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ABSTRACT
Realtime data processing powers many use cases at Face-
book, including realtime reporting of the aggregated, anon-
ymized voice of Facebook users, analytics for mobile applica-
tions, and insights for Facebook page administrators. Many
companies have developed their own systems; we have a re-
altime data processing ecosystem at Facebook that handles
hundreds of Gigabytes per second across hundreds of data
pipelines.

Many decisions must be made while designing a realtime
stream processing system. In this paper, we identify five
important design decisions that affect their ease of use, per-
formance, fault tolerance, scalability, and correctness. We
compare the alternative choices for each decision and con-
trast what we built at Facebook to other published systems.

Our main decision was targeting seconds of latency, not
milliseconds. Seconds is fast enough for all of the use cases
we support and it allows us to use a persistent message bus
for data transport. This data transport mechanism then
paved the way for fault tolerance, scalability, and multi-
ple options for correctness in our stream processing systems
Puma, Swift, and Stylus.

We then illustrate how our decisions and systems satisfy
our requirements for multiple use cases at Facebook. Finally,
we reflect on the lessons we learned as we built and operated
these systems.

1. INTRODUCTION
Realtime data processing systems are used widely to pro-

vide insights about events as they happen. Many companies
have developed their own systems: examples include Twit-
ter’s Storm [28] and Heron [20], Google’s Millwheel [9], and
LinkedIn’s Samza [4]. We present Facebook’s Puma, Swift,
and Stylus stream processing systems here.

The following qualities are all important in the design of
a realtime data system.

• Ease of use: How complex are the processing require-
ments? Is SQL enough? Or is a general-purpose proce-
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dural language (such as C++ or Java) essential? How
fast can a user write, test, and deploy a new applica-
tion?

• Performance: How much latency is ok? Milliseconds?
Seconds? Or minutes? How much throughput is re-
quired, per machine and in aggregate?

• Fault-tolerance: what kinds of failures are tolerated?
What semantics are guaranteed for the number of times
that data is processed or output? How does the system
store and recover in-memory state?

• Scalability: Can data be sharded and resharded to pro-
cess partitions of it in parallel? How easily can the sys-
tem adapt to changes in volume, both up and down?
Can it reprocess weeks worth of old data?

• Correctness: Are ACID guarantees required? Must all
data that is sent to an entry point be processed and
appear in results at the exit point?

In this paper, we present five decisions that must be made
while designing a realtime stream processing system. We
compare alternatives and their tradeoffs, identify the choices
made by different systems in the literature, and discuss what
we chose at Facebook for our stream processing systems and
why.

Our main decision was that a few seconds of latency (with
hundreds of Gigabytes per second throughput) meets our
performance requirements. We can therefore connect all of
the processing components in our system with a persistent
message bus for data transport. Decoupling the data trans-
port from the processing allowed us to achieve fault toler-
ance, scalability, and ease of use, as well as multiple options
for correctness.

We run hundreds of realtime data pipelines in produc-
tion. Four current production data pipelines illustrate how
streaming systems are used at Facebook.

• Chorus is a data pipeline to construct the aggregated,
anonymized voice of the people on Facebook: What
are the top 5 topics being discussed for the election
today? What are the demographic breakdowns (age,
gender, country) of World Cup fans?

• Mobile analytics pipelines provide realtime feedback
for Facebook mobile application developers. They use
this data to diagnose performance and correctness is-
sues, such as the cold start time and crash rate.
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Figure 1: An overview of the systems involved in realtime data processing: from logging in mobile and web
products on the left, through Scribe and realtime stream processors in the middle, to data stores for analysis
on the right.

• Page insights pipelines provide Facebook Page owners
realtime information about the likes, reach and engage-
ment for each page post.

• Realtime streaming pipelines offload CPU-intensive dash-
board queries from our interactive data stores and save
global CPU resources.

We present several data pipelines in more detail after we
describe our systems.

We then reflect on lessons we learned over the last four
years as we built and rebuilt these systems. One lesson is to
place emphasis on ease of use: not just on the ease of writ-
ing applications, but also on the ease of testing, debugging,
deploying, and finally monitoring hundreds of applications
in production.

This paper is structured as follows. In Section 2, we
provide an overview of the realtime processing systems at
Facebook and show how they fit together. In Section 3, we
present an example application to compute trending events,
which we use to illustrate the design choices in the rest of
the paper. We discuss the design decisions in Section 4 and
show how these decisions shaped realtime processing sys-
tems both at Facebook and in related work. We present
several different streaming applications in production use at
Facebook in Section 5. Then in Section 6, we reflect on
lessons we learned about building and deploying realtime
systems at Facebook. Finally, we conclude in Section 7.

2. SYSTEMS OVERVIEW
There are multiple systems involved in realtime data pro-

cessing at Facebook. We present an overview of our eco-
system in this section.

Figure 1 illustrates the flow of data through our systems.
On the left, data originates in mobile and web products. The
data they log is fed into Scribe, which is a distributed data
transport system. All of the solid (yellow) arrows represent
data flowing through Scribe.

The realtime stream processing systems Puma, Stylus,
and Swift read data from Scribe and also write to Scribe.

Puma, Stylus, and Swift applications can be connected through
Scribe into a complex DAG (directed acyclic graph), as
needed. We overview them here and describe their differ-
ences in detail in Section 4.

On the right, Laser, Scuba, and Hive are data stores that
use Scribe for ingestion and serve different types of queries.
Laser can also provide data to the products and streaming
systems, as shown by the dashed (blue) arrows. In this
section, we describe each of the data systems.

