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ABSTRACT
Network embedding is an effective technique to learn the
low-dimensional representations of nodes in networks. Real-
world networks are usually with multiplex or having multi-view
representations from different relations. Recently, there has been
increasing interest in network embedding on multiplex data.
However, most existing multiplex approaches assume that the data
is complete in all views. But in real applications, it is often the case
that each view suffers from the missing of some data and therefore
results in partial multiplex data.

In this paper, we present a novel Deep Partial Multiplex Network
Embedding approach to deal with incomplete data. In particular,
the network embeddings are learned by simultaneously minimizing
the deep reconstruction loss with the autoencoder neural network,
enforcing the data consistency across views via common latent
subspace learning, and preserving the data topological structure
within the same network through graph Laplacian. We further
prove the orthogonal invariant property of the learned embeddings
and connect our approach with the binary embedding techniques.
Experiments on four multiplex benchmarks demonstrate the
superior performance of the proposed approach over several state-
of-the-art methods on node classification, link prediction and
clustering tasks.
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1 INTRODUCTION
Network embedding is designed for learning low-dimensional
and typically non-linear representations of nodes in the network,
which is able to preserve network information. Network embedding
has been shown to be useful in many downstream tasks, such as
node classification [55], node clustering [16], link prediction [31]
and community detection [59]. A variety of network embedding
techniques have been proposed in the literature [4, 12, 15, 26, 33–
36, 42, 46, 50, 52, 58, 68, 72]. However, most of these methods
focus on single networks, where nodes in the networks are only
associated with one type of features or relations.

In many real-world applications, data usually have multiplex
representations [70], where nodes are associated with multiple
features from different sources. Multiple types of edges/relations
are then generated from these disparate features. For example, in
document corpus, a document has hyperlink feature that connects
to other related documents. It can also have semantic representation
such as attribute or tag feature. Documents are linked together in
the attribute view if they share at least one attribute. In Flickr [5],
users can be represented with their friendship to others, public
comments, photos, reviews, tags, etc. Similarly, users are linked in
the photo network or tag network if they share same photos or tags.
Previous research on multiplex representation learning [32, 56] has
demonstrated improved performance by leveraging complementary
information from different views. Therefore, there is a growing
interest in multiplex network embedding that effectively integrates
information from disparate views [14, 71, 73].
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Although existing multiplex network embedding methods
generate promising results in dealing with multiplex data, most of
them assume that all nodes in the network have full information in
all views. However, in real-world tasks, it is often the case that a
view suffers from somemissing information, which results in partial
data [29, 51, 54]. For instance, in document corpus, many documents
may not contain any hyperlink or tag information. In Flickr, a user
might have few or even no friend connections, reviews or tags,
resulting in an isolated node in the corresponding relationship
network. Moreover, it is also common that users don’t share some
of their information, such as photos and comments, for privacy
consideration. Therefore, it is a practical and important research
problem to design effective network embedding methods on partial
multiplex data.

There are several ways to apply existing multiplex network
embedding methods to partial data. One can either remove the
data that suffer from missing information, or preprocess the partial
data by first filling in the missing data. The first strategy is
clearly not suitable since the purpose is to map all nodes to their
corresponding embedding vectors, and our experiments show that
the second strategy does not achieve good performance either. In
this paper, we propose a novel Deep Partial Multiplex Network
Embedding (DPMNE) approach to deal with such incomplete data.
More specifically, a deep autoencoder network is introduced to
learn the deep representations of node features. A unified learning
framework is developed to learn the network embedding, which
simultaneously minimizes the reconstruction error from the deep
autoencoder, enforces the data consistency across different views
via common latent subspace learning, and preserves data proximity
within the same network through graph Laplacian. A coordinate
descent algorithm is applied as the optimization procedure. We then
further connect our approach to binary embedding methods [48]
based on the orthogonal invariant property of our formulation.
Experiments on four multiplex datasets demonstrate the advantages
of the proposed approach over several state-of-the-art single and
multiplex network embedding methods.

2 RELATEDWORK
2.1 Single Network Embedding
Single network embedding methods [8, 11, 13, 18, 60, 74] learn an
information preserving embedding of a single-view network for
node classification, node clustering and many other related tasks.
A spectral based method [3] has been proposed, which uses the
top-k eigenvectors to represent the network nodes. DeepWalk [36]
introduces the idea of Skip-gram to learn node representations from
random-walk sequences. LINE [44] tries to use the embedding to
approximate the first-order and second-order proximities of the
network. On top of DeepWalk, Node2Vec [21] adds two parameters
to control the randomwalk process andmake it biased randomwalk.
SDNE [47] uses deep neural networks to preserve the neighbors
structure proximity in network embedding. Recently, graph neural
network (GNN) based methods [1, 23, 66] have been proposed,
which generate embedding by sampling and aggregating features
from a node local neighborhood in the network. GraphSAGE [23]
is a general inductive framework that leverages node feature
information to efficiently generate node embeddings for previously

methods Deep Partial Multiplex Network
DeepWalk [36] x x x ✓
Node2Vec [21] x x x ✓

LINE [44] x x x ✓
GraphSAGE [23] ✓ x x ✓

SDNE [47] ✓ x x ✓

DANE [16] ✓ x ✓ ✓
MVE [38] x x ✓ ✓
MNE [70] x x ✓ ✓
CFANE [35] ✓ x ✓ ✓
MAGCN [10] ✓ x ✓ ✓
HWNN [42] ✓ x ✓ ✓

PVC [29] x ✓ ✓ x
IMVC [32] x ✓ ✓ x
DPMNE ✓ ✓ ✓ ✓

Table 1: Summary of existing network embedding and
partial data representation approaches. Deep: learning deep
representations. Partial: handling partial data. Multiplex:
incorporating multiplex data. Network: modeling network
information.

unseen data. DEGNN [28] presents a distance encoding GNN
that learns a generator to approximate the node connectivity
distribution and a discriminator to differentiate fake nodes and the
nodes sampled from the true data distribution. For a comprehensive
review on GNN models, please refer to [61].

