drawn to the image. zijdepth values are used to pa-
rameterize a convex combination between the objects that
overlap spatially, acting as a differentiable approximation of
relative object depth. The output of rendering is an image
xout, which parameterizes p✓(x|z) as a set of independent,
pixel-wise Bernoulli variables. For a full description of this
decoding/rendering process, see Appendix C.

Objects are rendered on top of a background; in principle,
a separate neural network may be used to learn a background
for each image. Throughout this work, we use monochrome
backgrounds; either a single color, obtained by taking the
statistical mode of a small sampling of training images, or
use a multi-layer perceptron to map from each image to a
background color.

4.5 Training

SPAIR is trained by gradient ascent on the ELBO (Equation
(1)) using a single sample to estimate the expectation. To
backpropagate through the sampling process, we make use of
the reparameterization trick (Kingma and Welling 2013). For
the Normally distributed random variables zijwhere, zijwhat and
zijdepth this is straightforward. The discrete Bernoulli random
variables zijpres are replaced with Concrete variables, continu-
ous relaxations of Bernoullis to which the reparameterization
trick can be easily applied (Maddison, Mnih, and Teh 2016;
Jang, Gu, and Poole 2016). At validation and test time the
Concretes are discretized via rounding.

Equation (1) also requires computation of the KL di-
vergence between q�(z|x) and p(z). This is straight-
forward for the independent, Normally distributed real-
valued random variables, but slightly more difficult for the
Bernoulli/Concrete variables; see Appendix B for full details.

4.6 Scaling Properties of SPAIR

Several aspects of SPAIR’s design are crucial for scaling.
Consider the following simple method for making any object
detector spatially invariant: have the object detector operate
on a small, fixed input size, and when faced with a large im-
age, simply run the detector multiple times on appropriately-
sized, potentially overlapping local regions of the image. Pool
the objects detected at each location to obtain the set of ob-
jects for the image. Assuming the objects are small enough



to fit in a local image region, it should be much easier to
learn parameters for this object detector, compared with a
non-spatially invariant method that attempts to process the
image all at once, since there should be many fewer objects
and significantly less complexity in a local image region than
the image as a whole. Moreover, each application of the local
object detector can be seen a separate training example; we
can consequently think of the local object detector as having
access to much more training data.

The use of a convolutional network in the encoder, with
its weight sharing and spatially local receptive fields (LeCun
et al. 1998), is essentially a more computationally efficient
(Long, Shelhamer, and Darrell 2015) way of implementing
the above object detection scheme, where each neuron in the
output layer of the convolutional network is analogous to a
single application of the local object detector.

As mentioned in Section 2, one way in which AIR scales
poorly is in the computational complexity of the decoder step
which stitches together the detected objects into an output
image; SPAIR has a similar step, and so does not avoid this
issue directly. However, the computational cost of this step is
much less problematic for SPAIR because, as shown below
in Section 5.2, it can be trained on small random crops of
large images, while still processing full images at test time.

5 Experiments

In this section we empirically demonstrate the advantages of
SPAIR on a number of different tasks.

5.1 Comparison with AIR

One of the main benefits that we expect to gain from SPAIR’s
spatial invariance is significantly improved ability to discover
and detect objects in many-object scenes. To test this, we
trained both AIR and SPAIR on 48⇥48 images each contain-
ing scattered MNIST digits of size 14⇥ 14 rendered in white
on a black background. The goal is to have the models output
accurate bounding boxes for the digits in each image, without
ever having access to ground-truth bounding boxes. In order
to probe the effect of the number of objects per image on
model performance, we used 5 different training conditions;
in each condition, the images contain a different number of
digits, ranging from 1 to 9. For each training condition, we
prepare training, validation and testing datasets, and digit
instances are not shared between these (so at test time, the
networks are seeing digit instances that they have never seen
before). As a performance measure we use an adapted ver-
sion of the Average Precision2 between the bounding boxes
predicted by the model and the ground-truth bounding boxes,
commonly used in the supervised object detection literature
(Everingham et al. 2010).

To simplify the comparison with AIR, we fixed the number
of steps executed by AIR’s recurrent network to the true
number of objects in the image, effectively “telling” AIR how
many objects are present. A variant of AIR called Difference
Attend, Infer, Repeat (DAIR) (Eslami et al. 2016) was also
tested and provided with this same information.

2In particular, we use AP@IOU=0.1:0.1:0.9, see http://
cocodataset.org/#detection-eval for details.
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Figure 2: Top: Example input images and reconstructions
by SPAIR and AIR. Predicted bounding boxes are shown in
blue, ground-truth boxes in yellow. Bottom: Average Preci-
sion achieved by different algorithms on a scattered MNIST
dataset as the number of digits per image varies.

