
Published as a conference paper at ICLR 2022

A FINE-TUNING APPROACH TO
BELIEF STATE MODELING

Samuel Sokota∗
Carnegie Mellon University
ssokota@andrew.cmu.edu

Hengyuan Hu
Meta AI
hengyuan@fb.com

David J. Wu
Meta AI
dwu@fb.com

J. Zico Kolter
Carnegie Mellon University
zkolter@cs.cmu.edu

Jakob Foerster
Oxford University
jakob.foerster@eng.ox.ac.uk

Noam Brown
Meta AI
noambrown@fb.com

ABSTRACT

We investigate the challenge of modeling the belief state of a partially observable
Markov system, given sample-access to its dynamics model. This problem setting
is often approached using parametric sequential generative modeling methods.
However, these methods do not leverage any additional computation at inference
time to increase their accuracy. Moreover, applying these methods to belief state
modeling in certain multi-agent settings would require passing policies into the be-
lief model—at the time of writing, there have been no successful demonstrations
of this. Toward addressing these shortcomings, we propose an inference-time
improvement framework for parametric sequential generative modeling methods
called belief fine-tuning (BFT). BFT leverages approximate dynamic program-
ming in the form of fine-tuning to determine the model parameters at each time
step. It can improve the accuracy of the belief model at test time because it spe-
cializes the model to the space of local observations. Furthermore, because this
specialization occurs after the action or policy has already been decided, BFT
does not require the belief model to process it as input. As a result of the latter
point, BFT enables, for the first time, approximate public belief state search in
imperfect-information games where the number of possible information states is
too large to track tabularly. We exhibit these findings on large-scale variants of the
benchmark game Hanabi.

1 INTRODUCTION

A Markov system is a sequential process in which future events are independent of past events,
conditioned on the current Markov state (Gagniuc, 2017). If the Markov state cannot be directly
observed, the system is said to have partial observability. This work considers three kinds of Markov
systems with partial observability: hidden Markov models (HMMs), partially observable Markov
decision processes (POMDPs), and factored observation stochastic games (FOSGs). An HMM is a
Markov system in which, at each time step, a distribution determined by the current (unobservable)
Markov state generates an observable and a new (unobservable) Markov state (Rabiner & Juang,
1986). A POMDP is a generalization of an HMM in which an agent influences the trajectory of the
system by taking actions (Kaelbling et al., 1998). A FOSG is a generalization of a POMDP in which
multiple agents receive observations from the system and take actions that influence the trajectory
of the system (Kovařı́k et al., 2022).

An important inference problem associated with Markov systems with partial observability is belief
state modeling. The objective of belief state modeling is to compute the posterior (called the belief
state) over the current Markov state. This problem is important because belief states are sufficient
information to forecast future events and to anticipate how the system will respond to external actors.
In sufficiently small systems, the problem can be solved exactly using the classical forward algorithm

∗Work done while at Meta AI.

1

Published as a conference paper at ICLR 2022

(Rabiner, 1989), which is based on tabular dynamic programming. However, in larger systems, the
forward algorithm is inapplicable, as it scales quadratically in the number of Markov states.

In such cases, an appealing alternative is to learn an approximate model of the belief state using a
parametric sequential generative model. Parametric models are appealing because they can be scaled
to very large settings and can be trained from samples. However, we suggest that naively performing
inference on parametric models has two significant drawbacks. First, doing so does not leverage any
additional computation at inference time to improve the accuracy of the model. While the idea
of performing additional local improvement is widely leveraged in reinforcement learning under
the terms decision-time planning and search (Silver et al., 2018; Schrittwieser et al., 2020; Brown
et al., 2020a), it has gone largely overlooked in the context of approximating belief states in large
systems. Second, in the context of public belief state modeling in multi-agent systems, parametric
models require a representation of the policy as input at each time step. At the time of writing,
there has been no successful demonstration of this. As a result, performing belief modeling in large
multi-agent systems remains out of reach, rendering celebrated algorithms for imperfect information
games inapplicable (Brown & Sandholm, 2017; Moravčı́k et al., 2017; Brown & Sandholm, 2019).

To address these shortcomings, we propose an inference-time improvement framework for paramet-
ric models called belief fine-tuning (BFT). At each time step, BFT uses the belief model for the
current step to generate an empirical distribution of current Markov states. Next, it uses this em-
pirical distribution, along with the dynamics model (and player policies), to generate an empirical
distribution of next Markov states and observations. Finally, BFT fine-tunes the belief model for
the next time step using the latter empirical distribution. BFT can improve the accuracy of a belief
model, even if it has been trained to convergence, by specializing its capacity to the space of local
observations (Silver et al., 2008). Furthermore, BFT can model belief states even without taking
actions or policies as input because, during fine-tuning, the action or policy has already been fixed.

To demonstrate the efficacy of BFT, we proceed with our experimental agenda in two parts, focusing
on the cooperative imperfect-information game Hanabi (Bard et al., 2020). First, we verify that, as
advertised above, BFT can improve the accuracy of a belief model in various settings. Second, we
investigate the performance of decision-time planning running on top of BFT. We find that in cases
in which tracking exact belief states is tractable, BFT can yield performance competitive with that
of an exact belief. Furthermore, in cases in which tracking the exact belief state is intractable, we
find that performing search on top of BFT can yield substantial improvements over not performing
search. This is the first instance of successful approximate public belief state-based search in a
setting in which computing an exact belief state is intractable.

2 BACKGROUND AND NOTATION

We describe three formalisms for Markov models with partial observability, and then present a
unifying notation for them.

2.1 HIDDEN MARKOV MODELS

An HMM is a tuple 〈T ,O〉 where T : W → ∆W is the transition function and O : W → ∆O is
the observation function, where ∆O is the simplex on O. At each time, the current Markov state wt
generates a new Markov state W t+1 ∼ T (wt). The new Markov state generates a new observation
Ot+1 ∼ O(W t+1). The belief state is the posterior P(W t | o1, . . . , ot) over the Markov state, given
the history of observations.