2.2 Multiplex Network Embedding
Various approaches have been proposed to learn network embed-
ding on multiplex data [6, 7, 9, 30, 37, 53, 62, 65, 67]. Such methods
effectively integrate information from individual views while
exploiting complementary information supplied by different views.
MVE [38] is one of the pioneer work in this category. This work
combines the information from multiple sources using a weighted
voting scheme. MVN2Vec [41] further studies how varied extent of
preservation and collaboration can impact the multiplex embedding
learning. DANE [16], DONE [2] and ProGAN [17] treat the
attribute/tag information associated with the nodes as additional
feature and learn embedding with deep neural networks. More
recently, MNE [70] uses a latent space to integrate the information
across multiple views. MAGCN [10] proposes a multi-view attribute
graph convolution networks model for the clustering task. A quick
survey on multiplex network representation is provided in [67].
These multiplex network embedding methods [24, 57, 64] achieve
promising results. However, the partial data scenarios are not
considered.

2.3 Partial Data Learning
It is also worth mentioning that there are few single network
embedding approaches that deal with incomplete data [59, 69].
Obviously, these methods are not suitable in multiplex network
setting. There are also some multi-view approaches [22, 29, 32,
39, 63] proposed to deal with incomplete data in clustering task.
For example, PVC [29] develops a two-view clustering method
that learns a unique representation between views to handle
incomplete data in each view. Most recently, IMVC [32] uses
multiple kernel k-means with incomplete kernels to jointly conduct
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Figure 1: The architecture of our proposed DPMNE. There are three views in the multiplex network example, with missing data
from each individual views, i.e., 𝑥4 is missing from view 1, 𝑥5 is missing from view 2, 𝑥1 and 𝑥4 are missing from view 3. The
three key components of DPMNE are: 1) Deep reconstruction loss from all views. 2) Data consistency among views via latent
common subspace learning. 3) Proximity preservation from each view.

clustering and kernel matrix imputation. Although these methods
obtain reasonable performance, they are not directly applicable to
network embedding as network information can not be modeled
by these methods. Moreover, none of these methods learn the
deep representations for the multiplex network. We compare and
summarize these approaches in Table 1.

3 DEEP PARTIAL MULTIPLEX NETWORK
EMBEDDING

3.1 Problem Definition
Given a multiplex network𝐺𝐺𝐺=(𝑉𝑉𝑉 ,𝐸𝐸𝐸), where𝑉𝑉𝑉={𝑣𝑖 | 𝑖 = 1, . . . , 𝑛}
denotes the set of nodes. 𝑋𝑋𝑋={𝑋𝑋𝑋 1,𝑋𝑋𝑋 2, . . . ,𝑋𝑋𝑋 𝑡 } are the multiplex
features associated with the nodes, where 𝑡 is the total number
of views, 𝑋𝑋𝑋𝑠={𝑥𝑠

𝑖
| 𝑖 = 1, 2, . . . , 𝑛} with 𝑥𝑠

𝑖
∈ R𝑑𝑠 is the feature

of the 𝑖-𝑡ℎ node in the 𝑠-𝑡ℎ view. 𝐸𝐸𝐸={𝐸𝐸𝐸𝑠 } denotes the edge sets
in the multiplex network, where 𝐸𝐸𝐸𝑠

𝑖, 𝑗
=1 indicates that 𝑣𝑖 and 𝑣 𝑗

are linked in the 𝑠-𝑡ℎ view. In the partial data setting, a partial
data𝑋𝑋𝑋={𝑋𝑋𝑋 1

,𝑋𝑋𝑋
2
, . . . ,𝑋𝑋𝑋

𝑡 } instead of𝑋𝑋𝑋 is given, where some of the
node features are missing from each individual views, e.g., 𝑥1

4 is
missing from View 1 and 𝑥2

5 is missing from View 2 in Figure 1.
The purpose of DPMNE is to learn a low-dimensional embedding
representation 𝑌𝑌𝑌={𝑦1, 𝑦2, . . . , 𝑦𝑛} ∈ R𝑛×𝑑 of 𝐺𝐺𝐺 , where 𝑑 ≪ 𝑑𝑠 is
the latent embedding dimension.

The overall model architecture is shown in Figure 1. The
objective function of DPMNE is composed of three components:
(1) Deep reconstruction loss within each views, where we learn a
deep representation of the node feature using autoencoder model.

(2) Data consistency among views, where latent common subspace
learning is utilized to ensure that the node embeddings generated
from different views are consistent. (3) Proximity preservation
within view, where graph Laplacian is applied to enforce that linked
nodes within each network should have close embeddings.