We also devised a simple baseline method which we call
ConnComp which detects objects by finding connected com-
ponents in an image. For each pixel, ConnComp computes
the absolute difference between the color at that pixel and the
background color (which is given to it). All pixels for which
this difference is greater than a threshold ⌧ (a hyperparam-
eter) are assigned a label of 1, the rest are assigned 0. Each
connected cluster of pixels that have label 1 is taken to be an
object. Success of this method can be used as a measure of
the difficulty of the dataset: it will be successful to the degree
that objects do not overlap and are easy to segment.

Results, shown in Figure 2, clearly demonstrate that on this
task, SPAIR significantly outperforms all tested algorithms
when images contain many objects.

5.2 Generalization

Another hypothesized advantage of SPAIR’s spatial invari-
ance is a capacity for generalizing to images that are larger
and/or contain different numbers of objects than images en-
countered during training. Here we test this hypothesis. We
created three different training datasets, each consisting of
images of size 84⇥84 containing randomly scattered MNIST
digits. In each training condition, the training images con-
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Figure 3: Assessing SPAIR’s ability to generalize to images that are both larger and contain more objects than images seen
during training. Models were trained on small random crops of large images. The large images contained either 1–5 digits, 6–10
digits or 11–15 digits. Models were then tested on large pre-crop images containing between 1 and 20 digits. A simple baseline
algorithm called ConnComp (see Section 5.1) was also tested. Left: Average Precision. The 6–10 and 11–15 lines overlap almost
completely. Middle: Absolute difference between the number of objects predicted by the models and the true number of digits.
Right: Mean 0-1 error between the number of objects predicted by models and the true number of digits.

tained different numbers of digits: either 1–5, 6–10 or 11–15
digits. The trained models were then tested on images con-
taining between 1 and 20 digits. To demonstrate that SPAIR
models can be effectively applied to images of different sizes
than what they were trained on, the training set actually con-
sists of random crops, each of size 48 ⇥ 48, of full images,
while at test time the network was forced to process the pre-
crop 84 ⇥ 84 images. The network never sees full images
during training. In addition to AP, we also tracked how well
the algorithms performed at guessing the number of objects
in the scene.

Results of this experiment, shown in Figure 3, demonstrate
that SPAIR models have significant generalization ability.
The performance of all SPAIR models degraded gracefully as
the number of digits per test image increased, even well above
the maximum number of digits seen during training. There is
no significant difference between the performance of models
trained on the 6–10 digit condition compared with models
trained on the 11–15 digit condition. Models trained on the 1–
5 digit condition exhibited lower performance when applied
to images containing large numbers of digits, presumably
because their training experience did not equip them to deal
with densely packed digits.

5.3 Downstream Tasks

The main motivation behind the project of extracting objects
from scenes is the ability to use those objects in downstream
tasks. With this in mind, we perform two experiments con-
firming that SPAIR networks can be trained to extract objects
with enough accuracy to be useful for downstream tasks.

Addition. For the first task, we stay in the domain of scat-
tered MNIST digits, but now rather than asking models to
simply locate digits, we ask them to perform an arithmetic
operation on the digits, namely addition. Each training exam-
ple consists of a 48⇥ 48 image containing 5 scattered digits,
paired with an integer label giving the sum of the digits as a
one-hot vector. We tested models over a number of different
training set sizes to probe sample efficiency.

For both SPAIR and AIR, we have an initial training stage

where the model ignores the labels and maximizes the ELBO
(Equation (1)) as usual. In a second training stage, the output
of the encoder networks (i.e. the object-like representation) is
fed into a downstream classifier, which is trained to minimize
cross-entropy classification loss for the addition task. We ex-
perimented with two variants of this second training stage. In
the first variant (Fixed) the weights for the encoder network,
obtained during the initial training stage, are kept fixed. In
the second (Unfixed) all encoder weights are fixed except for
the weights of the object encoder network, which are trained
to minimize classification cross-entropy loss along with the
weights of the downstream classifier.

We also tested several other models on this task. The first
model TrueBB is given ground-truth bounding boxes for train-
ing images, extracting glimpses from the image using those
bounding boxes and feeding those glimpses into a down-
stream classifier – this is meant to act as an upper-bound on
performance, showing what can be achieved with access to
perfect object bounding boxes. The second model ConnComp
is similar, but obtains bounding boxes using the connected
components algorithm described in Section 5.1, rather than
using the ground-truth boxes. The final model ConvNet uses
a convolutional neural network (with the same architecture as
SPAIR’s convolutional backbone) to extract features from the
image, which are once again passed into a downstream clas-
sifier. In all cases, the downstream classifier was an LSTM
with 128 hidden units that iterated over objects (for ConvNet,
each spatial location in the output volume was treated as a
separate object).

