Inverse Path Tracing for Joint Material and Lighting Estimation
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Figure 1: Our Inverse Path Tracing algorithm takes as input a 3D scene and up to several RGB images (left), and estimates
material as well as the lighting parameters of the scene. The main contribution of our approach is the formulation of an
end-to-end differentiable inverse Monte Carlo renderer which is utilized in a nested stochastic gradient descent optimization.

Abstract

Modern computer vision algorithms have brought sig-
nificant advancement to 3D geometry reconstruction. How-
ever, illumination and material reconstruction remain less
studied, with current approaches assuming very simplified
models for materials and illumination. We introduce In-
verse Path Tracing, a novel approach to jointly estimate the
material properties of objects and light sources in indoor
scenes by using an invertible light transport simulation. We
assume a coarse geometry scan, along with corresponding
images and camera poses. The key contribution of this work
is an accurate and simultaneous retrieval of light sources
and physically based material properties (e.g., diffuse re-
flectance, specular reflectance, roughness, etc.) for the pur-
pose of editing and re-rendering the scene under new condi-
tions. To this end, we introduce a novel optimization method
using a differentiable Monte Carlo renderer that computes
derivatives with respect to the estimated unknown illumina-
tion and material properties. This enables joint optimiza-
tion for physically correct light transport and material mod-
els using a tailored stochastic gradient descent.

1. Introduction

With the availability of inexpensive, commodity RGB-D
sensors, such as the Microsoft Kinect, Google Tango, or
Intel Real Sense, we have seen incredible advances in 3D
reconstruction techniques [28, 15, 29, 34, 8]. While track-
ing and reconstruction quality have reached impressive lev-
els, the estimation of lighting and materials has often been
neglected. Unfortunately, this presents a serious problem
for virtual- and mixed-reality applications, where we need
to re-render scenes from different viewpoints, place virtual
objects, edit scenes, or enable telepresence scenarios where
a virtual person is placed in a different room.

This problem has been viewed in the 2D image do-
main, resulting in a large body of work on intrinsic images
or videos [I, 27, 26]. However, the problem is severely
underconstrained on monocular RGB data due to lack of
known geometry, and thus requires heavy regularization
to jointly solve for lighting, material, and scene geome-
try. We believe that the problem is much more tractable in
the context for given 3D reconstructions. However, even
with depth data available, most state-of-the-art methods,
e.g., shading-based refinement [35, 38] or indoor re-lighting
[37], are based on simplistic lighting models, such as spher-



ical harmonics (SH) [31] or spatially-varying SH [24],
which can cause issues on occlusion and view-dependent
effects (Fig. 3).

In this work, we address this shortcoming by formulating
material and lighting estimation as a proper inverse render-
ing problem. To this end, we propose an Inverse Path Trac-
ing algorithm that takes as input a given 3D scene along
with a single or up to several captured RGB frames. The
key to our approach is a differentiable Monte Carlo path
tracer which can differentiate w.r.t. rendering parameters
constrained on the difference of the rendered image and
the target observations. Leveraging these derivatives, we
solve for the material and lighting parameters by nesting the
Monte Carlo path tracing process into a stochastic gradient
descent (SGD) optimization. The main contribution of this
work lies in this SGD optimization formulation, which is
inspired from recent advances in deep neural networks.

We tailor this Inverse Path Tracing algorithm to 3D
scenes, where scene geometry is (mostly) given but the ma-
terial and lighting parameters are unknown. In a series of
experiments on both synthetic ground truth and real scan
data, we evaluate the design choices of our optimizer. In
comparison to current state-of-the-art lighting models, we
show that our inverse rendering formulation and its opti-
mization achieves significantly more accurate results.

In summary, we contribute the following:

e An end-to-end differentiable inverse path tracing for-
mulation for joint material and lighting estimation.

o A flexible stochastic optimization framework with ex-
tendibility and flexibility for different materials and
regularization terms.

2. Related Work

Material and illumination reconstruction has a long his-
tory in computer vision (e.g., [30, 4]). Given scene geome-
try and observed radiance of the surfaces, the task is to infer
the material properties and locate the light source. How-
ever, to our knowledge, none of the existing methods handle
non-Lambertian materials with near-field illumination (area
light sources), while taking interreflection between surfaces
into account.