3.2 Deep Representation
To capture the sparsity and highly non-linear structure in the
feature space, we adopt a deep autoencoder to map the input data to
the representation space. Autoencoder is a powerful unsupervised
deep model for feature learning. It has been widely used for various
machine learning applications [27, 47]. The basic autoencoder
contains three layers, they are the input layer, the hidden layer,
and the output layer, which are defined as follows:

ℎ = 𝜎 (𝑊𝑊𝑊 (𝑒𝑛)𝑥 + 𝑏 (𝑒𝑛) ), 𝑥 = 𝜎 (𝑊𝑊𝑊 (𝑑𝑒)ℎ + 𝑏 (𝑑𝑒) ) (1)

where ℎ is the deep representation from the encoder, 𝑥 is the recon-
structed feature from the decoder.𝐻𝐻𝐻 = {𝑊𝑊𝑊 (𝑒𝑛) , 𝑏 (𝑒𝑛) ,𝑊𝑊𝑊 (𝑑𝑒) , 𝑏 (𝑑𝑒) }
are autoencoder parameters. 𝜎 (.) denotes the non-linear activation
function. In our implementation, we employ𝐾 layers in the encoder:

ℎ1 = 𝜎 (𝑊𝑊𝑊 (𝑒𝑛)
1 𝑥 + 𝑏 (𝑒𝑛)1 )

ℎ𝑘 = 𝜎 (𝑊𝑊𝑊 (𝑒𝑛)
𝑘

ℎ𝑘−1 + 𝑏
(𝑒𝑛)
𝑘

)
(2)

Similarly, there will be 𝐾 layers in the decoder. The goal of
the autoencoder is to minimize the reconstruction loss of the
reconstructed features 𝑥 and the input features 𝑥 , in each individual
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views (note that there is one autoencoder per view):

min
𝐻𝐻𝐻

𝑡∑︁
𝑠=1

∥𝑋𝑋𝑋𝑠 − 𝑋̃𝑋𝑋𝑠 ∥2
𝐹 (3)

Although minimizing the reconstruction loss does not explicitly
preserve the similarity between samples, as shown in [40], the
reconstruction criterion can effectively capture the data manifolds
and thus preserve the similarity between data examples.

3.3 Data Consistency among Views
In the partial multiplex network setting, the nodes are represented
by heterogeneous features of different dimensions, which makes
it difficult for learning their embeddings. By investigating the
problem from view perspective, in each individual view, the
nodes are sharing the same feature space, and different views
are coupled/bridged by the shared common nodes. If we can
learn a common latent subspace across views, where embeddings
belonging to the same node among different views are consistent,
while at the same time for each view, the representations for linked
nodes are close in the latent subspace. Then the embeddings can
be directly learned from this subspace, and we do not need to fill
in or complete the partial data. Following the above idea, the deep
latent subspace learning can be formulated as:

min
𝑌𝑌𝑌,𝐵𝐵𝐵,𝐻𝐻𝐻

𝑡∑︁
𝑠=1

∥𝐼𝐼𝐼𝑠 (𝐻𝐻𝐻𝑠 −𝑌𝑌𝑌𝐵𝐵𝐵𝑠 )∥2
𝐹 + 𝜆 𝑅(𝑌𝑌𝑌,𝐵𝐵𝐵,𝐻𝐻𝐻 ) (4)

where 𝐼𝐼𝐼𝑠 ∈ R𝑛×𝑛 is a diagonal matrix with element 𝐼𝐼𝐼𝑠
𝑖𝑖
= 0 or 1

indicating whether 𝑥𝑠
𝑖
is missing or not.𝐻𝐻𝐻𝑠 ∈ R𝑛×𝑑ℎ𝑠 are the deep

representations of the data in 𝑠-𝑡ℎ view as described in Section 3.2.
Note that the 𝑖-𝑡ℎ row of𝐻𝐻𝐻𝑠 will be 0 if 𝑥𝑠

𝑖
is missing. 𝐵𝐵𝐵𝑠 ∈ R𝑑×𝑑ℎ𝑠

is the basis matrix for 𝑠-𝑡ℎ view’s latent space. The same latent
space dimension 𝑑 is shared across views.𝑌𝑌𝑌 ∈ R𝑛×𝑑 is the common
representation/embedding of nodes in the latent space. 𝑅(· ) = ∥· ∥2

𝐹
is the regularization term and 𝜆 is the trade-off parameter.

In the above formulation, the individual basis matrix 𝐵𝐵𝐵𝑠 , which
are learned from all available instances from all views, are connected
by the common latent representation𝑌𝑌𝑌 . Moreover, no interpolation
is needed for the missing data beforehand. In fact, the deep
representation of the missing data can even be reconstructed with
the learned basis and the common latent embedding, i.e., ℎ𝑠

𝑖
= 𝑦𝑖𝐵

𝑠 .
By solving the above problem, the deep representation𝐻𝐻𝐻 , the latent
space basis 𝐵𝐵𝐵 and the homogeneous feature representation𝑌𝑌𝑌 are
simultaneously learned to minimize the latent representation error.