2.2 PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

A POMDP is a tuple 〈T ,O,R〉 where T : W× A→ ∆W is the transition function, O : W→ ∆O
is the observation function, andR : W×A→ R is the reward function. At each time step, an agent
selects an action at ∈ A as a function of the history of its actions and observations (o1, a1, . . . , ot).
This action is used in conjunction with the current Markov state wt to generate a new Markov state
W t+1 ∼ T (wt, at) and a reward rt = R(wt, at). The observation for the next time step Ot+1 ∼
O(W t+1) is determined as a function of the new Markov state. The belief state is the posterior
P(W t | o1, a1, . . . , ot) over the Markov state, given the history of actions and observations.

2

Published as a conference paper at ICLR 2022

General HMM POMDP FOSG
Markov Variable X W W (W,S1, . . . , Sn)

Emission Variable Y O O Opub
Control Variable Z A (πt1, . . . , π

t
n)

Table 1: The relationship between notations for belief state modeling for different settings.

2.3 FACTORED OBSERVATION STOCHASTIC GAMES

A FOSG is a tuple 〈T ,Opub,Opriv(1), . . . ,Opriv(n),R1, . . . ,Rn〉, where T : W × A → ∆W is
the transition function, Opub : W → ∆Opub is the public observation function, Opriv(i) : W →
∆Opriv(i) is player i’s private observation function, and Ri : W × A → R is player i’s reward
function. At each time step, each agent selects an action ati ∼ πti(s

t
i) as a function of the his-

tory of its observations and actions sti = (o1pub, o
1
priv(i), a

1
i , . . . , o

t
pub, o

t
priv(i)). The joint action

at = (at1, . . . , a
t
n) is used in conjunction with the current Markov state wt to generate a new

Markov state W t+1 ∼ T (wt, a) and a reward rti = R(wt, a) for each player. The public ob-
servation Ot+1

pub ∼ Opub(W t+1) and each player’s private observation Ot+1
priv(i) ∼ Opriv(i)(W

t+1)

are determined as functions of the concurrent Markov state. In FOSGs the relevant belief state is
the posterior P(W t, St1, . . . , S

t
n | o1pub, π1

1 , . . . , π
1
n, . . . , o

t
pub) over the current Markov state and

each player’s action-observation history, conditioned on the sequence of public observations and the
sequence of policies. This belief state is called the public belief state.

!"

#"

$%

!%!&

#&

$"$&

Figure 1: A graphical model depicting the belief state modeling problem. The Markov vari-
able Xt and an externally specified control variable Zt stochastically determine the next Markov
variable Xt+1. Each Markov variable Xt+1 stochastically determines the contemporaneous emis-
sion variable Y t+1. The belief state modeling problem is to approximate the posterior P(Xt |
Y 1, Z1, . . . , Y t) over the current Markov variable given all past and present emission variables and
all past control variables.

2.4 GENERAL NOTATION FOR BELIEF STATE MODELING

Regardless of whether the belief state modeling problem is in the context of HMMs, POMDPs, or
FOSGs, belief state modeling can be expressed as modeling a distribution P(Xt | Y 1, Z1, . . . , Y t),
where each Y j ∼ Y(Xj), each Zj is specified by an external process, and the process moves
forward in time by sampling Xj+1 ∼ X (Xj , Zj), as depicted in Figure 1. We call X the Markov
variable, Y the emission variable, and Z the control variable. In HMMs, the Markov variable is the
Markov state X = W , the emission variable is the observation Y = O and the control variable is
null. In POMDPs, the Markov variable is the Markov state X = W , the emission variable is the
observation Y = O and the control variable is the action Z = A. In FOSGs, the Markov variable is
a tuple of the Markov state and each player’s action-observation history X = (W,S1, . . . , Sn), the
emission variable is the public observation Y = Opub, and the control variable is the joint decision
rule Z = (πt1, . . . , π

t
n) (i.e., the joint policy for that time step). Table 1 summarizes the relationships

between these notations. To minimize clutter, we will use this more concise notation going forward.
In all cases, we assume sampling access to Y : X→ ∆Y and X : X× Z→ ∆X.

3

Published as a conference paper at ICLR 2022

2.5 SEQUENTIAL GENERATIVE MODELING

The sequential generative modeling problem is to model the distribution of one sequence of vari-
ables, conditioned on another sequence of variables. Because it is a superset of the belief state mod-
eling problem, its solution methods are immediately applicable to belief state modeling. Among
the most popular of these methods are parametric modeling approaches. Parametric modeling ap-
proaches use a set of sequences {(X0

k , Y
0
k , Z

0
k , . . . , X

T
k , Y

T
k)}k collected from the dynamics model

(X ,Y) to minimize the difference between the output of a parameterized model fθ(Y 0
k , Z

0
k , . . . , Y

t
k)

and the distribution over Xt | Y 0
k , Z

0
k , . . . , Y

t
k observed in the dataset, for each t and k, over pa-

rameters θ. They generally require two design choices. First, whether to maintain a running sum-
mary of the conditioning sequence using a recurrent network (Hochreiter & Schmidhuber, 1997)
or whether to model the desired distribution as a direct function of the running sequence at each
time step (Vaswani et al., 2017). Second, what kind of model to use to capture the desired distribu-
tion. Common choices include autoregressive models, adversarial models (Goodfellow et al., 2014),
variational models (Kingma & Welling, 2014), or score-based models (Hyvärinen, 2005), among
others. Because the experiments in this work focus on the Hanabi benchmark (Bard et al., 2020),
which involves long sequences and discrete output variables, we choose to use a recurrent architec-
ture with an autoregressive output (Sutskever et al., 2014). However, BFT is not specific to these
design choices and can also be combined with other approaches for sequential generative modeling
in the context of belief state modeling.

3 METHODOLOGY

BFT comes from the approximate dynamic programming perspective on belief state modeling. We
describe this perspective below, discuss its advantages, and then introduce BFT.