3D approaches. A common assumption in reconstruct-
ing material and illumination is that the light sources are in-
finitely far away. Ramamoorthi and Hanrahan [3 1] project
both material and illumination onto spherical harmonics
and solve for their coefficients using the convolution theo-
rem. Dong et al. [1 1] solve for spatially-varying reflectance
from a video of an object. Kim et al. [20] reconstruct the
reflectance by training a convolutional neural network op-
erating on voxels constructed from RGB-D video. Maier et
al. [24] generalize spherical harmonics to handle spatial de-
pendent effects, but do not correctly take view-dependent

reflection and occlusion into account. All these approaches
simplify the problem by assuming that the light sources are
infinitely far away, in order to reconstruct a single environ-
ment map shared by all shading points. In contrast, we
model the illumination as emission from the surfaces, and
handle near-field effects such as the squared distance falloff
or glossy reflection better. We compare to Maier et al.’s
approach in Sec. 5.

Image-space approaches (e.g., [2, 1, 10, 26]). These
methods usually employ sophisticated data-driven ap-
proaches, by learning the distributions of material and illu-
mination. However, these methods do not have a notion of
3D geometry, and cannot handle occlusion, interreflection
and geometry factors such as the squared distance falloff in
a physically based manner. These methods also usually re-
quire a huge amount of training data, and are prone to errors
when subjected to scenes with different characteristics from
the training data.

Active illumination (e.g., [25, 9, 17]). These methods
use highly-controlled lighting for reconstruction, by care-
fully placing the light sources and measuring the intensity.
These methods produce high-quality results, at the cost of a
more complicated setup.

Inverse radiosity (e.g., [36, 37]) achieves impressive re-
sults for solving near-field illumination and Lambertian ma-
terials for indoor illumination. It is difficult to generalize
the radiosity algorithm to handle non-Lambertian materials
(Yu et al. handle it by explicitly measuring the materials,
whereas Zhang et al. assume Lambertian).

Differentiable rendering. Blanz and Vetter utilized dif-
ferentiable rendering for face reconstruction using 3D mor-
phable models [3]. Gkioulekas er al. [13, 12] and Che et
al. [7] solve for scattering parameters using a differentiable
volumetric path tracer. Kasper et al. [18] developed a dif-
ferentiable path tracer, but focused on distant illumination.
Loper and Black [23] and Kato [19] developed fast differ-
entiable rasterizers, but do not support global illumination.
Li et al. [22] showed that it is possible to compute correct
gradients of a path tracer while taking discontinuities in-
troduced by visibility into consideration, and demonstrated
prototype application for indoor scene reconstruction.

3. Method

Our Inverse Path Tracing method employs physically
based light transport simulation [16] to estimate derivatives
of all unknown parameters w.r.t. the rendered image(s). The
rendering problem is generally extremely high-dimensional
and is therefore usually solved using stochastic integration
methods, such as Monte Carlo integration. In this work,
we nest differentiable path tracing into stochastic gradient
descent to solve for the unknown scene parameters. Fig. 2
illustrates the workflow of our approach. We start from the
captured imagery, scene geometry, object segmentation of



the scene, and an arbitrary initial guess of the illumination
and material parameters. Material and emission properties
are then estimated by optimizing for rendered imagery to
match the captured images.

The path tracer renders a noisy and undersampled ver-
sion of the image using Monte Carlo integration and com-
putes derivatives of each sampled light path w.r.t. the un-
knowns. These derivatives are passed as input to our opti-
mizer to perform a single optimization step. This process is
performed iteratively until we arrive at the correct solution.
Path tracing is a computationally expensive operation, and
this optimization problem is non-convex and ill-posed. We
employ variance reduction and novel regularization tech-
niques (Sec. 4.4) for our gradient computation to arrive at
a converged solution within a reasonable amount of time,
usually a few minutes on a single modern CPU.

3.1. Light Transport Simulation

If all scene and image parameters are known, an ex-
pected linear pixel intensity can be computed using light
transport simulation. In this work, we assume that all sur-
faces are opaque and there is no participating media (e.g.,
fog) in the scene. In this case, the rendered intensity I7, for
pixel j is computed using the path integral [32]:

= [ mX0fX)au(X). 0

where X = (xg, ..., X ) is a light path, i.e. a list of vertices
on the surfaces of the scene starting at the light source and
ending at the sensor; the integral is a path integral taken over
the space of all possible light paths of all lengths, denoted
as ), with a product area measure p(-); f(X) is the mea-
surement contribution function of a light path X that com-
putes how much energy flows through this particular path;
and h;(X) is the pixel filter kernel of the sensor’s pixel j,
which is non-zero only when the light path X ends around
the pixel j and incorporates sensor sensitivity at this pixel.
We refer interested readers to the work of Veach [32] for
more details on the light transport path integration.