3.4 Proximity Preservation within Views
One of the key problems in network embedding algorithms is
proximity preserving, which indicates that linked nodes should
be mapped to similar embedding within a close distance. Therefore,
besides the data consistency across different views, we also preserve
the data proximity within each individual network. In other words,
we want the learned embedding 𝑌𝑌𝑌 to preserve the proximity
structure in each network. In this work, we use the 𝐿2 distance
to measure the proximity between 𝑦𝑖 and 𝑦 𝑗 as ∥𝑦𝑖 − 𝑦 𝑗 ∥2 as in
most network embedding work. Then one natural way to preserve
the proximity in each network is to minimize the weighted average

distance as follows:
𝑡∑︁

𝑠=1

∑︁
𝑖, 𝑗

𝑃𝑃𝑃𝑠𝑖 𝑗 ∥𝑦𝑖 − 𝑦 𝑗 ∥
2 =

∑︁
𝑖, 𝑗

𝑃𝑃𝑃𝑖 𝑗 ∥𝑦𝑖 − 𝑦 𝑗 ∥2 (5)

here 𝑃𝑃𝑃𝑖 𝑗 =
∑𝑡
𝑠=1 𝑃𝑃𝑃

𝑠
𝑖 𝑗

and 𝑃𝑃𝑃𝑠 is the proximity matrix in 𝑠-𝑡ℎ view,
which can be obtained from the edges in 𝑠-𝑡ℎ network 𝐸𝐸𝐸𝑠 . A simple
way to define 𝑃𝑃𝑃𝑠 is to directly use the first-order proximity, i.e.,
𝑃𝑃𝑃𝑠 = 𝐸𝐸𝐸𝑠 . However, the first-order proximity is usually very sparse
and insufficient to fully model the relationships between nodes
in most cases, especially under the partial data setting. In order
to characterize the connections between nodes better, we adopt
high-order proximity [16, 31] and define 𝑃𝑃𝑃𝑠 as:

𝑃𝑃𝑃𝑠 = 𝑤1𝐸𝐸𝐸
𝑠 +𝑤2 (𝐸𝐸𝐸𝑠 )2 + · · · +𝑤𝑙 (𝐸𝐸𝐸𝑠 )𝑙 (6)

where 𝑙 is the order, and𝑤1,. . . ,𝑤𝑙 are the weights for each term1.
Matrix (𝐸𝐸𝐸𝑠 )𝑙 denotes the 𝑙-order proximity matrix. To meet the
proximity preservation criterion, we seek to minimize the quantity
in Eqn.5 in the network since it incurs a heavy penalty if two
connected nodes have very different embedding representations.
By introducing a diagonal matrix 𝐷𝐷𝐷 , whose entries are given by
𝐷𝐷𝐷𝑖𝑖 =

∑𝑛
𝑗=1 𝑃𝑃𝑃𝑖 𝑗 . Eqn.5 can be rewritten as:

𝑡𝑟

(
𝑌𝑌𝑌𝑇 (𝐷𝐷𝐷 − 𝑃𝑃𝑃)𝑌𝑌𝑌

)
= 𝑡𝑟

(
𝑌𝑌𝑌𝑇𝐿𝐿𝐿𝑌𝑌𝑌

)
(7)

where 𝐿𝐿𝐿 is called graph 𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛 [3] and 𝑡𝑟 (· ) is the matrix trace
function. By minimizing the above objective in all networks, the
proximity between different nodes can be preserved in the learned
embedding.

3.5 Overall Objective and Optimization
The entire objective function consists of three components: the deep
reconstruction loss in Eqn.3, the data consistency among views in
Eqn.4 and proximity preservation within views given in Eqn.7 as
follows:

min
𝑌𝑌𝑌,𝐵𝐵𝐵,𝐻𝐻𝐻

𝑂 =

𝑡∑︁
𝑠=1

∥𝑋𝑋𝑋𝑠 − 𝑋̃𝑋𝑋𝑠 ∥2
𝐹 + 𝛼

𝑡∑︁
𝑠=1

∥𝐼𝐼𝐼𝑠 (𝐻𝐻𝐻𝑠 −𝑌𝑌𝑌𝐵𝐵𝐵𝑠 )∥2
𝐹

+𝛽 𝑡𝑟
(
𝑌𝑌𝑌𝑇𝐿𝐿𝐿𝑌𝑌𝑌

)
+ 𝜆 𝑅(𝑌𝑌𝑌,𝐵𝐵𝐵,𝐻𝐻𝐻 )

(8)

where 𝛼 , 𝛽 and 𝜆 are trade-off parameters to balance the weights
among the terms. Directly minimizing the objective function in
Eqn.8 is intractable since it is a non-convex optimization problem
with 𝑌𝑌𝑌 , 𝐵𝐵𝐵 and𝐻𝐻𝐻 coupled together. We propose to use coordinate
descent scheme by iteratively solving the optimization problem
with respect to𝑌𝑌𝑌 , 𝐵𝐵𝐵 and𝐻𝐻𝐻 as follows:

(1) Update 𝑌 by fixing 𝐵 and 𝐻 . Given the basis matrix 𝐵𝐵𝐵𝑠
and encoders𝐻𝐻𝐻𝑠 for all views, we seek to solve the following sub-
problem:

min
𝑌𝑌𝑌

𝑂 (𝑌𝑌𝑌 ) = 𝛼

𝑡∑︁
𝑠=1

∥𝐼𝐼𝐼𝑠 (𝐻𝐻𝐻𝑠 −𝑌𝑌𝑌𝐵𝐵𝐵𝑠 )∥2
𝐹

+𝛽 𝑡𝑟
(
𝑌𝑌𝑌𝑇𝐿𝐿𝐿𝑌𝑌𝑌

)
+ 𝜆 𝑅(𝑌𝑌𝑌 ) + 𝑐𝑜𝑛𝑠𝑡

(9)