3.1 BELIEF STATE MODELING AS APPROXIMATE DYNAMIC PROGRAMMING

A second way to approach belief state modeling—distinct from the standard sequential generative
modeling setups discussed in the background—is as an approximate dynamic programming prob-
lem. Observe, for some fixed control variable zt−1, previous belief state bt−1, and current emission
variable yt, we have

btyt = P(Xt | yt, zt−1, bt−1) (1)

∝ P(yt | Xt, zt−1, bt−1)P(Xt | zt−1, bt−1) (2)

= P(yt | Xt)EXt−1∼bt−1P(Xt | zt−1, Xt−1). (3)

Line (1) follows by definition, line (2) follows by Bayes’ rule, and line (3) follows by the Markov
property and the law of total probability. As a result of this proportionality, the procedure

1. Sample Xt−1 ∼ bt−1

2. Sample Xt ∼ X (Xt−1, zt−1)
3. Sample Y t ∼ Y(Xt)

yields a sample Xt ∼ btY t . Thus, given sample-access to X ,Y , and the distribution of X0, it is
entirely possible to train a belief model inductively via approximate dynamic programming, whereby
the belief states at time step one bootstrap from the initial belief state, the belief states at time step
two bootstrap from the belief states at time step one, and so forth, as shown in Figure 2.

While this procedure is known, it is unusual for it to be used to train belief state models because the
training data it produces is biased—unless the approximation to bt−1 is exactly correct, the training
data for btY t will only come from an approximately correct distribution. In contrast, sampling full
trajectories guarantees that the training data will come from exactly the correct distribution.

3.2 ADVANTAGES OF APPROXIMATE DYNAMIC PROGRAMMING

Despite that approximate dynamic programming produces biased samples, we argue here that the
approximate dynamic programming perspective offers advantages that have gone largely overlooked
in existing literature. These advantages derive from the fact that approximate dynamic programming

4

Published as a conference paper at ICLR 2022

!"#$

%"#$

&"

!"'"#$ '"

Table 2: A graphical model depiction of the dynamic programming perspective on belief state
modeling. Gray arrows denote causal relationships; white arrows denote distributional modeling.

allows us to generate local data. Given previous belief state bt−1, generating samples for the current
time step is as simple as following the procedure above. In contrast, generating unbiased versions of
the same samples would require sampling a collection of initial Markov states X0

1 , . . . , X
0
k ∼ X 0,

propagating them forward using the same sequence of control variables z0, z1, . . . , and rejecting the
rollouts that yielded emission sequences Y 0, . . . , Y t−1 inconsistent with the previously observed
sequence of emission variables. For large t, it becomes prohibitively unlikely to sample a trajectory
with exactly the same sequence of observations.

The ability to generate local data in the context of belief state modeling may be helpful for two
reasons. First, it may increase the accuracy of the belief model by allowing it to perform an ad-
ditional improvement step immediately prior to inference time. Even if the model was trained to
convergence offline, it may be the case that the model does not possess sufficient capacity to capture
the exact belief for every possible sequence of emission and control variables. Therefore, an addi-
tional improvement step can provide utility by reallocating the belief model’s capacity to the space
of immediate possible futures, thereby increasing its ability to approximate the belief state for those
futures. These ideas have long been understood in reinforcement learning literature (Silver et al.,
2008), but are overlooked in the context of belief modeling.

A second advantage of inference-time improvement is that the control variable can be omitted from
the belief model. This is a result of the fact that the Markov variable only depends on the control
variable from the previous time step (not the current time step). Therefore, so long as inference-
time improvement takes place after the control variable for the previous time step has been decided,
the belief state depends only on the contemporaneous emission variable. In the context of HMMs
or POMDPs, where the control variables are nulls and actions, respectively, the ability to omit the
control variable carries little value. However, in FOSGs, where the control variables are themselves
joint policies, the ability to omit the control variable is an important attribute. Indeed, at the time of
writing, there have been no convincing demonstrations of belief state modeling at scale in FOSGs
due to the fact that it is not clear how to train a sequential generative model as a function of policy
networks.

3.3 BELIEF FINE-TUNING

Toward leveraging the advantages of inference-time improvement discussed above, we propose a
framework for belief fine-tuning (BFT). BFT takes a pretrained belief model fθ as input and, at
each time step during online inference, performs the following procedure:

1. Sample Xt−1
1 , . . . , Xt−1

k ∼ fθt−1(y0, z0, . . . , yt−1).
2. Sample Xt

i ∼ X (Xt−1
i , zt−1) for each i = 1, . . . , k.

3. Sample Y ti ∼ Y(Xt
i) for each i = 1, . . . , k.

4. Set θt ← fine-tune(θ, {(Y ti , Xt
i) | i = 1, . . . , k})

For the final step, exactly how the fine-tuning is performed depends on the structure of the architec-
ture f . If f takes the control variable as input, then zt−1 should also be passed into the model during

5

Published as a conference paper at ICLR 2022

fine tuning; if f is recurrent, then the hidden state ht−1
θ (y0, z0, . . . , yt−1) should also be passed into

the model; if f takes the full sequence as input, then the full sequence should also be passed in
during fine-tuning. In principle, BFT could produce accurate distributions from an untrained model
that only took a single emission variable Y as input. However, we do not recommend this approach,
as it amounts to training a new generative model at each time step from scratch.

4 EXPERIMENTS

We divide our experimental investigation into two parts. In the first part, we explore the extent to
which BFT can improve the belief quality of a parametric model in HMMs, POMDPs, and FOSGs.
In the second part, we explore the idea of performing search on top of beliefs from BFT.

We use the cooperative card game Hanabi (Bard et al., 2020) for these experiments. Hanabi re-
sembles something in the realm of a cooperative Solitaire—the players are tasked with collectively
playing cards of each suit in rank order into piles on the table. However, a characterizing feature of
Hanabi is that no player can observe its own cards. Instead, each must infer information about its
own cards from other players’ actions. A more elaborate description of Hanabi is in the appendix.

In Hanabi, if the participants in the game agree to follow a fixed joint policy, the system can be
considered an HMM from the perspective of a third party who does not observe the players’ cards.
If all but one of the players in the game agree to follow a fixed (joint) policy, the system can be
considered a POMDP from the perspective of the player with a varying policy. If none of the
players’ policies are fixed, then the system can be modeled as a FOSG. Therefore, Hanabi allows us
to investigate all three systems within the same infrastructure.