2.1 Scribe
Scribe [5] is a persistent, distributed messaging system

for collecting, aggregating and delivering high volumes of
log data with a few seconds of latency and high through-
put. Scribe is the transport mechanism for sending data
to both batch and realtime systems at Facebook. Within
Scribe, data is organized by category. A category is a dis-
tinct stream of data: all data is written to or read from a
specific category. Usually, a streaming application consumes
one Scribe category as input. A Scribe category has mul-
tiple buckets. A Scribe bucket is the basic processing unit
for stream processing systems: applications are parallelized
by sending different Scribe buckets to different processes.
Scribe provides data durability by storing it in HDFS[23].
Scribe messages are stored and streams can be replayed by
the same or different receivers for up to a few days.

2.2 Puma
Puma is a stream processing system whose applications

(apps) are written in a SQL-like language with UDFs (user-
defined functions) written in Java. Puma apps are quick to
write: it can take less than an hour to write, test, and deploy
a new app.

Puma apps serve two purposes. First, Puma provides
pre-computed query results for simple aggregation queries.
For these stateful monoid applications (see section 4.4.2),
the delay equals the size of the query result’s time window.
The query results are obtained by querying the Puma app



CREATE APPLICATION top_events;

CREATE INPUT TABLE events_score(

event_time,

event,

category,

score

)

FROM SCRIBE("events_stream")

TIME event_time;

CREATE TABLE top_events_5min AS

SELECT

category,

event,

topk(score) AS score

FROM

events_score [5 minutes]

Figure 2: A complete Puma app that computes the
“top K events” for each 5 minute time window. This
app can be used for the Ranker in Fig 3.

through a Thrift API [8]. Figure 2 shows code for a simple
Puma aggregation app with 5 minute time windows.

Second, Puma provides filtering and processing of Scribe
streams (with a few seconds delay). For example, a Puma
application can reduce a stream of all Facebook actions to
only posts, or to only posts that match a predicate, such as
containing the hashtag “#superbowl”. The output of these
stateless Puma apps is another Scribe stream, which can
then be the input to another Puma app, any other realtime
stream processor, or a data store.

Unlike traditional relational databases, Puma is optimized
for compiled queries, not for ad-hoc analysis. Engineers de-
ploy apps with the expectation that they will run for months
or years. This expectation allows Puma to generate an effi-
cient query computation and storage plan. Puma aggrega-
tion apps store state in a shared HBase cluster.

2.3 Swift
Swift is a basic stream processing engine which provides

checkpointing functionalities for Scribe. It provides a very
simple API: you can read from a Scribe stream with check-
points every N strings or B bytes. If the app crashes, you
can restart from the latest checkpoint; all data is thus read at
least once from Scribe. Swift communicates with client apps
through system-level pipes. Thus, the performance and fault
tolerance of the system are up to the client. Swift is mostly
useful for low throughput, stateless processing. Most Swift
client apps are written in scripting languages like Python.

2.4 Stylus
Stylus is a low-level stream processing framework written

in C++. The basic component of Stylus is a stream pro-
cessor. The input to the processor is a Scribe stream and
the output can be another Scribe stream or a data store
for serving the data. A Stylus processor can be stateless or
stateful. Processors can be combined into a complex pro-
cessing DAG. We present such an example DAG in Figure 3
in the next section.

Stylus’s processing API is similar to that of other proce-

dural stream processing systems[4, 9, 28]. Like them, Stylus
must handle imperfect ordering in its input streams [24, 10,
9]. Stylus therefore requires the application writer to iden-
tify the event time data in the stream. In return, Stylus
provides a function to estimate the event time low water-
mark with a given confidence interval.

2.5 Laser
Laser is a high query throughput, low (millisecond) la-

tency, key-value storage service built on top of RocksDB [3].
Laser can read from any Scribe category in realtime or from
any Hive table once a day. The key and value can each be
any combination of columns in the (serialized) input stream.
Data stored in Laser is then accessible to Facebook product
code and to Puma and Stylus apps.

Laser has two common use cases. Laser can make the
output Scribe stream of a Puma or Stylus app available to
Facebook products. Laser can also make the result of a
complex Hive query or a Scribe stream available to a Puma
or Stylus app, usually for a lookup join, such as identifying
the topic for a given hashtag.

2.6 Scuba
Scuba [7, 18, 15] is Facebook’s fast slice-and-dice anal-

ysis data store, most commonly used for trouble-shooting
of problems as they happen. Scuba ingests millions of new
rows per second into thousands of tables. Data typically
flows from products through Scribe and into Scuba with less
than one minute of delay. Scuba can also ingest the output
of any Puma, Stylus, or Swift app.

Scuba provides ad hoc queries with most response times
under 1 second. The Scuba UI displays query results in a
variety of visualization formats, including tables, time series,
bar charts, and world maps.

2.7 Hive data warehouse
Hive [26] is Facebook’s exabyte-scale data warehouse. Face-

book generates multiple new petabytes of data per day, about
half of which is raw event data ingested from Scribe[15].
(The other half of the data is derived from the raw data,
e.g., by daily query pipelines.) Most event tables in Hive
are partitioned by day: each partition becomes available af-
ter the day ends at midnight. Any realtime processing of
this data must happen in Puma, Stylus, or Swift applica-
tions. Presto [2] provides full ANSI SQL queries over data
stored in Hive. Query results change only once a day, af-
ter new data is loaded. They can then be sent to Laser for
access by products and realtime stream processors.

3. EXAMPLE APPLICATION
We use the example application in Figure 3 to demon-

strate the design choices in the next section. This applica-
tion identifies trending events in an input stream of events.
The events contain an event type, a dimension id (which is
used to fetch dimension information about the event, such
as the language in which it is written), and text (which is
analyzed to classify the event topic, such as movies or ba-
bies). The output of the application is a ranked list of topics
(sorted by event count) for each 5 minute time bucket.