1In our implementation, we set 𝑙 to 5, 𝑤1 to 1 and 𝑤𝑖 = 0.5𝑤𝑖−1 .
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where 𝑐𝑜𝑛𝑠𝑡 is the constant value independent with the parameter
that to be optimized with. Although Eqn.9 is still non-convex, it is
smooth and differentiable which enables gradient descent methods
for efficient optimization with the calculated gradient:

𝜕
𝑂 (𝑌𝑌𝑌 )
𝑌𝑌𝑌

= 2𝐼𝐼𝐼𝑠 (𝑌𝑌𝑌𝐵𝐵𝐵𝑠 −𝐻𝐻𝐻𝑠 ) (𝐵𝐵𝐵𝑠 )𝑇 + 2𝛽𝐿𝐿𝐿𝑌𝑌𝑌 + 4𝜆𝑌𝑌𝑌 (𝑌𝑌𝑌𝑇𝑌𝑌𝑌 − 𝐼𝐼𝐼𝑑 ) (10)

(2) Update 𝐵𝑠 by fixing 𝑌 and 𝐻 . It is equivalent to solve the
following least square problems:

min
𝐵𝐵𝐵𝑠

𝑂 (𝐵𝐵𝐵𝑠 ) = 𝛼 ∥𝐼𝐼𝐼𝑠 (𝐻𝐻𝐻𝑠 −𝑌𝑌𝑌𝐵𝐵𝐵𝑠 )∥2
𝐹 + 𝜆∥𝐵𝐵𝐵𝑠 ∥2

𝐹 (11)

which has a closed form solution and can be simply derived.
(3) Update 𝐻𝑠 by fixing 𝑌 and 𝐵. It is a standard autoencoder

with an additional regression loss:

min
𝐻𝐻𝐻𝑠

𝑂 (𝐻𝐻𝐻𝑠 ) = ∥𝑋𝑋𝑋𝑠 − 𝑋̃𝑋𝑋𝑠 ∥2
𝐹 + 𝛼 ∥𝐼𝐼𝐼𝑠 (𝐻𝐻𝐻𝑠 −𝑌𝑌𝑌𝐵𝐵𝐵𝑠 )∥2

𝐹 + 𝜆 𝑅(𝐻𝐻𝐻𝑠 ) (12)

which can be solved with gradient back-propagation. We then
alternate the process of updating𝑌𝑌𝑌 , 𝐵𝐵𝐵 and𝐻𝐻𝐻 for several iterations
to find a locally optimal solution.

3.6 Binary Embedding
This section connects our work to the quantization-based binary
embedding techniques [20, 48, 49], which learn compact binary
representations of the data examples for efficient similarity search
tasks. Quantization-based binary embedding methods directly
binarize the low-dimensional representation to achieve the binary
codes. In this work, we can easily obtain the binary codes 𝐶𝐶𝐶 for
the nodes in the network by binarizing the learned embedding𝑌𝑌𝑌 .
However, the quantization error can be further reduced based on
the orthogonal invariant property, by minimizing the quantization
error between the binary codes and the orthogonal rotation of the
embeddings (since𝑌𝑄𝑌𝑄𝑌𝑄 is also an optimal embedding):

min
𝐶𝐶𝐶,𝑄𝑄𝑄

∥𝐶𝐶𝐶 −𝑌𝑄𝑌𝑄𝑌𝑄 ∥2
𝐹

𝑠 .𝑡 . 𝐶𝐶𝐶 ∈ {−1, 1}𝑛×𝑑 , 𝑄𝑄𝑄𝑇𝑄𝑄𝑄 = 𝐼𝐼𝐼𝑑

(13)

The above quantization problem is well studied in the literature [20].

3.7 Theoretical Analysis
This section provides some complexity analysis on the training cost
of the learning algorithm. The optimization algorithm of DPMNE
consists of three steps in each iteration to update 𝑌 , 𝐵 and 𝐻 . The
time complexities for solving 𝑌 and 𝐵 are bounded by 𝑂 (𝑡𝑛𝑑𝑑𝑠 +
𝑡𝑛𝑑2+𝑛2𝑑) and𝑂 (𝑡𝑛𝑑2+𝑡𝑛𝑑𝑑𝑠 ) respectively. In practice, 𝐿 is usually
a sparse matrix, and the cost can be reduced from 𝑂 (𝑛2𝑑) to 𝑂 (𝑙𝑑)
with sparse matrix multiplication, where 𝑙 is the number of non-
zero elements in 𝐿. The cost of updating 𝐻 depends on the number
of hidden layers and units in the autoencoder network, which is
roughly 𝑂 (𝑡𝑛𝑚𝑑𝑠 ). Here𝑚 is the number of unique units in the
network. Thus, the total time complexity of the learning algorithm
is bounded by 𝑂 (𝑡𝑛𝑑𝑑𝑠 + 𝑙𝑑 + 𝑡𝑛𝑑2 + 𝑡𝑛𝑚𝑑𝑠 ).