Results of this experiment are shown in Figure 4. The two
variants of SPAIR significantly outperform all methods other
than TrueBB.

The Game of SET. Here we explore using SPAIR as a
front-end for learning to play a version of the card game SET
(Chaudhuri et al. 2003). Let p be the number of properties
and v the number of values per property, for integers p and v.
SET is played using a deck of cards; each card has a value
for each of the p properties, and the deck contains a single
copy of every unique card (and thus has size vp). A set is a
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Figure 4: Assessing model performance on a task that re-
quires models to take in images containing 5 digits and output
the sum of the digits.

collection of v cards such that for each of the p properties,
the cards either all have the same value for the property or
all have different values for the property. To play a round of
SET, the deck is shuffled and a fixed number of cards n are
drawn from the top and displayed face up. The goal is to be
the first to identify from the collection of drawn cards a set
if one exists. The standard game of SET uses n = 12, p = 4
and v = 3, with the four properties being shape, number,
color and texture.

Here we consider a simplified version of SET with n = 7,
p = 3, v = 3 and shape, number and color as the properties.
In this context, we created a dataset designed to train agents
to determine, given an image depicting n = 7 cards, whether
there exists a set among those cards. Cards are depicted as
colored shapes with number represented by black strokes.
Each training example consists of an image of 7 cards and a
binary label specifying whether a set exists among the cards.
To increase perceptual difficulty, we allow the cards to over-
lap significantly with one another, and use three different
background colors. Training, validation and testing datasets
all had roughly equal numbers of positive and negative exam-
ples, enforced through rejection sampling.

The training dataset contained 128,000 examples, while
validation and test datasets contained 500 examples each. We
tested SPAIR (with a two-stage training schedule similar to
the previous experiment), TrueBB and ConvNet, and used
an LSTM with 256 hidden units as the downstream classifier.
The results are shown in Table 1. SPAIR discovers and de-
tects cards well enough to allow downstream performance
equal to what can be obtained using ground-truth bounding
boxes. In contrast, the pure convolutional network, which has
no explicit notion of objects, is completely unable to make
progress on the task. Example images and qualitative results
from SPAIR are shown in Figure (?).

SPAIR ConvNet TrueBB
Test Acc. 57.9 50.1 57.7
Std. Dev. 0.019 0 0.012

Table 1: Model performance on the game of SET.

Figure 5: Example images for SET. Top: True image. Middle:
SPAIR Reconstruction. Bottom: Reconstruction again, with
(ground-truth/predicted) bounding boxes in (white/black).

Figure 6: Example images from the Space Invaders Atari
game (left), and reconstruction (middle) and object bounding
boxes (right) yielded by a trained SPAIR model.

5.4 Space Invaders

To push the scaling capabilities of SPAIR further, we trained
it on images from Space Invaders using the Arcade Learning
Environment (Bellemare et al. 2013), collected with a random
policy. The network was trained on random crops of size
48⇥ 48; at test time the network processes full images (size
210⇥ 160). Qualitative results are given in Figure 6.
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Figure 7: Comparing performance of a SPAIR network with 1-step lateral connections to a network with no lateral connections.
The experimental setup is similar to the experiment described in Section 5.2 / Figure 3.

5.5 Ablation Study on the Importance of Lateral

Connections

In Section 4.3, we described a set of lateral connections elat�
in the encoder network which allow the object produced at
a cell to depend on objects already sampled at nearby cells.
These connections may, for instance, help the network avoid
detecting the same object multiple times at different cells (du-
plicate detections are possible in principle because of overlap
between the receptive fields of neighbouring neurons in the
output layer of the convolutional network econv� ). To test that
these connections are indeed important, we performed an
ablation study. In particular, we repeated the 11–15 digit
training condition from Section 5.2 / Figure 3 using one net-
work that uses lateral connections which allow objects to
directly depend on objects up to 1 cell away (the default
throughout this work), and another network which had no lat-
eral connections. The results, shown in Figure 7, clearly show
that the lateral connections are crucial when the network is
asked to generalize to larger images with more objects than
seen during training. For this experiment we used a slightly
different architecture and tuning procedure, and hence these
results are not directly comparable to the results in Section
5.2 / Figure 3.

6 Conclusion

In this paper, we introduced a novel architecture for unsuper-
vised object detection which combines features of existing
approaches (such as AIR) with the spatial invariance proper-
ties of recent supervised object detection architectures such
as YOLO. We showed empirically that the addition of this
spatial invariance allows for greatly improved scaling; in par-
ticular, we showed that our spatially invariant architecture
outperforms competing approaches for scenes with many ob-
jects, that our approach can generalize to scenes larger and
more complex than scenes it was trained on, and that our
approach is able to discover and detect objects with enough
accuracy to support downstream tasks.
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