The codebase for our experiments can be found at https://github.com/
facebookresearch/off-belief-learning. Additional ablations on number of
fine-tuning steps, amount of offline training, network capacity, and part of network tuned are
included in the appendix.

4.1 BELIEF FINE-TUNING FOR IMPROVING BELIEF QUALITY

For our first set of experiments, we verify that BFT can improve the accuracy of a pre-trained
parametric belief model in HMMs, POMDPs, and FOSGs. For our experimental setup, we trained
policies using independent R2D2 (Kapturowski et al., 2019) that collectively score around 24 out
of 25 points, using the same hyperparameters as those found in (Hu & Foerster, 2020). We then
trained a Seq2Seq model (Sutskever et al., 2014) close to convergence for an HMM belief state, the
POMDP belief state, and the public belief state (i.e., the FOSG belief state). For the Seq2Seq model,
we used the same hyperparameters as those found in (Hu et al., 2021). For the FOSG case, we did
not feed the players’ policy networks into the Seq2Seq model.

At evaluation time, we used RLSearch (Fickinger et al., 2021) on top of the R2D2 policies to gen-
erate the actions for the non-fixed players in each setting. In short, RLSearch performs additional
fine-tuning of the policy or value network at decision time, using samples from the belief state and
the same learning algorithm that was used during training time. We used the same hyperparameters
as those found in the original paper, with the exception that we used the search policy at every time
step, rather than sometimes using the blueprint policy (i.e., the policy computed using R2D2). This
choice was made so as to highlight the amount of improvement achievable from BFT. For BFT, we
fine-tuned the encoder of the belief network for 10,000 gradient steps at each decision-point using
the same hyperparameters that were used for offline training.

V0 Belief Seq2Seq Seq2Seq + BFT (Ours)
HMM 2.08± 0.01 1.67± 0.01 1.58± 0.01

POMDP 1.73± 0.01 1.52± 0.01 1.39± 0.01
FOSG 2.12± 0.01 1.81± 0.01 1.62± 0.01

Table 3: Cross entropy per card with standard error for different settings, aggregated over 300 games.

Table 3 shows results for the Seq2Seq model, BFT on top of the Seq2Seq model, and a baseline
called the V0 belief, which is naively from independence assumptions and the rules of the game (in

6

https://github.com/facebookresearch/off-belief-learning
https://github.com/facebookresearch/off-belief-learning

Published as a conference paper at ICLR 2022

ignorance of the actual player policies). The V0 belief serves as a sanity check that the belief model
is working and provides a sense of scale about cross entropy values for each setting. The scale for
the POMDP setting differs because it conditions on the acting player’s private information and the
belief is over only one player’s hand; in contrast, the belief in the HMM and FOSG settings are over
both players’ hands and condition on only public information.

For the HMM setting, we observe BFT yields an improvement over the belief model. This improve-
ment comes despite the facts that 1) the belief model was trained using a stream of freshly generated
data (so there is no overfitting problem), 2) the belief model was trained close to convergence, 3)
there is no distribution shift at test time. This result may be evidence of the benefit of reallocating
the capacity of the neural network at inference time.

For the POMDP setting, we observe that BFT yields an even larger improvement over the Seq2Seq
model. While facts 1) and 2) of the above paragraph still hold true here, fact 3) does not. In
particular, in the POMDP setting, there is covariate distribution shift—the acting player uses a search
policy at evaluation time, rather than the blueprint policy used at training time. In principle, if
the model had a sufficiently large amount of capacity and was trained to convergence, covariate
distribution should not impact model performance. However, as a matter of practice, as is illustrated
by the results in Table 3, covariate distribution shift can have a large effect on model performance.

Finally, in the FOSG setting, we observe that BFT induces the largest improvement. In this setting,
the belief model faces not only covariate distribution shift, as it did in the POMDP setting, but also
concept distribution shift, as a result of the facts that the belief model is ignorant to the control
variables (the player policies) and that the distribution of control variables changes at test time
because the agents are using search.

4.2 BELIEF FINE-TUNING FOR DECISION-TIME PLANNING

For our second set of experiments, we investigate whether the improvement in belief quality yielded
by BFT leads to downstream improvements in search performance. For these experiments, we used
the same hyperparameters as those found in (Fickinger et al., 2021) for the search algorithms and
(Hu et al., 2021) for the Seq2Seq model. Again, we used 10,000 gradient steps on the encoder of
the belief model with the same hyperparameters as offline training.

5-card 8-hint Hanabi

Blueprint
SPARTA

Single
Exact

RL Search
Single
Exact

SPARTA
Multi
Exact

RL Search
Multi
Exact

RL Search
Multi

Seq2Seq

RL Search
Multi

BFT (Ours)
24.23
±0.04

24.57
±0.03

24.59
±0.02

24.61
±0.02

24.62
±0.03

24.35
±0.03

24.58
±0.02

5-card 2-hint Hanabi

Blueprint
SPARTA

Single
Exact

RL Search
Single
Exact

SPARTA
Multi
Exact

RL Search
Multi
Exact

SPARTA
Multi

Seq2Seq

RL Search
Multi

BFT (Ours)
22.99
±0.04

23.60
±0.03

23.61
±0.03

23.67
±0.03

23.76
±0.04

23.35
±0.03

23.69
±0.03

Table 4: Expected returns with standard error, aggregated over 2000 games. RL Search Multi Exact
is an upper bound on the performance we would hope for from BFT. RL Search Multi Seq2Seq is our
baseline. BFT significantly outperforms the Seq2Seq model, and nearly matches the performance
of exact beliefs.

We show performance results for (5-card, 8-hint) and (5-card, 2-hint) Hanabi in Table 4. We compare
single and multi-agent SPARTA (Lerer et al., 2020) with exact beliefs, and single and multi-agent
RLSearch (Fickinger et al., 2021) with exact beliefs, to two versions of multi-agent RLSearch with
approximate beliefs. In one approximate-belief version, we used the Seq2Seq model trained offline.
In the other version, we performed BFT on top of the Seq2Seq model after the search policy had
been computed.