4 EXPERIMENTS
4.1 Experimental Setting
4.1.1 Datasets. The proposed approach is evaluated on four
benchmarks: Cora, DBLP, Flickr and Last.fm.

Dataset #nodes #total edges #views #labels avg. PDR
Cora 2,708 12,887 2 7 0.02
DBLP 69,110 1,884,236 3 8 0.39
Flickr 6,163 378,547 5 10 0.46
Last.fm 10,197 1,325,367 12 11 0.52

Table 2: A summary of the statistics on all datasets.

• Cora2 is a widely used document corpus from paper citation
networks. It contains 2,708 scientific publications classified
into one of 7 classes. Citation links and attributes are used
as the multiplex, where the features are represented by a
0/1-valued vector indicating the absence/presence of the
corresponding link and attribute respectively. The citation
network consists of 5,429 edges. For the attribute network,
there is an edge between two papers if they share at least
one attribute, resulting in 7,458 edges.

• DBLP3 is an author network from the DBLP dataset [45]. It
contains 69,110 nodes. Three views are identified including
the co-authorship, author-citation and text views. For co-
authorship and author-citation views, 0/1-valued feature
vectors are used indicating co-authorship and citation
between two authors, resulting in 430,117 and 763,029
edges in the corresponding views. For the text view, TF-
IDF features are extracted from author’s title and abstract.
The network is construct based on the text similarity,
i.e., there is a link between two authors if their text
similarity is high, resulting in 691,090 edges. We select eight
diverse research fields as labels including “machine learning”,
“computational linguistics”, “programming language”, “data
mining”, “database”, “system technology”, “hardware” and
“theory”. For each field, several representative conferences
are selected, and only papers published in these conferences
are kept to construct the three views.

• Flickr [5] data were collected from the Flickr photo sharing
service. It consists of 6,163 users with 10 unique labels. There
are 5 views associated with this data: Comment, Favorite,
Photo, Tag and User. Here, the views correspond to different
aspects of Flickr and edges denote shared interests between
users. For example, in the comment view, there is a link
between 2 users if they have both commented on the same set
of 5 or more photos. All features are 0/1-valued vectors. The
resulting five views are: CommentView (2,358 nodes, 13,789
links), FavoriteView (2,724 nodes, 30,757 links), PhotoView
(4,061 nodes, 91,329 links), TagView (1,341 nodes, 154,620
links), and UserView (6,163 nodes, 88,052 links).

• Last.fm [5] dataset was collected from the music network,
with the nodes representing the users and the edges
corresponding to different relationships between Last.fm
users and other entities. In each view, two users are
connected by an edge if they share similar interests,
yielding 12 views: ArtistView (2,118 nodes, 149,495 links),
EventView (7,240 nodes, 177,000 links), NeighborView
(5,320 nodes, 8,387 links), ShoutView (7,488 nodes, 14,486
links), ReleaseView (4,132 nodes, 129,167 links), TagView
(1,024 nodes, 118,770 links), TopAlbumView (4,122 nodes,

2https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz
3https://www.aminer.org/aminernetwork

https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz
https://www.aminer.org/aminernetwork
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Cora DBLP Flickr Last.fm
methods Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1
DeepWalk 0.817 ± 0.022 0.809 ± 0.019 0.709 ± 0.014 0.713 ± 0.010 0.472 ± 0.015 0.451 ± 0.013 0.482 ± 0.011 0.453 ± 0.014
GraphSAGE 0.826 ± 0.015 0.814 ± 0.017 0.718 ± 0.019 0.720 ± 0.021 0.479 ± 0.015 0.462 ± 0.014 0.503 ± 0.011 0.465 ± 0.012

SDNE 0.821 ± 0.021 0.816 ± 0.016 0.706 ± 0.014 0.709 ± 0.018 0.482 ± 0.015 0.454 ± 0.009 0.508 ± 0.011 0.479 ± 0.019
DANE 0.841 ± 0.015 0.832 ± 0.012 0.727 ± 0.015 0.721 ± 0.014 0.485 ± 0.021 0.467 ± 0.013 0.503 ± 0.014 0.481 ± 0.012
IMVC 0.828 ± 0.017 0.820 ± 0.016 0.741 ± 0.013 0.734 ± 0.016 0.478 ± 0.020 0.464 ± 0.012 0.496 ± 0.017 0.478 ± 0.013

MAGCN 0.856 ± 0.022 0.847 ± 0.021 0.750 ± 0.025 0.736 ± 0.019 0.508 ± 0.018 0.480 ± 0.015 0.530 ± 0.011 0.508 ± 0.012
HWNN 0.851 ± 0.017 0.843 ± 0.016 0.752 ± 0.023 0.741 ± 0.014 0.502 ± 0.013 0.474 ± 0.021 0.532 ± 0.013 0.511 ± 0.016
DPMNE 0.859 ± 0.016 0.844 ± 0.015 0.784 ± 0.016 0.769 ± 0.009 0.526 ± 0.011 0.512 ± 0.014 0.558 ± 0.013 0.534 ± 0.015

Table 3: Node classification results on all datasets. Results are statistically significant with p-value < 0.001.