The most important term of the integrand to our task is
the path measurement contribution function f, as it contains
the material parameters as well as the information about the
light sources. For a path X = (xo, ..., X)) of length k, the
measurement contribution function has the following form:

k
F(X) = Le(xo,%0%7) [ [ fi(xi X%, ©i%in), ()

i=1

where L. is the radiance emitted at the scene surface point
x¢ (beginning of the light path) towards the direction XX.
At every interaction vertex x; of the light path, there is
a bidirectional reflectance distribution function (BRDF)
fr(xi,XiaX;, X;X;11) defined. The BRDF describes the

material properties at the point x;, i.e., how much light is
scattered from the incident direction X;_;x; towards the out-
going direction X;X;1; . The choice of the parametric BRDF
model f,. is crucial to the range of materials that can be re-
constructed by our system. We discuss the challenges of
selecting the BRDF model in Sec. 4.1.

Note that both the BRDF f,. and the emitted radiance
L. are unknown and the desired parameters to be found at
every point on the scene manifold.

3.2. Optimizing for Illumination and Materials

We take as input a series of images in the form of real-
world photographs or synthetic renderings, together with
the reconstructed scene geometry and corresponding cam-
era poses. We aim to solve for the unknown material pa-
rameters M and lighting parameters £ that will produce
rendered images of the scene that are identical to the input
images. _

Given the un-tonemapped captured pixel intensities I,
at all pixels j of all images, and the corresponding noisy es-
timated pixel intensities I 7, (in linear color space), we seek
all material and illumination parameters © = {M, L} by
solving the following optimization problem using stochas-
tic gradient descent:

N
E(@):Z’Ié—ff%’l — min, 3)
J

where NNV is the number of pixels in all images. We found
that using an L; norm as a loss function helps with robust-
ness to outliers, such as extremely high contribution sam-
ples coming from Monte Carlo sampling.

3.3. Computing Gradients with Path Tracing

In order to efficiently solve the minimization problem in
Eq. 3 using stochastic optimization, we compute the gradi-
ent of the energy function E(O) with respect to the set of
unknown material and emission parameters O:

N
VoB(©) =Y Velhsen (f—1h). @)
J

where sgn(-) is the sign function, and Vel f?l is the gradient
of Monte Carlo estimate with respect to all unknowns ©.

Note that this equation for computing the gradient now
has two Monte Carlo estimates for each pixel j: (1) the esti-
mate of pixel color itself I7,; and (2) the estimate of its gra-
dient VoI é. Since the expectation of product only equals
to the product of expectation when the random variables are
independent, it is important to draw independent samples
for each of these estimates to avoid introducing bias.

In order to compute the gradients of a Monte Carlo esti-
mate for a single pixel j, we determine what unknowns are
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Figure 2: Overview of our pipeline. Given (a) a set of input photos from different views, along with (b) an accurate geometry
scan and proper segmentation, we reconstruct the material properties and illumination of the scene, by iteratively (c) rendering
the scene with path tracing, and (d) backpropagating to the material and illumination parameters in order to update them.
After numerous iterations, we obtain the (e) reconstructed material and illumination.

touched by the measurement contribution function f(X) for
a sampled light path X. We obtain the explicit formula of
the gradients by differentiating Eq. 2 using the product rule
(for brevity, we omit some arguments for emission L. and
BRDF f,):

k
Ve f(X) = VeLe(xo) H Fi(xi) (5)

k k
V@f(X) = Le(XO) Z V@fr(xl)Hfr(Xi) (6)
] i il

where the gradient vector Vg is very sparse and has non-
zero gradients only for unknowns touched by the path X.
The gradients of emissions (Eq. 5) and materials (Eq. 6)
have similar structure to the original path contribution
(Eq. 2). Therefore, it is natural to apply the same path sam-
pling strategy; see the appendix for details.

3.4. Multiple Captured Images

The single-image problem can be directly extended to
multiple images. Given multiple views of a scene, we aim
to find parameters for which rendered images from these
views match the input images. A set of multiple views can
cover parts of the scene that are not covered by any single
view from the set. This proves important for deducing the
correct position of the light source in the scene. With many
views, the method can better handle view-dependent effects
such as specular and glossy highlights, which can be ill-
posed with just a single view, as they can also be explained
as variations of albedo texture.

4. Optimization Parameters and Methodology

In this section we address the remaining challenges of
the optimization task: what are the material and illumina-

tion parameters we actually optimize for, and how to resolve
the ill-posed nature of the problem.