There are four processing nodes, each of which may be
executed by multiple processes running in parallel on disjoint
partitions of their input.
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Figure 3: An example streaming application with 4 nodes: this application computes “trending” events.

1. The Filterer filters the input stream based on the event
type and then shards its output on the dimension id so
that the processing for the next node can be done in
parallel on shards with disjoint sets of dimension ids.

2. The Joiner queries one or more external systems to (a)
retrieve information based on the dimension id and (b)
classify the event by topic, based on its text. Since each
Joiner process receives sharded input, it is more likely
to have the dimension information it needs in a cache,
which reduces network calls to the external service.
The output is then resharded by (event, topic) pair so
that the Scorer can aggregate them in parallel.

3. The Scorer keeps a sliding window of the event counts
per topic for recent history. It also keeps track of the
long term trends for these counters. Based on the long
term trend and the current counts, it computes a score
for each (event, topic) pair and emits the score as its
output to the Ranker, resharded by topic.

4. The Ranker computes the top K events for each topic
per N minute time bucket.

In this example, the Filterer and Joiner are stateless and
the Scorer and Ranker are stateful. At Facebook, each of
the nodes can be implemented in Stylus. Puma apps can
implement the Filterer and Ranker. The example Puma app
in Figure 2 contains code for the Ranker. Although a Puma
app can join with data in Laser, the Joiner node may need
to query an arbitrary service for the Classifications, which
Puma cannot do. Swift can only be used to implement the
stateless nodes.

A consumer service queries the Ranker periodically to get
the top K events for each topic. Alternatively, the Ranker
can publish its results to Laser and the consumer service
can query Laser. Puma is designed to handle thousands
of queries per second per app, whereas Laser is designed to
handle millions. Querying Laser is also a better choice when
the query latency requirements are in milliseconds.

4. DESIGN DECISIONS
In this section, we present five design decisions. These

decisions are summarized in Table 4, where we show which
capabilities each decision affects. For each one, we categorize
the alternatives and explain how they affect the relevant ca-
pabilities. Then we discuss the pros and cons of our decision
for Facebook’s systems.

Table 5 summarizes which alternatives were chosen by a
variety of realtime systems, both at Facebook and in the
related literature.

4.1 Language paradigm
The first design decision is the type of language that peo-

ple will use to write applications in the system. This decision
determines how easy it is to write applications and how much
control the application writer has over their performance.

4.1.1 Choices
There are three common choices:

• Declarative: SQL is (mostly) declarative. SQL is the
simplest and fastest to write. A lot of people already
know SQL, so their ramp-up is fast. However, the
downside of SQL is its limited expressiveness. Many
systems add functions to SQL for operations such as
hashing and string operators. For example, Stream-
base [27], S-Store [21] and STREAM [12] provide SQL-
based stream processing.

• Functional: Functional programming models [10, 30,
32] represent an application as a sequence of predefined
operators. It is still simple to write an application, but
the user has more control over the order of operations
and there are usually more operations available.

• Procedural: C++, Java, and Python are all common
procedural languages. They offer the most flexibil-
ity and (usually) the highest performance. The ap-
plication writer has complete control over the data
structures and execution. However, they also take the
most time to write and test and require the most lan-
guage expertise. S4 [22], Storm [28], Heron [20], and
Samza [4] processors are all examples of procedural
stream processing systems.

4.1.2 Languages at Facebook
In our environment at Facebook, there is no single lan-

guage that fits all use cases. Needing different languages
(and the different levels of ease of use and performance they
provide) is the main reason why we have three different
stream processing systems.

Puma applications are written in SQL. A Puma app can
be written and tested in under an hour, which makes it
very ease to use. Puma apps have good throughput and can
increase their throughput by using more parallel processing
nodes.

Swift applications mostly use Python. It is easy to proto-
type and it is very useful for low-throughput (tens of Megabytes
per second) stream processing apps. Although it is possible
to write a high performance processor with Swift, it takes a
lot of effort.



Design decision Ease of use Performance Fault tolerance Scalability Correctness

Language paradigm X X
Data transfer X X X X
Processing semantics X X
State-saving mechanism X X X X X
Reprocessing X X X

Figure 4: Each design decision affects some of the data quality attributes.

Design Puma Stylus Swift Storm Heron Spark Millwheel Flink Samza
decision Streaming

Language SQL C++ Python Java Java Functional C++ Functional Java
paradigm
Data Scribe Scribe Scribe RPC Stream RPC RPC RPC Kafka
transfer Manager
Processing at least at least at least at least at least best effort at least at least at least
semantics at most at most

exactly exactly exactly exactly
State-saving remote DB local DB limited remote DB global local DB
mechanism remote DB snapshot
Reprocessing same code same code no batch same DSL same DSL same code same code same code no batch

Figure 5: The design decisions made by different streaming systems.

Stylus applications are written in C++ and a Stylus pro-
cessor requires multiple classes. While a script will generate
boilerplate code, it can still take a few days to write an ap-
plication. Stylus applications have the greatest flexibility for
complicated stream processing applications.

We do not currently provide any functional paradigms at
Facebook, although we are exploring Spark Streaming [32].

4.2 Data transfer
A typical stream processing application is composed of

multiple processing nodes, arranged in a DAG. The second
design decision is the mechanism to transfer data between
processing nodes. This decision has a significant impact
on the fault tolerance, performance, and scalability of the
stream processing system. It also affects its ease of use,
particularly for debugging.