Cora DBLP Flickr Last.fm
DeepWalk 0.676 0.573 0.429 0.435
GraphSAGE 0.683 0.589 0.422 0.441

SDNE 0.677 0.594 0.397 0.430
DANE 0.695 0.613 0.454 0.444
IMVC 0.692 0.635 0.457 0.447

MAGCN 0.707 0.628 0.480 0.461
HWNN 0.702 0.631 0.482 0.465
DPMNE 0.711 0.649 0.506 0.483

Table 4: Node clustering accuracy results on all datasets.

128,865 links), TopArtistView (6,436 nodes, 12,4731 links),
TopTagView (1,296 nodes, 136,104 links), TopTrackView
(6,164 nodes, 87,491 links), TrackView (2,680 nodes, 93,358
links), and UserView (10,197 nodes, 38,743 links).

All these multiplex network are suffering from missing data. For
example, the CommentView of Flickr only has 2,358 users (out
of 6,163), where comments are missing from a certain amount of
users. In the TagView of Last.fm, only 1,024 out of 10,197 users
have associated with tags, resulting partial multiplex data. We use
Partial Data Ratio (PDR) to represent the fraction of the missing
data, e.g., the PDR of the CommentView of Flickr is 0.624. The
statistics of the datasets with average PDR are given in Table 2.

4.1.2 Baselines. The proposed approach is compared with seven
different state-of-the-art baselines, including three single-view
methods, DeepWalk, GraphSAGE and SDNE with four multi-
view methods, DANE, IMVC,MAGCN and HWNN.

• DeepWalk [36] learns node representations from random-
walk on the networks.

• GraphSAGE [23] aggregates the neighbor information to
generate node embeddings with graph neural network.

• SDNE [47] uses deep neural networks to preserve the
structure proximity in network embedding.

• DANE [16] uses attribute/tag information associated with
the nodes as additional feature and learn embedding with
deep neural networks.

• IMVC [32] is a multi-view clustering method that explicitly
handles incomplete data.

• MAGCN [10] learns network embeddings with a multi-view
graph convolution networks (GCN).

4(6,163-2,358)/6,163 = 0.62

• HWNN [42] is a GNN-based representation learning for
heterogeneous hypergraphs, which models multiple non-
pairwise relations.

4.1.3 Implementation Details. To apply single-view method, we
generate a single network from the multiplex network by placing
an edge between a pair of nodes if they are linked by an edge in
any view. For DeepWalk, we set the window size as 10, the walk
length as 80, and the number of walks as 10 which are the optimal
parameters tuned in our experiments. The number of units in the
hidden layer is set to 200 in the deep neural network for GraphSAGE,
SDNE and DANE. For IMVC, the code is public available5 and we
tune the best hyperparameter with 5-fold cross validation.

For our method, the parameters 𝛼 , 𝛽 and 𝜆 are tuned by 5-fold
cross validation on the training set. To get a fair comparison with
deep models, we adopt the same architecture of the neural network,
with 200 units in the hidden layer. We set the maximum number
of iterations to 60. The number of embedding dimension is set to
128 for all methods (for DANE, each view has dimension of 64). We
repeat each experiment 10 times and report the result based on the
average over these runs. 50% of the data with random split is used
as training.

4.2 Results and Discussion
4.2.1 Evaluation of Different Methods. We first evaluate the
performance of different methods. To apply the compared deep
neural network methods to the partial data, a simple way is to fill
in the missing features with 0. However, this may result in large
fitting errors across views for the multi-view methods, since the
embedding for the missing instance will be 0. Therefore, to achieve
stronger baseline results, we replace the missing feature using the
linear combination of its 5-nearest neighbor examples, weighted
by the similarities, which appear across views. Then the baseline
deep methods can be directly applied on these extended data.

We conduct both node classification and clustering on the learned
node embedding. Specifically, for classification, we employ L2-
regularized logistic regression as the classifier, with Micro-F1 and
Macro-F1 as metrics. For clustering, we employ 𝐾-means as the
clustering method and use clustering accuracy as the metric. The
classification results with standard deviations on all datasets are
reported in Table 3. From these comparison results, we can see that
DPMNE provides the best results among all compared methods

5https://github.com/xinwangliu/TPAMI_EEIMVC

https://github.com/xinwangliu/TPAMI_EEIMVC
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Figure 2: Performance of node classification under different PDRs on all datasets.

Micro-F1 Cora DBLP Flickr Last.fm
w/o deep autoencoder 0.835 0.747 0.479 0.524
w/o partial multiplex 0.852 0.739 0.488 0.517

w/o proximity preservation 0.830 0.721 0.477 0.535
DPMNE 0.859 0.784 0.526 0.558

Table 5: Performance of node classification with different
model ablations.

on all datasets. For example, the Micro-F1 of DPMNE increases
over 4.3% and 7.8% compared with both HWNN and DANE on
DBLP. The reason is that DPMNE can effectively handle the
partial data by common latent subspace learning across views
and proximity preservation within individual networks, while the
compared methods fail to accurately extract a common space from
the partial nodes. We observe that DPMNE outperforms IMVC
by 8.8%. Although IMVC tries to deal with incomplete data, the
network information is not fully explored. We also observe that
DPMNE achieves comparable or slightly better results compare
with other baselines on Cora, whose PDR is very small, i.e., 0.02
from Table 2. This further validates that DPMNE is equally effective
on multiplex network without missing data. It can be seen that
multi-view methods outperform the single-view methods on all
four datasets. The reason is that multi-view methods construct
embedding that incorporates complementary information from all
views. The clustering result is summarized in Table 4. From this
table, we can find that our approach achieves much better clustering
performance than the others for most cases, which further verifies
the effectiveness of DPMNE.