4.1. Parametric Material Model

We want our material model to satisfy several proper-
ties. First, it should cover as much variability in appear-
ance as possible, including such common effects as specu-
lar highlights, multilayered materials, and spatially-varying
textures. On the other hand, since each parameter adds an-
other unknown to the optimization, we would like to keep
the number of parameters minimal. Since we are interested
in re-rendering and related tasks, the material model needs
to have interpretable parameters, so the users can adjust the
parameters to achieve the desired appearance. Finally, since
we are optimizing the material properties using first-order
gradient-based optimization, we would like the range of the
material parameters to be similar.

To satisfy these properties, we represent our materials
using the Disney material model [5], the state-of-the-art
physically based material model used in movie and game
rendering. It has a “base color” parameter which is used
by both diffuse and specular reflectance, as well as 10 other
parameters describing the roughness, anisotropy, and specu-
larity of the material. All these parameters are perceptually
mapped to [0, 1], which is both interpretable and suitable for
optimization.

4.2. Scene Parameterization

We use triangle meshes to represent the scene geome-
try. Surface normals are defined per-vertex and interpolated
within each triangle using barycentric coordinates. The op-
timization is performed on a per-object basis, i.e., every ob-
ject has a single unknown emission and a set of material pa-
rameters that are assumed constant across the whole object.
We show that this is enough to obtain accurate lighting and
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Figure 3: Methods based on spherical harmonics have dif-
ficulties handling sharp shadows or lighting changes due
to the distant illumination assumption. A physically based
method, such as Inverse Path Tracing, correctly reproduces
these effects.

an average constant value for the albedo of an object.
4.3. Emission Parameterization

For emission reconstruction, we currently assume all
light sources are scene surfaces with an existing recon-
structed geometry. For each emissive surface, we currently
assume that emitted radiance is distributed according to a
view-independent directional emission profile L.(x,i) =
e(x)(i - n(x)),, where e(x) is the unknown radiant flux
at x; i is the emission direction at surface point x, n(x) is
the surface normal at x and (-) is the dot product (cosine)
clamped to only positive values. This is a common emission
profile for most of the area lights, which approximates most
of the real soft interior lighting well. Our method can also
be extended to more complex or even unknown directional
emission profiles or purely directional distant illumination
(e.g., sky dome, sun) if needed.

4.4. Regularization

The observed color of an object in a scene is most easily
explained by assigning emission to the triangle. This is only
avoided by differences in shading of the different parts of
the object. However, it can happen that there are no observ-
able differences in the shading of an object, especially if the
object covers only a few pixels in the input image. This can
be a source of error during optimization. Another source
of error is Monte Carlo and SGD noise. These errors lead
to incorrect emission parameters for many objects after the
optimization. The objects usually have a small estimated
emission value when they should have none. We tackle the
problem with an L1-regularizer for the emission. The vast
majority of objects in the scene is not an emitter and having
such a regularizer suppresses the small errors we get for the
emission parameters after optimization.

4.5. Optimization Parameters

We use ADAM [21] as our optimizer with batch size
B = 8 estimated pixels and learning rate 5 - 10~3. To form

a batch, we sample B pixels uniformly from the set of all
pixels of all images. Please see the appendix for an evalua-
tion regarding the impact of different batch sizes and sam-
pling distributions on the convergence rate. While a higher
batch size reduces the variance of each iteration, having
smaller batch sizes, and therefore faster iterations, proves
to be more beneficial.

5. Results

Evaluation on synthetic data. We first evaluate our
method on multiple synthetic scenes, where we know the
ground truth solution. Quantitative results are listed in
Tab. 1, and qualitative results are shown in Fig. 4. Each
scene is converged using a path tracer with the ground
truth lighting and materials to obtain the “captured images”.
These captured images and scene geometry are then given
to our Inverse Path Tracing algorithm, which optimizes for
unknown lighting and material parameters. We compare to
the closest previous work based on spatially-varying spher-
ical harmonics (SVSH) [24]. SVSH fails to capture sharp
details such as shadows or high-frequency lighting changes.
A comparison of the shadow quality is presented in Fig. 3.

Our method correctly detects light sources and converges
to a correct emission value, while the emission of objects
that do not emit light stays at zero. Fig. 5 shows the opti-
mization performed for the three input views from Fig. 4.
Even though the light source was not visible in any of the
input views, its emission was correctly computed by Inverse
Path Tracing.

In addition to albedo, our Inverse Path Tracer can also
optimize for other material parameters such as roughness.
In Fig. 7, we render a scene containing objects of varying
roughness. Even when presented with the challenge of es-
timating both albedo and roughness, our method produces
the correct result as shown in the re-rendered image.