7

Published as a conference paper at ICLR 2022

In both the 2-hint and 8-hint variants, exact-belief multi-agent search substantially improved upon
the blueprint policy. Seq2Seq beliefs fell far short of this improvement, while Seq2Seq + BFT
nearly matches the performance of exact beliefs. These results suggest that the improvement in
cross entropy from BFT observed in the previous section has an important effect on downstream
search.

0 10 20 30 40 50 60
Turn Number

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Se
lf-

As
se

ss
ed

 Im
pr

ov
em

en
t

Method
Exact
BFT
Seq2Seq

Figure 2: Without BFT, multi-agent RLSearch
with Seq2Seq overestimates its performance.

We can further investigate the added value of
BFT by looking at the self-assessed improve-
ment of multi-agent RLSearch with each of the
three belief types (Seq2Seq, Seq2Seq + BFT,
Exact), shown in Figure 4.2. We compute the
increase in expected return by performing roll-
outs from the public belief state to the end
of the game, using both the policy determined
by RLSearch and the blueprint policy. Us-
ing the exact belief (blue) corresponds to com-
puting the true improvement, whereas any er-
ror in the approximate beliefs will spill over
into the improvement computation. We ob-
serve that BFT (orange) mostly yields compara-
ble self-assessed improvements to an exact be-
lief, with some overestimation toward the end
of the game. In contrast, the Seq2Seq belief
(green) significantly overestimates the amount
of improvement over the blueprint throughout
the course of the game. These results help ex-
plain those found in Table 4—the Seq2Seq model is not able to properly assess policy values without
BFT, leading it to believe that its search policy is making large improvements when, in fact, its im-
provements may be small or non-existent.

7-card 4-hint Hanabi

Blueprint
RLSearch

Single
Seq2Seq

RL Search
Single

BFT (Ours)

RL Search
Multi

Seq2Seq

RL Search
Multi

BFT (Ours)
23.67
±0.02

24.14
±0.04

24.18
±0.03

23.71
±0.07

24.18
±0.03

Table 5: Expected returns with standard error, aggregated over 1000 games. Multi-agent search
with BFT significantly outperforms the multi-agent search with a Seq2Seq belief. Computing exact
beliefs is intractable in this setting.

For our final experiment, we examine 7-card Hanabi—a setting in which there is so much private
information that it is difficult to compute an exact belief. For this experiment, we include single and
multi-agent variants of RLSearch using approximate beliefs from Seq2Seq and BFT. Similarly to
the results in Table 4, we observe in Table 5 that multi-agent RLSearch without BFT outperformed
the blueprint (though not with significance in this case) but was significantly outperformed by every
other setup. In contrast, multi-agent RLSearch with BFT substantially outperforms the blueprint.
For single-agent RLSearch, BFT also resulted in better performance than Seq2Seq. We computed
a one-sided t-test (computed by pairing deck orderings) and found that this improvement occurred
with a p-value of 0.052.

5 RELATED WORK

There has been much recent focus among the machine learning community on large, relatively
general purpose, machine models that are fine-tuned for more specific tasks, such as BERT (Devlin
et al., 2019), GPT-3 (Brown et al., 2020b), or DALL-E (Ramesh et al., 2021). Our work relates to
this literature in the way it handles belief states for FOSGs—first by training a belief model ignorant
of the control variable offline, then later specializing the belief model to a specific control variable
during online inference, though on a much smaller scale.

8

Published as a conference paper at ICLR 2022

More generally, the idea of improving a model from a small amount of data at inference time also
places our work close to the meta-learning literature (Hospedales et al., 2021). There are various
ways to perform meta-learning, such as recurrent neural networks (Ravi & Larochelle, 2017), hyper-
networks (Qiao et al., 2018), or fine-tuning a network initialized using second order gradient descent
(Finn et al., 2017).

BFT is also closely related to the idea of performing additional improvement at decision-time, which
has a rich history in reinforcement learning literature—including many of the most widely acclaimed
game-playing AI systems (Tesauro et al., 1995; Silver et al., 2018; Moravčı́k et al., 2017; Brown
& Sandholm, 2017; 2019). However, the literature that specifically uses fine-tuning for decision-
time planning is much smaller. The first works to do so with large non-linear networks (Anthony
et al., 2019; Anthony, 2021) showed that a policy gradient fine-tuning-based search can perform
competitively with, or even outperform, MCTS in Hex. More recently, Fickinger et al. (2021)
investigated the idea of fine-tuning-based search using independent Q-learning in Hanabi and policy
gradients in Ms. Pacman (Bellemare et al., 2012).

Our work also relates to literature that attempts to work with public belief states at scale in FOSGs.
The Bayesian action decoder scales approximate public belief states to Hanabi using Hanabi-specific
independence heuristics and an expectation propagation-like procedure (Foerster et al., 2019). While
we also examine the performance of approximate belief states on Hanabi, our method differs in
that it uses no independence heuristic, is focused on inference-time improvement, and is not tied
specifically to Hanabi. Another paper investigating public belief states in large settings is that of
Šustr et al. (2021), who propose a scalable method for approximating the value of a public belief
state from samples. More precisely, they investigate a value function architecture that takes samples
from public belief states as input, rather than a closed form public belief state. Our contribution is
complementary to theirs, as our method aims to produce high quality public belief state samples.

Finally, our work also relates to particle filtering literature (Doucet & Johansen, 2009). Particle
filtering maintains works by maintaining a set of Markov states {xi}i (called particles) and corre-
sponding weights {wi}i that collectively approximate the belief state. At each time step, similarly
to BFT, the collection of particles is propagated forward in time using the dynamics model. The
weights are updated based on the proportional posterior probability of each particle. One disadvan-
tage of particle filtering compared to BFT is that all of the particles may become infeasible; in other
words, every particle may have probability zero given the sequence of emission and control vari-
ables. Moreover, whereas particle filtering can only resample particles from its finitely supported
empirical distribution, BFT can produce arbitrary resamples.

6 CONCLUSION AND FUTURE WORK

In this work we introduced BFT, a framework for improving belief state models during online in-
ference. We sought to demonstrate two claims: i) BFT can improve the performance of a belief
model ii) this gain in belief accuracy yields downstream gains in search performance. We provided
evidence for both claims using large scale variants of the Hanabi benchmark.