4.2.1 Choices
Typical choices for data transfer include:

• Direct message transfer: Typically, an RPC or in-
memory message queue is used to pass data directly
from one process to another. For example, MillWheel [9],
Flink [16], and Spark Streaming [32] use RPC and
Storm [28] uses ZeroMQ [6], a form of message queue.
One of the advantages of this method is speed: tens of
milliseconds end-to-end latency is achievable.

• Broker based message transfer: In this case, there is a
separate broker process that connects stream process-
ing nodes and forwards messages between them. Using
an intermediary process adds overhead, but also allows
the system to scale better. The broker can multiplex
a given input stream to multiple output processors.
It can also apply back pressure to an input processor
when the output processor falls behind. Heron [20]
uses a stream manager between Heron instances to
solve both of these problems.

• Persistent storage based message transfer. In this case,
processors are connected by a persistent message bus.
The output stream of one processor is written to a
persistent store and the next processor reads its input
from that store. This method is the most reliable.
In addition to multiplexing, a persistent store allows
the input and output processors to write and read at
different speeds, at different points in time, and to read
the same data multiple times, e.g., to recover from a
processor failure. The processing nodes are decoupled
from each other so the failure of a single node does
not affect other nodes. Samza [4] uses Kafka [19], a
persistent store, to connect processing nodes.

All three types of data transfer mechanisms connect con-
secutive nodes in a DAG.

There are two types of connections between consecutive
nodes [31]. Narrow dependency connections link a fixed
number of partitions from the sending node to the receiv-
ing node. Such connections are often one-to-one and their
nodes can be collapsed. Wide dependency connections link
every partition of the sender to each partition of the re-
ceiver. These connections must be implemented with a data
transfer mechanism.

4.2.2 Data transfer at Facebook
At Facebook, we use Scribe [5], a persistent message bus,

to connect processing nodes. Using Scribe imposes a min-
imum latency of about a second per stream. However, at
Facebook, the typical requirement for real time stream pro-
cessing is seconds.

A second limitation of Scribe is that it writes to disk. In
practice, the writes are asynchronous (not blocking) and the
reads come from a cache because streaming applications read
the most recent data. Finally, a persistent store requires
additional hardware and network bandwidth.

Accepting these limitations gives us multiple advantages
for fault tolerance, ease of use, scalability, and performance.
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Figure 6: This Counter Node processor counts
events from a (timestamp, event) input stream. Ev-
ery few seconds, it emits the counter value to a
(timewindow, counter) output stream.

• Fault tolerance: The independence of stream process-
ing node failures is a highly desirable property when
we deploy thousands of jobs to process streams.

• Fault tolerance: Recovery from failure is faster because
we only have to replace the node(s) that failed.

• Fault tolerance: Automatic multiplexing allows us to
run duplicate downstream nodes. For example, we can
run multiple Scuba or Laser tiers that each read all of
their input streams’ data, so that we have redundancy
for disaster recovery purposes.

• Performance: If one processing node is slow (or dies),
the speed of the previous node is not affected. For
example, if a machine is overloaded with too many
jobs, we simply move some jobs to a new machine and
they pick up processing the input stream from where
they left off. In a tightly coupled system [9, 16, 32,
28, 20], back pressure is propagated upstream and the
peak processing throughput is determined by the slow-
est node in the DAG.

• Ease of use: Debugging is easier. When a problem is
observed with a particular processing node, we can re-
produce the problem by reading the same input stream
from a new node.

• Ease of use: Monitoring and alerting are simpler to
implement. The primary responsibility of each node is
to consume its input. It is sufficient to set up moni-
toring and alerts for delays in processing streams from
the persistent store.

• Ease of use: We have more flexibility in how we write
each application. We can connect components of any
system that reads or writes data in the same DAG. We
can use the output of a Puma application as the input
of a Stylus processor and then read the Stylus output
as input to our data stores Scuba or Hive.

• Scalability: We can scale the number of partitions up
or down easily by changing the number of buckets per
Scribe category in a configuration file.

Given the advantages above, Scribe has worked well as the
data transfer mechanism at Facebook. Kafka or another per-
sistent store would have similar advantages. We use Scribe
because we develop it at Facebook.

4.3 Processing semantics
The processing semantics of each node determine its cor-

rectness and fault tolerance.
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Figure 7: The output of a stateful processor with
different state semantics.

4.3.1 Choices
A stream processor does three types of activities.

1. Process input events: For example, it may deserialize
input events, query an external system, and update its
in-memory state. These activities can be rerun with-
out side effects.

2. Generate output: Based on the input events and in-
memory state, it generates output for downstream sys-
tems for further processing or serving. This can hap-
pen as input events are processed or can be synchro-
nized before or after a checkpoint.

3. Save checkpoints to a database for failure recovery.
Three separate items may be saved:

(a) The in-memory state of the processing node.

(b) The current offset in the input stream.

(c) The output value(s).

Not all processors will save all of these items. What is
saved and when determines the processor’s semantics.

The implementations of these activities, especially the
checkpoints, control the processor’s semantics. There are
two kinds of relevant semantics:

• State semantics: can each input event count at-least-
once, at-most-once, or exactly-once?

• Output semantics: can a given output value show up
in the output stream at-least-once, at-most-once, or
exactly-once?

Stateless processors only have output semantics. Stateful
processors have both kinds.

The different state semantics depend only on the order of
saving the offset and in-memory state.

• At-least-once state semantics: Save the in-memory state
first, then save the offset.

• At-most-once state semantics: Save the offset first,
then save the in-memory state.

• Exactly-once state semantics: Save the in-memory state
and the offset atomically, e.g., in a transaction.