4.2.2 Effect of Partial Data Ratio. To evaluate the effectiveness
of the proposed DPMNE under different PDRs, we progressively
increase the PDR by randomly removing features from themultiplex
network, and compare our method with the other baselines. The

node classification results are shown in Figure 2. It can be seen
from the figure that when the partial data ratio is 0 (on Cora), the
data actually becomes the traditional multiplex setting without
missing data. As aforementioned, DPMNE is also comparable
with other baselines. However, as the PDR increases, our DPMNE
approach significantly outperforms other baselines on all datasets.
In other words, the performance of DPMNE drops much slower
compared to the baseline methods. For example, the Micro-F1 of
DPMNE increases over 20% compared with the state-of-the-art
GNN-based models, HWNN and MAGCN, on Cora with 0.4 PDR.
Our hypothesis is that, although the missing data are recovered
from the common nodes across views, the baseline deep methods
seem less effective in the view missing case. The missing data may
not be accurately recovered when the data are missing blockwise
for the partial data setting. In other words, the missing nodes can
be dissimilar to all the nodes appear across views.

4.2.3 Ablation Study. We conduct a series of ablation studies
of our model. We first analyze the behavior of each component
in DPMNE. There are three key components in our DPMNE, the
deep autoencoder, the common latent subspace learning and the
network proximity preservation. We train three additional models
by removing each of these components separately. Specifically,
we remove the deep autoencoder by fixing all its parameters to
1, i.e., both encoder and decoder will map the input to itself. For
the other two components, we simply remove the loss terms in
the objective. The comparison results are shown in Table 5. It can
be seen that all these components are indispensable in DPMNE.
Without the common latent subspace learning part, our model
degrades to HWNN or MAGCN which is not able to model the
partial multiplex data effectively. On the other hand, we observe that
deep autoencoder clearly improve the model quality. The reason is
that it captures the sparsity and non-linearity in the original feature
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Figure 3: View importance chart on all datasets.

space. Lastly, it is obvious that network proximity preservation is
crucial in learning network embeddings.

To understand which views are important for learning the
network embeddings, we conduct another set of experiments on
view importance analysis. Specifically, we build and evaluate the
model performance by removing one view from the multiplex
network at a time. The node classification results are shown in
Figure 3. It can be seen that co-authorship and author-citation
views are more important than the text view in DBLP dataset,
which is consistent with our expectation, as text similarity might
not truly reflect the relationships among authors. We also observe
that the UserView is the most important view in both Flickr and
Last.fm datasets. The reason is that the UserView directly reveals
the connections among the users. Some other useful views are
TagView and FavoriteView.

We evaluate the performance of DPMNE with different
embedding dimensions by varying the dimension 𝑑 from {16, 32,
64, 128, 256, 512}. The node classification results on all datasets are
shown in Fig.4. It can be seen from the figure that the values of
both Micro-F1 and Macro-F1 of DPMNE consistently increase with
the increasing of the embedding dimension, from 16 to 256, on all
datasets. Our approach achieves similar results between dimension
256 and 512. This observation indicates that very large embedding
size is not needed for node representation, which is consistent with
the observation in MEGAN [43].

4.2.4 Effect of Binary Embedding. We further evaluate our
approach in learning binary embeddings. The binary embeddings
can be direct achieved by binarizing the learned embeddings, and
this method is referred to bi-DPMNE. To obtain more effective
binary embeddings, we further conduct iterative quantization based
on the orthogonal invariant property of the learned embeddings
from Eqn.13. This method is referred to bi-DPMNE-ITQ. We then
compare these two methods with two state-of-the-art multiplex
binary embedding methods, CCA-ITQ [19, 20] and DCMH [25]. The
Micro-F1 results with 128 bits are reported in Table 6. It can be seen
from the table that bi-DPMNE consistently performs better than

Figure 4: Performance of node classification with different
numbers of embedding dimension on all datasets.

Micro-F1 Cora DBLP Flickr Last.fm
CCA-ITQ 0.748 0.657 0.438 0.451
DCMH 0.762 0.683 0.449 0.474

bi-DPMNE 0.788 0.709 0.463 0.482
bi-DPMNE-ITQ 0.803 0.727 0.472 0.495

Table 6: Node classification comparison of binary embedding
with 128 bits on all datasets.

the two baselines on the incomplete data. On the other hand, the bi-
DPMNE-ITQ achieves even better results compared to bi-DPMNE,
which is consistent with our expectation as it further minimizes
the quantization errors.

5 CONCLUSIONS
In this paper, we propose a novel deep network embedding
approach to deal with partial multiplex data. We formulate a
unified learning framework by simultaneously minimizing the
deep reconstruction loss with the autoencoder neural network,
ensuring data consistency among different views via common
latent subspace learning, and preserving data proximity within the
same view through graph Laplacian. Extensive experiments on four
benchmarks have demonstrated the effectiveness of the proposed
approach. In future, we plan to adopt distributed optimization to
speed up the learning process. We also plan to further extend the
subspace partial view learning to nonlinear cases.
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