We see three lines of work worth pursuing as follow ups to this one. The first is to investigate whether
incorporating meta-learning into BFT can improve its performance. While the inference-time im-
provement framework can be cast as a meta-learning problem, we did not actually incorporate this
into the BFT objective. The second is to investigate the design of belief models that can quickly
model public belief states. While BFT allows us to effectively model public belief states, it requires
performing fine-tuning each time a public belief state is required. This is fine for algorithms which
only use public belief states to construct the root of their search trees (Brown et al., 2018; Lerer et al.,
2020), but may be too slow to use for algorithms that use public belief state-based value functions
(Moravčı́k et al., 2017; Brown et al., 2020a; Sokota et al., 2021). The third line is to investigate elim-
inating the need for sampling access to the dynamics model. While MuZero (Schrittwieser et al.,
2020) accomplished this for deterministic fully observable settings, determining the best way to do
this for partially observable settings remains an open problem.

9

Published as a conference paper at ICLR 2022

REFERENCES

Thomas Anthony, Robert Nishihara, Philipp Moritz, Tim Salimans, and John Schulman. Policy gra-
dient search: Online planning and expert iteration without search trees. CoRR, abs/1904.03646,
2019. URL http://arxiv.org/abs/1904.03646.

Thomas William Anthony. Expert iteration. PhD thesis, UCL (University College London), 2021.

Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Francis Song, Emilio
Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, et al. The hanabi challenge: A
new frontier for ai research. Artificial Intelligence, 280:103216, 2020.

Marc Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47,
07 2012. doi: 10.1613/jair.3912.

Noam Brown and Tuomas Sandholm. Superhuman ai for heads-up no-limit poker: Libratus beats
top professionals. Science, pp. eaao1733, 2017.

Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. Science, 365(6456):
885–890, 2019. ISSN 0036-8075. doi: 10.1126/science.aay2400. URL https://science.
sciencemag.org/content/365/6456/885.

Noam Brown, Tuomas Sandholm, and Brandon Amos. Depth-limited solving for imperfect-
information games. In NeurIPS, 2018.

Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong. Combining deep re-
inforcement learning and search for imperfect-information games. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 17057–17069. Curran Associates,
Inc., 2020a. URL https://proceedings.neurips.cc/paper/2020/file/
c61f571dbd2fb949d3fe5ae1608dd48b-Paper.pdf.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Asso-
ciates, Inc., 2020b. URL https://proceedings.neurips.cc/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL, 2019.

Arnaud Doucet and Adam Johansen. A tutorial on particle filtering and smoothing: Fifteen years
later. Handbook of Nonlinear Filtering, 12, 01 2009.

Arnaud Fickinger, Hengyuan Hu, Brandon Amos, Stuart Russell, and Noam Brown. Scalable on-
line planning via reinforcement learning fine-tuning. In International Conference on Learning
Representations, 2021.

Chelsea Finn, P. Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In ICML, 2017.

Jakob Foerster, Francis Song, Edward Hughes, Neil Burch, Iain Dunning, Shimon Whiteson,
Matthew Botvinick, and Michael Bowling. Bayesian action decoder for deep multi-agent re-
inforcement learning. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 1942–1951. PMLR, 09–15 Jun 2019. URL https://proceedings.
mlr.press/v97/foerster19a.html.

10

http://arxiv.org/abs/1904.03646
https://science.sciencemag.org/content/365/6456/885
https://science.sciencemag.org/content/365/6456/885
https://proceedings.neurips.cc/paper/2020/file/c61f571dbd2fb949d3fe5ae1608dd48b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c61f571dbd2fb949d3fe5ae1608dd48b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.mlr.press/v97/foerster19a.html
https://proceedings.mlr.press/v97/foerster19a.html

Published as a conference paper at ICLR 2022

Paul Gagniuc. Markov Chains: From Theory to Implementation and Experimentation. 05 2017.
ISBN 978-1-119-38755-8. doi: 10.1002/9781119387596.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
jil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger (eds.),
Advances in Neural Information Processing Systems, volume 27. Curran Associates,
Inc., 2014. URL https://proceedings.neurips.cc/paper/2014/file/
5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Timothy M. Hospedales, Antreas Antoniou, Paul Micaelli, and Amos J. Storkey. Meta-learning in
neural networks: A survey. IEEE transactions on pattern analysis and machine intelligence, PP,
2021.

Hengyuan Hu and Jakob N Foerster. Simplified action decoder for deep multi-agent reinforcement
learning. In International Conference on Learning Representations, 2020. URL https://
openreview.net/forum?id=B1xm3RVtwB.

Hengyuan Hu, Adam Lerer, Noam Brown, and Jakob N. Foerster. Learned belief search: Efficiently
improving policies in partially observable settings. CoRR, abs/2106.09086, 2021. URL https:
//arxiv.org/abs/2106.09086.

Aapo Hyvärinen. Estimation of non-normalized statistical models by score matching. Journal of
Machine Learning Research, 6(24):695–709, 2005. URL http://jmlr.org/papers/v6/
hyvarinen05a.html.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1):99–134, 1998. ISSN
0004-3702. doi: https://doi.org/10.1016/S0004-3702(98)00023-X. URL https://www.
sciencedirect.com/science/article/pii/S000437029800023X.

Steven Kapturowski, Georg Ostrovski, Will Dabney, John Quan, and Remi Munos. Recurrent ex-
perience replay in distributed reinforcement learning. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=r1lyTjAqYX.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014.

Vojtěch Kovařı́k, Martin Schmid, Neil Burch, Michael Bowling, and Viliam Lisỳ. Rethinking formal
models of partially observable multiagent decision making. Artificial Intelligence, 303:103645,
2022.

Adam Lerer, Hengyuan Hu, Jakob Foerster, and Noam Brown. Improving policies via search
in cooperative partially observable games. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(05):7187–7194, Apr. 2020. doi: 10.1609/aaai.v34i05.6208. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/6208.

Matej Moravčı́k, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level artificial
intelligence in heads-up no-limit poker. Science, 356(6337):508–513, 2017. doi: 10.1126/science.
aam6960.

Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan Loddon Yuille. Few-shot image recognition by
predicting parameters from activations. 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7229–7238, 2018.

L. Rabiner and B. Juang. An introduction to hidden markov models. IEEE ASSP Magazine, 3(1):
4–16, 1986. doi: 10.1109/MASSP.1986.1165342.

11

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://openreview.net/forum?id=B1xm3RVtwB
https://openreview.net/forum?id=B1xm3RVtwB
https://arxiv.org/abs/2106.09086
https://arxiv.org/abs/2106.09086
http://jmlr.org/papers/v6/hyvarinen05a.html
http://jmlr.org/papers/v6/hyvarinen05a.html
https://www.sciencedirect.com/science/article/pii/S000437029800023X
https://www.sciencedirect.com/science/article/pii/S000437029800023X
https://openreview.net/forum?id=r1lyTjAqYX
https://ojs.aaai.org/index.php/AAAI/article/view/6208
https://ojs.aaai.org/index.php/AAAI/article/view/6208

Published as a conference paper at ICLR 2022

L.R. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286, 1989. doi: 10.1109/5.18626.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on Machine
Learning, pp. 8821–8831. PMLR, 2021.

S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. In ICLR, 2017.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, L. Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy P. Lillicrap,
and David Silver. Mastering atari, go, chess and shogi by planning with a learned model. Nature,
588 7839:604–609, 2020.

David Silver, Richard S. Sutton, and Martin Müller. Sample-based learning and search with per-
manent and transient memories. In Proceedings of the 25th International Conference on Ma-
chine Learning, ICML ’08, pp. 968–975, New York, NY, USA, 2008. Association for Com-
puting Machinery. ISBN 9781605582054. doi: 10.1145/1390156.1390278. URL https:
//doi.org/10.1145/1390156.1390278.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

Samuel Sokota, Edward Lockhart, Finbarr Timbers, Elnaz Davoodi, Ryan D’Orazio, Neil Burch,
Martin Schmid, Michael Bowling, and Marc Lanctot. Solving common-payoff games with ap-
proximate policy iteration. Proceedings of the AAAI Conference on Artificial Intelligence, 35(11):
9695–9703, May 2021. URL https://ojs.aaai.org/index.php/AAAI/article/
view/17166.

Michal Šustr, Vojtěch Kovařı́k, and Viliam Lisỳ. Particle value functions in imperfect information
games. In AAMAS Adaptive and Learning Agents Workshop, 2021.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neu-
ral networks. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Wein-
berger (eds.), Advances in Neural Information Processing Systems, volume 27. Curran Asso-
ciates, Inc., 2014. URL https://proceedings.neurips.cc/paper/2014/file/
a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf.

Gerald Tesauro et al. Temporal difference learning and td-gammon. Communications of the ACM,
38(3):58–68, 1995.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

A APPENDIX

A.1 RULES OF HANABI

The following rule description is quoted from the Hanabi challenge paper (Bard et al., 2020):

Hanabi is a game for two to five players, best described as a type of cooperative
solitaire. Each player holds a hand of four cards (or five, when playing with two
or three players). Each card depicts a rank (1 to 5) and a colour (red, green, blue,
yellow, and white); the deck (set of all cards) is composed of a total of 50 cards,
10 of each colour: three 1s, two 2s, 3s, and 4s, and finally a single 5. The goal

12

https://doi.org/10.1145/1390156.1390278
https://doi.org/10.1145/1390156.1390278
https://ojs.aaai.org/index.php/AAAI/article/view/17166
https://ojs.aaai.org/index.php/AAAI/article/view/17166
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Published as a conference paper at ICLR 2022

of the game is to play cards so as to form five consecutively ordered stacks, one
for each colour, beginning with a card of rank 1 and ending with a card of rank
5. What makes Hanabi special is that, unlike most card games, players can only
see their partners’ hands, and not their own. Players take turns doing one of three
actions: giving a hint, playing a card from their hand, or discarding a card. We
call the player whose turn it is the active player.

Hints On their turn, the active player can give a hint to any other player. A hint
consists of choosing a rank or colour, and indicating to another player all of their
cards that match the given rank or colour. Only ranks and colors that are present
in the player’s hand can be hinted for. To make the game interesting, hints are in
limited supply. The game begins with the group owning eight information tokens,
one of which is consumed every time a hint is given. If no information tokens
remain, hints cannot be given and the player must instead play or discard.

Discard Whenever fewer than eight information tokens remain, the active player
can discard a card from their hand. The discarded card is placed face up (along
with any unsuccessfully played cards), visible to all players. Discarding has two
effects: the player draws a new card from the deck and an information token is
recovered.

Play Finally, the active player may pick a card from their hand and attempt to
play it. Playing a card is successful if the card is the next in the sequence of its
colour to be played. If the play is successful, the card is placed on top of the
corresponding stack. When a stack is completed (the 5 is played) the players also
receive a new information token (if they have fewer than eight). The player can
play a card even if they know nothing about it; but if the play is unsuccessful, the
card is discarded (without yielding an information token) and the group loses one
life, possibly ending the game. In either circumstances, a new card is drawn from
the deck.

Game Over The game ends in one of three ways: either because the group has
successfully played cards to complete all five stacks, when three lives have been
lost, or after a player draws the last card from the deck and every player has taken
one final turn. If the game ends before three lives are lost, the group scores one
point for each card in each stack, for a maximum of 25.

A.2 ADDITIONAL EXPERIMENTS

We performed additional experiments to see the effect of the number of fine-tuning steps, the number
of training epochs, and the size of the belief model. Note that we did not use the same networks for
these results as for the HMM results in the main body so they are not directly comparable.

A.2.1 NUMBER OF FINE-TUNING STEPS

In the main body, we used 10,000 gradient steps for all of our experiments. In Table 6, we examine
the effect of using fewer gradient steps in an HMM setting. We find that BFT can yield benefits
even with as few as 100 gradient steps. We also find that the benefits appear to saturate after 1000
gradient steps. This, in part, may be because the belief model is already relatively good in the HMM
case.