State semantics
Output At-least-once At-most-once Exactly-once
semantics

At-least-once X X
At-most-once X X
Exactly-once X

Figure 8: Common combinations of state and output
processing semantics.

Output semantics depend on saving the output value(s)
in the checkpoint, in addition to the in-memory state and
offset.

• At-least-once output semantics: Emit output to the
output stream, then save a checkpoint of the offset
and in-memory state.

• At-most-once output semantics: Save a checkpoint of
the offset and in-memory state, then emit output.

• Exactly-once output semantics: Save a checkpoint of
the offset and in-memory state and emit output value(s)
atomically in the same transaction.

Figure 6 shows a stateful stream processing node, the
“Counter Node”, which counts events in its input and out-
puts the count periodically. We use the Counter Node to
illustrate the different state processing semantics with at-
least-once output semantics. Figure 7 shows how different
semantics affect the possible counter output values after a
machine or processor failure.

At-least-once output semantics allow the Counter Node
to emit output as it receives events. At-least-once output
semantics are desirable for systems that require low latency
processing and can handle small amounts of input data du-
plication.

To achieve at-most-once output semantics, the Counter
Node must save its checkpoint before generating output.
If the processor can do side-effect-free processing of events
A1−A4, then save checkpoint A, and then generate output,
it does not need to buffer events A1−A4 before saving check-
point A. This optimization also reduces the chance of losing
data, since only failures that happen between checkpointing
and emitting output can cause data loss. We illustrate the
performance benefits of doing side-effect-free processing be-
tween checkpoints in Section 4.3.2. Photon [11] also offers
options to reduce data loss with at-most-once output seman-
tics. At-most-once state and output semantics are desirable
when data loss is preferable to data duplication.

To get exactly-once output semantics, the Counter Node
must save checkpoints after processing events A1 −A4, but
atomically with emitting the output. Exactly-once output
semantics require transaction support from the receiver of
the output. In practice, this means that the receiver must
be a data store, rather than a data transport mechanism
like Scribe. Exactly-once semantics usually impose a perfor-
mance penalty, since the processor needs to wait for trans-
actions to complete.

Table 8 shows the common combinations of state and out-
put semantics.

Figure 9: The Stylus implementation of this proces-
sor does side-effect-free processing between check-
points and achieves nearly 4x as much throughput
as the Swift implementation.

4.3.2 Processing semantics used at Facebook
In Facebook’s environment, different applications often

have different state and output semantics requirements. We
give a few different examples.

In the trending events example in Figure 3, the Ranker
sends its results to an idempotent serving system. Sending
output twice is not a problem. Therefore, we can use at-
least-once state and output semantics.

The data ingestion pipeline for Scuba [7] is stateless. Only
the output semantics apply. Most data sent to Scuba is sam-
pled and Scuba is a best-effort query system, meaning that
query results may be based on partial data. Therefore, a
small amount of data loss is preferred to any data duplica-
tion. Exactly-once semantics are not possible because Scuba
does not support transactions, so at-most-once output se-
mantics are the best choice.

In fact, most of our analysis data stores, including Laser,
Scuba, and Hive, do not support transactions. We need to
use other data stores to get transactions and exactly-once
state semantics.

Getting exactly-once state semantics is also a challenge
when the downstream data store is a distributed database
such as HBase or ZippyDB. (ZippyDB is Facebook’s dis-
tributed key-value store with Paxos-style replication, built
on top of RocksDB.) The state must be saved to multiple
shards, requiring a high-latency distributed transaction. In-
stead of incurring this latency, most users choose at-most-
once or at-least-once semantics.

Puma guarantees at-least-once state and output semantics
with checkpoints to HBase. Stylus offers all of the options
in Figure 8 to its application writers.

We now examine the benefits of overlapping side-effect-
free processing with receiving input for at-most-once output
semantics. Figure 9 shows the throughput for two differ-
ent implementations of the Scuba data ingestion processor.
Both implementations have at-most-once output semantics.
The Swift implementation buffers all input events between
checkpoints, which occur approximately every 2 seconds.
Then it processes those events and sends its output to the
Scuba servers. While it is waiting for the checkpoint, the
processor’s CPU is underutilized.

The Stylus implementation does as much side-effect-free
work as it can between checkpoints, including deserialization
of its input events. Since deserialization is the performance



bottleneck, the Stylus processor achieves much higher CPU
utilization. The Stylus processor, therefore, achieves nearly
four times the throughput of the Swift processor: in Figure 9
we see 135 MB/s versus 35 MB/s, respectively.

In general, separating out the side-effect-free processing
and doing it between checkpoints can be implemented in
custom code in any processor, if the developer has a good
understanding of processing semantics. Stylus provides this
optimization out of the box.

4.4 State-saving mechanisms
The state saving mechanism for stateful processors affects

their fault tolerance. For example, in Figure 3, the Scorer
maintains both long term counters and short term counters
for events in order to compute the trending score. After a
machine failure, we need to restore the counter values.

4.4.1 Choices
There are multiple ways to save state during processing

and restore it after a failure. These solutions include:

• Replication [13]. In a replication based approach, the
stateful nodes are replicated with two or more copies.
This approach requires twice as much hardware, since
many nodes are duplicated.

• Local database persistence. Samza [4] stores the state
to a local database and writes the mutation to Kafka
at the same time. After a failure, the local state is
recovered from the Kafka log. The logs are compacted
offline to keep log size bounded. Samza can support
at-least-once but not exactly-once state and output se-
mantics, since Kafka does not support transactions. .

• Remote database persistence. In this approach, the
checkpoint and states are persisted to a remote database.
MillWheel [9] saves fine-grained checkpoints to a re-
mote database and supports exactly-once state and
output semantics.

• Upstream backup. In these systems, the events are
buffered in the upstream nodes and replayed after a
failure [17].

• Global consistent snapshot. Flink [16] uses a distributed
snapshot algorithm to maintain a globally consistent
snapshot. After a failure, multiple machines must be
restored to the consistent state.

4.4.2 State saving mechanisms at Facebook
At Facebook, we have different demands for fault toler-

ance for stream processing systems. Puma provides fault
tolerance for stateful aggregation. Stylus provides multiple
out-of-the-box fault tolerant solutions for stateful process-
ing.

We implemented two state-saving mechanisms in Stylus:
a local database model and a remote database model. In this
section, we will focus only on our general local database im-
plementation and our implementation of a remote database
model for monoid processors, defined below.

Saving state to a local RocksDB [3] database is attractive
for many users at Facebook. It is easy to set up. The local
database writes are fast when a flash or memory-based file
system (such as tmpfs) is used, since there is no network cost.
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Figure 10: Saving state using a RocksDB local
database and HDFS for remote backup.

It also supports exactly-once state and output semantics for
stateful processing.

The Scorer node in Figure 3 is a good candidate for saving
its state to a local database: the overall state is small and
will fit into the flash or disk of a single machine.

Figure 10 illustrates RocksDB embedded in the same pro-
cess as the stream processor and its state. The in-memory
state is saved to this local database at fixed intervals. The
local database is then copied asynchronously to HDFS at
a larger interval using RocksDB’s backup engine. When a
process crashes and restarts on the same machine, the local
database is used to restore the state and resume processing
from the checkpoint. If the machine dies, the copy on HDFS
is used instead.

HDFS is designed for batch workloads and is not intended
to be an always-available system. If HDFS is not avail-
able for writes, processing continues without remote backup
copies. If there is a failure, then recovery uses an older snap-
shot. We can parallelize reading from HDFS at recovery
time so that HDFS read bandwidth is not a bottleneck.
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Figure 11: Saving state using a remote database.

A remote database can hold states that do not fit in mem-
ory. A remote database solution also provides faster machine
failover time since we do not need to load the complete state
to the machine upon restart. Often, a distributed database
serves as the store for the output of the stream processing
system. The same remote database can be used for saving
state.

Figure 11 illustrates saving state in a remote database.
When an event is received from the input stream, the state is
updated. If the needed state is not in memory, it is read from
the remote database, modified, and then saved back to the
database. This read-modify-write pattern can be optimized
if the states are limited to monoid processors.

A monoid [1, 14] is an algebraic structure that has an iden-
tity element and is associative. When a monoid processor’s
application needs to access state that is not in memory, mu-
tations are applied to an empty state (the identity element).



Figure 12: Saving state: read-modify-write vs
append-only remote database write throughput.

Periodically, the existing database state is loaded in memory,
merged with the in-memory partial state, and then written
out to the database asynchronously. This read-merge-write
pattern can be done less often than the read-modify-write.

When the remote database supports a custom merge oper-
ator, then the merge operation can happen in the database.
The read-modify-write pattern is optimized to an append-
only pattern, resulting in performance gains.

RocksDB and ZippyDB support custom merge operators.
We illustrate the performance gains in Figure 12, which com-
pares the throughput of the same Stylus stream processor
application, configured with and without the append-only
optimization. The application aggregates its input events
across many dimensions, which means that one input event
changes many different values in the application state. The
remote database is a three machine ZippyDB cluster. Since
different applications may have different requirements for
how often to save their state remotely, we varied the inter-
val for flushing to the remote database. Figure 12 shows
that the application throughput is 25% to 200% higher with
the append-only optimization.

The aggregation functions in Puma are all monoid. In Sty-
lus, a user application declares that it is a monoid stream
processor. The application appends partial state to the
framework and Stylus decides when to merge the partial
states into a complete state. This flexibility in when to
merge — and the resulting performance gain — is the main
difference between our remote database approach and that
of Millwheel.

4.5 Backfill processing
We often need to reprocess old data, for several reasons.

• When a user develops a new stream processing appli-
cation, it is good to test the application against old
data. For example, in Figure 3, it is useful to run the
trending algorithm on a known events stream and see
if it identifies the expected trending events.

• For many applications, when we add a new metric, we
want to run it against old data to generate historical
metric data.

• When we discover a logging or processing bug, we need
to reprocess the data for the period with the bug.

4.5.1 Choices
There are a few approaches to reprocessing data.

• Stream only. In this approach, the retention of the
data transport mechanism must be long enough to re-
play the input streams for reprocessing.

• Maintain two separate systems: one for batch, and one
for stream processing. For example, to bootstrap the
long term counters in Figure 3, we could develop a sep-
arate batch pipeline to compute them. This approach
is challenging: it is hard to maintain consistency be-
tween two different systems. Summingbird [14] uses
a high level DSL to convert one processor specifica-
tion to each system automatically, but still needs to
maintain consistency between two different processing
system implementations.

• Develop stream processing systems that can also run
in a batch environment. Spark Streaming and Flink
are good examples of this approach, which is also the
one we take.

4.5.2 Reprocessing data at Facebook
Scribe does not provide infinite retention; instead we store

input and output streams in our data warehouse Hive for
longer retention. Our approach is different from Spark Stream-
ing and Flink. They use similar fault tolerance and data
transfer mechanisms for both their batch and stream pro-
cessing.

To reprocess older data, we use the standard MapReduce
framework to read from Hive and run the stream processing
applications in our batch environment. Puma applications
can run in Hive’s environment as Hive UDFs (user-defined
functions) and UDAFs (user-defined aggregation functions).
The Puma app code remains unchanged, whether it is run-
ning over streaming or batch data.