V0 Belief 2.08± 0.01
Seq2Seq 1.68± 0.01

Seq2Seq + BFT(100 steps) 1.64± 0.01
Seq2Seq + BFT(1000 steps) 1.61± 0.01
Seq2Seq + BFT(10000 steps) 1.61± 0.01

Table 6: Cross entropy per card with standard error for different settings, aggregated over 300 games.

13

Published as a conference paper at ICLR 2022

A.2.2 AMOUNT OF OFFLINE TRAINING

In the main body, our belief model was trained for 400 epochs offline. In Table 7, we examine the
performance of combining BFT with lower quality belief models in an HMM setting. We find that
BFT can produce large improvements even when its original model performs poorly.

V0 Belief 2.08± 0.01
Seq2Seq(400 epochs) 1.68± 0.01

Seq2Seq(400 epochs) + BFT 1.61± 0.01
Seq2Seq(200 epochs) 1.74± 0.01

Seq2Seq(200 epochs) + BFT 1.63± 0.01
Seq2Seq(100 epochs) 1.82± 0.01

Seq2Seq(100 epochs) + BFT 1.70± 0.01

Table 7: Cross entropy per card with standard error for different settings, aggregated over 300 games.

A.2.3 NETWORK SIZE AND PART OF NETWORK TUNED

In the main body of the paper, the belief model’s encoder was a two layer LSTM with 512 hidden
units. Also, in the main body of the paper, we performed fine-tuning only on the encoder. In Table 8,
we examine the effect of using smaller encoders and of fine-tuning the whole belief network, rather
than just the encoder, in the HMM setting. We find that the benefits to performing fine-tuning may
increase as the capacity of the belief network decreases, if fine-tuning is performed for the whole
network. However, in the case that fine-tuning is performed only on the encoder, we did not observe
this effect.

V0 Belief 2.08± 0.01
Seq2Seq(512 units) 1.68± 0.01

Seq2Seq(512 units) + BFT(Encoder) 1.61± 0.01
Seq2Seq(512 units) + BFT(Full) 1.58± 0.01

Seq2Seq(256 units) 1.76± 0.01
Seq2Seq(256 units) + BFT(Encoder) 1.65± 0.01

Seq2Seq(256 units) + BFT(Full) 1.63± 0.01
Seq2Seq(128 units) 1.87± 0.01

Seq2Seq(128 units) + BFT(Encoder) 1.84± 0.01
Seq2Seq(128 units) + BFT(Full) 1.69± 0.01

Table 8: Cross entropy per card with standard error for different settings, aggregated over 300 games.

A.3 DESCRIPTION OF ALGORITHM IMPLEMENTATION

We describe the instantiation of BFT we used for our Hanabi experiments. We used
a Seq2Seq model with LSTMs as encoders and an LSTM as a decoder. In particular,
our encoder took the previous control variable zt−1, the current emission variable yt, and
a summary of the history h(y0, z0, . . . , yt−1) and output a next summary of the history
h(y0, z0, . . . , yt) = e(zt−1, yt, h(y0, z0, . . . , yt−1)). Our decoder d took the summary of the his-
tory h(y0, z0, . . . , yt−1)) as input, and autoregressively modeled the Markov state Xt.

1. Sample Xt−1
1 , . . . , Xt−1

k ∼ dθ ◦ eθt−1(zt−2, yt−1, hθ(y
0, z0, . . . , yt−2).

2. Sample Xt
i ∼ X (Xt−1

i , zt−1) for each i = 1, . . . , k.
3. Sample Y ti ∼ Y(Xt

i) for each i = 1, . . . , k.
4. Set θt ← minθ′ NLL(Xt

i , dθ ◦ eθ′(zt−1, Y ti , hθ(y
0, z0, . . . , zt−2, yt−1)) for i = 1, . . . , k.

During fine-tuning time, we first sample Markov states using the decoder with offline parameters θ,
the encoder using the fine-tuned parameters from the previous time step θt−1, and the hidden state
produced two time steps ago using the the offline parameters θ. In steps 2) and 3), we propagate
these samples forward to the current time step, as described in the main body of the paper. In the
fourth step, we fine-tune the parameters of the encoder (with the parameters initialized as the offline

14

Published as a conference paper at ICLR 2022

parameters θ), using the decoder (with fixed offline parameters θ), and the fixed hidden state from
the previous time step computed using offline parameters θ. The result of this fine tuning yields
encoder parameters θt. For the FOSG setting, we omitted z as input in step 1) and step 4) (i.e., we
only used it in step 2)).

An alternative instantiation, used for BFT(Full) in Table 8, fine-tunes both the encoder and the
decoder. In this case dθ is replaced by dθt−1 in step 1), and dθ is replaced by dθ′ in step 4). Only
fine-tuning the encoder has the advantage of preserving the equivalence between the encoding and
the belief state, which may be useful for training belief state-dependent value functions in future
work. However, fine-tuning the whole network can sometimes result in better performance, as we
found in Table 8.

RLSearch only requires samples from the current belief state. To provide these samples, at time t,
we generated samples from dθ ◦ eθt(zt−1, yti , hθ(y

0, z0, . . . , zt−2, yt−1)). Again, in the FOSG case
we omitted the control variables. We sampled a large number of Markov states prior to the start
of search, and then passed this empirical distribution of samples to our RLSearch implementation.
Note that, if fine-tuning the whole network, dθ should be replaced with dθt here.

15

	Introduction
	Background and Notation
	Hidden Markov Models
	Partially Observable Markov Decision Processes
	Factored Observation Stochastic Games
	General Notation for Belief State Modeling
	Sequential Generative Modeling

	Methodology
	Belief State Modeling as Approximate Dynamic Programming
	Advantages of Approximate Dynamic Programming
	Belief Fine-Tuning

	Experiments
	Belief Fine-Tuning for Improving Belief Quality
	Belief Fine-Tuning For Decision-Time Planning

	Related Work
	Conclusion and Future Work
	Appendix
	Rules of Hanabi
	Additional Experiments
	Number of Fine-Tuning Steps
	Amount of Offline Training
	Network Size and Part of Network Tuned

	Description of Algorithm Implementation