Stylus provides three types of processors: a stateless pro-
cessor, a general stateful processor, and a monoid stream
processor. When a user creates a Stylus application, two
binaries are generated at the same time: one for stream and
one for batch. The batch binary for a stateless processor
runs in Hive as a custom mapper. The batch binary for a
general stateful processor runs as a custom reducer and the
reduce key is the aggregation key plus event timestamp. The
batch binary for monoid processors can be optimized to do
partial aggregation in the map phase.

5. FACEBOOK APPLICATIONS
In this section, we describe several different realtime ap-

plications in production use at Facebook. We show how
these applications use the different components available to
achieve their particular goals.

5.1 Chorus
The Chorus data pipeline [25, 29] transforms a stream of

individual Facebook posts into aggregated, anonymized, and
annotated visual summaries (that do not reveal any private
information). This pipeline enables Facebook’s communica-
tions and insights teams to report to the public about re-
altime conversations, as they happen, without needing to
know about the underlying data stores or queries. New
posts show up in query results in seconds: for example, dur-
ing the 2015 Superbowl, we watched a huge spike in posts



containing the hashtag “#likeagirl” in the 2 minutes follow-
ing the TV ad. http://insights.fb.com/2015/02/02/the-big-
gathering-xlix/ contains an analysis of Superbowl 2015 con-
versation in the U.S.

There are many steps in this pipeline. We would like to
call attention to two things.

First, this pipeline contains a mix of Puma and Stylus
apps, with lookup joins in Laser and both Hive and Scuba
as sink data stores for the results. All data transport is via
Scribe. The data flow is similar to the example in Figure 3.

Second, this pipeline has evolved substantially over the
last two years. The original pipeline had only one Puma
app to filter posts. The laser joins were added with custom
Python code to perform the join. Later still, a Stylus app
replaced the custom code. At each step in the pipeline’s
evolution, we could add or replace one component at a time
and test and deploy incrementally.

5.2 Dashboard queries
Dashboards are popular for observing trends and spotting

anomalies at a glance. They run the same queries repeat-
edly, over a sliding time window. Once the query is embed-
ded in a dashboard, the aggregations and metrics are fixed.
Stream processing apps compute their query results as the
data arrives. They are ideal for dashboard queries.

Scuba was designed for interactive, slice-and-dice queries.
It does aggregation at query time by reading all of the raw
event data. When we realized that queries from dashboards
consumed much Scuba CPU, we built a framework to mi-
grate dashboard queries from Scuba to Puma.

There were a few challenges. First, Puma apps could read
the Scuba input from Scribe, but needed new code to com-
pute Scuba UDFs that were defined in Scuba’s visualization
layer.

Second, Puma was designed for apps with millions of time
series in their results. Those Puma apps shard their data
by time series. Most Scuba queries have a limit of 7: it only
makes sense to visualize up to 7 lines in a chart. They can
not be sharded by time series into N > 7 processes: the
processes must use a different sharding key and compute
partial aggregates. One process then combines the partial
aggregates.

Third, while exporting queries to dashboards, people ex-
periment with different queries. We need to detect dead
dashboard queries in order to avoid wasting CPU. Overall,
the migration project has been very successful. The Puma
apps consume approximate 14% of the CPU that was needed
to run the same queries in Scuba.

In general, there is a tradeoff between processing at read
time, such as Scuba does, and processing at write time, such
as the stream processors Puma and Stylus do. Read time
processing is much more flexible – you don’t need to choose
the queries in advance – but generally more CPU intensive.

5.3 Hybrid realtime-batch pipelines
Over half of all queries over Facebook’s data warehouse

Hive are part of daily query pipelines. The pipelines can
start processing anytime after midnight. Due to dependen-
cies, some of them complete only after 12 or more hours. We
are now working on converting some of the earlier queries
in these pipelines to realtime streaming apps so that the
pipelines can complete earlier.

Interesting challenges in these conversions include:

• Validating that the realtime pipeline results are cor-
rect. Correct realtime results may not be identical to
batch results. For example, the boundaries between
days may differ.

• Adding enough common Hive UDFs to Puma and Sty-
lus to support most queries.

• Making the conversion process self-service, so that teams
can convert, test, and deploy without help from the
Puma and Stylus teams.

In multiple cases, we have sped up pipelines by 10 to 24
hours. For example, we were able to convert a portion of
a pipeline that used to complete around 2pm to a set of
realtime stream processing apps that deliver the same data
in Hive by 1am. The end result of this pipeline is therefore
available 13 hours sooner.

6. LESSONS LEARNED
We have learned a lot while building our ecosystem of re-

altime data systems, as much from comparing them as from
building any single system. Many of the lessons below are
about service management: it is not enough to provide a
framework for users to write applications. Ease of use en-
compasses debugging, deployment, and monitoring, as well.
The value of tools that make operation easier is underesti-
mated. In our experience, every time we add a new tool, we
are surprised that we managed without it.

6.1 Multiple systems let us “move fast”
There is no single stream processing system that is right

for all use cases. Providing a set of systems at different
points in the ease of use versus performance, fault toler-
ance, and scalability space has worked well in Facebook’s
culture of “move fast” and “iterate”. We have seen multiple
applications start out in Puma or Swift and then move to
Stylus (weeks or months later) as they needed more expres-
siveness or higher throughput. Writing a simple application
lets our users deploy something quickly and prove its value
first, then invest the time in building a more complex and
robust application.

Similarly, evolving our own systems has been important.
Every major piece of Puma has been rewritten at least once.
Using a high-level language allows us to modify the under-
lying implementation without requiring changes to Puma
apps.

Covering more points in the design space has also been
beneficial. We can and do create stream processing DAGs
that contain a mix of Puma, Swift, and Stylus applications,
which gives us a lot of flexibility in satisfying the require-
ments for each node individually.

Finally, connecting nodes with Scribe streams makes it
easy not just to replace a node with a faster or more ex-
pressive node, but also to reuse the output of that node in
another data pipeline (DAG). We have been able to save
developer time and system resources by reusing the same
processor output for different purposes.

6.2 Ease of debugging
Databases typically store data and enable users to run

queries on it. Such an environment is very conducive to



an iterative development process. A user can program one
processing stage and run it. If it doesn’t yield the right
results, they can modify the processing logic and rerun it on
the same data.

When working with stream processing systems, it is harder
to iterate during development because the data is not stored.
When you update a stream processing operator, it begins
running on new streaming data, not the same data as be-
fore, so the results may be different. Moreover, you have
to handle delayed data. With persistent Scribe streams, we
can replay a stream from a given (recent) time period, which
makes debugging much easier.

6.3 Ease of deployment
Writing a new streaming application requires more than

writing the application code. The ease or hassle of deploying
and maintaining the application is equally important.

Laser and Puma apps are deployed as a service. Stylus
apps are owned by the individual teams who write them,
but we provide a standard framework for monitoring them.

Laser apps are extremely easy to setup, deploy, and delete.
There is a UI to configure the app: just choose an ordered
set of columns from the input Scribe stream for each of the
key and value, a lifetime for each key-value pair, and a set
of data centers to run the service. The UI then gives you a
single command to deploy an app and another command to
delete it.

A Puma app is almost as easy to deploy and delete as a
Laser app, but requires a second engineer: the UI generates
a code diff that must be reviewed. The app is deployed or
deleted automatically after the diff is accepted and commit-
ted.

Puma apps were not always this easy to deploy. Origi-
nally, a member of the Puma team had to deploy each new
app, which created a bottleneck for both the Puma team and
the teams that wrote the apps. Making Puma deployment
self-service let us scale to the hundreds of data pipelines that
use Puma today.

6.4 Ease of monitoring and operation
Once an app is deployed, we need to monitor it. Is it us-

ing the right amount of parallelism? With Scribe, changing
the parallelism is often just changing the number of Scribe
buckets and restarting the nodes that output and consume
that Scribe category. However, guessing the right amount
of parallelism before deployment is a black art. We save
both time and machine resources by being able to change it
easily; we can get started with some initial level and then
adapt quickly.

We then use alerts to detect when an app is processing
its Scribe input more slowly than the input is being gener-
ated. We call that “processing lag”. The Puma team runs
processing lag alerts for all Puma apps, because the Puma
service is maintained by the Puma team. Stylus provides
its application developers with processing lag alerts. These
alerts notify us to adapt our apps to changes in volume over
time.

In the future, we would like to provide dashboards and
alerts that are automatically configured to monitor both
Puma and Stylus apps for the teams that use them. We
would also like to scale the apps automatically.

6.5 Streaming vs batch processing
Streaming versus batch processing is not an either/or deci-

sion. Originally, all data warehouse processing at Facebook
was batch processing [26]. We began developing Puma and
Swift about five years ago. As we showed in Section 5.3,
using a mix of streaming and batch processing can speed up
long pipelines by hours.

Furthermore, streaming-only systems can be authorita-
tive. We do not need to treat realtime system results as
an approximation and batch results as the “truth.” It is
possible to create streaming systems that do not miss data
(so counts and sums are exact). Good approximate unique
counts (computed with HyperLogLog) are often as action-
able as exact numbers.

7. CONCLUSIONS
In the last few years, real time processing has proliferated

at Facebook. We have developed multiple, independent yet
composable systems. Together, they form a comprehensive
platform to serve our diverse needs.

In this paper, we discuss multiple design decisions we
made and their effects on ease of use, performance, fault
tolerance, scalability, and correctness. We would like to con-
clude with three points.

First, targeting seconds of latency, not milliseconds, was
an important design decision. Seconds is fast enough for all
of the use cases we support; there are other systems at Face-
book to provide millisecond or microsecond latency in our
products. Seconds latency allows us to use a persistent mes-
sage bus for data transport. This data transport mechanism
then paved the way for fault tolerance, scalability, and multi-
ple options for correctness in our stream processing systems
Puma, Swift, and Stylus.

Second, ease of use is as important as the other quali-
ties. In our culture of hacking, where “move fast” is printed
on posters, having systems available with the right learning
curves lets us get prototype applications up and running in
hours or days, not weeks. We can then test and iterate. In
addition, making debugging, deployment, and operational
monitoring easy has greatly increased the adoption rate for
our systems, and we plan to continue making it even easier.

Third, there is a spectrum of correctness. Not all use
cases need ACID semantics. By providing choices along this
spectrum, we let the application builders decide what they
need. If they need transactions and exactly-once semantics,
they can pay for them with extra latency and hardware.
But when they do not – and many use cases are measuring
relative proportions or changes in direction, not absolute
values – we enable faster and simpler applications.

Our systems continue to evolve to serve our users better.
In the future, we plan to work on scaling our system infras-
tructure. For example, we want to improve the dynamic load
balancing for our stream processing jobs; the load balancer
should coordinate hundreds of jobs on a single machine and
minimize the recovery time for lagging jobs. We are also con-
sidering alternate runtime environments for running stream
processing backfill jobs. Today, they run in Hive. We plan
to evaluate Spark and Flink. We hope to bridge the gap
between realtime and batch processing at Facebook.
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