Evaluation on real data. We use the Matterport3D [6]
dataset to evaluate our method on real captured scenes ob-
tained through 3D reconstruction. The scene was parame-
terized using the segmentation provided in the dataset. Due
to imperfections in the data, such as missing geometry and
inaccurate surface normals, it is more challenging to per-
form an accurate light transport simulation. Nevertheless,
our method produces impressive results for the given in-
put. After the optimization, the optimized light direction
matches the captured light direction and the rendered result
closely matches the photograph. Fig. 10 shows a compari-
son to the SVSH method.

The albedo of real-world objects varies across its surface.
Inverse Path Tracing is able to compute an object’s average
albedo by employing knowledge of the scene segmentation.
To reproduce fine texture, we refine the method to optimize
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Figure 4: Evaluation on synthetic scenes. Three scenes have been rendered from different views with both direct and indirect
lighting (right). An approximation of the albedo lighting with spatially-varying spherical harmonics is shown (left). Our
method is able to detect the light source even though it was not observed in any of the views (middle). Notice that we are
able to reproduce sharp lighting changes and shadows correctly. The albedo is also closer to the ground truth albedo.
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Figure 5: Inverse Path Tracing is able to correctly detect the
light emitting object (top). The ground truth rendering and
our estimate is shown on the bottom. Note that this view
was not used during optimization.
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Figure 6: We can resolve the object textures by optimizing
for the unknown parameters per triangle. Higher resolution
textures can be obtained by further subdividing the geome-

try.

for each individual triangle of the scene with adaptive sub-
division where necessary. This is demonstrated in Fig. 6.

Optimizer Ablation. There are several ways to reduce
the variance from SGD. One obvious way is to use more
samples to estimate the pixel color and the derivatives, but
this also results in slower iterations. Fig. 8 shows that the
method does not converge if only a single path is used. A
general recommendation is to use between 27 and 2'° de-

Ground Truth Ours

Rendering

_ N

Albedo

> e

Figure 7: Inverse Path Tracing is agnostic to the underlying
BRDF; e.g., here, in a specular case, we are able to correctly
estimate both the albedo and the roughness of the objects.
The ground truth rendering and our estimate is shown on
top, the albedo in the middle and the specular map on the
bottom.

Specular Map

pending on the scene complexity and number of unknowns.

Another important parameter is the number of samples
spent between pixel color and derivatives estimation. Our
tests in Fig. 9 show that minimal variance can be achieved
by using one sample to estimate the derivative and spend the
remaining samples in the available computational budget to
estimate the pixel color.

Limitations. Inverse Path Tracing assumes that high-
quality geometry is available. However, imperfections in
the recovered geometry can have big impact on the quality
of material estimation as shown in Fig. 10. Our method also
does not compensate for the distortions in the captured input
images. Most cameras, however, produce artifacts such as
lens flare, motion blur or radial distortion. Our method can
potentially account for these imperfections by simulating
the corresponding effects and optimize not only for the ma-
terial parameters, but also for the camera parameters, which
we leave for future work.
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Figure 9: Convergence with respect to distributing the avail-
able path samples budget between pixel color and deriva-
tives. It is best to keep the number of paths high for pixel
color estimation and low for derivative estimation.

| Method | Scene 1 | Scene2 | Scene 3 |
SVSH Rendering Loss | 0.052 0.048 0.093
Our Rendering Loss 0.006 0.010 0.003
SVSH Albedo Loss 0.052 0.037 0.048
Our Albedo Loss 0.002 0.009 0.010

Table 1: Quantitative evaluation for synthetic data. We
measure the L1 loss with respect to the rendering error and
the estimated albedo parameters. Note that our approach
achieves a significantly lower error on both metrics.

6. Conclusion

We present Inverse Path Tracing, a novel approach for
joint lighting and material estimation in 3D scenes. We
demonstrate that our differentiable Monte Carlo renderer
can be efficiently integrated in a nested stochastic gradi-
ent optimization. In our results, we achieve significantly

[ SVSH Ours |
Rendering | Albedo

Input Photographs

Rendering

Figure 10: Evaluation on real scenes: (right) input is 3D
scanned geometry and photographs. We employ object in-
stance segmentation to detect the light sources and compute
the average albedo of every object. Our method is able to
optimize for the illumination and shadows. Other methods
usually do not take occlusions into account and fail to model
shadows correctly. Views 1 and 2 of Scene 2 show that if
the light emitters are not present in the input geometry, our
method gives an incorrect estimation.

higher accuracy than existing approaches. High-fidelity re-
construction of materials and illumination is an important
step for a wide range of applications such as virtual and
augmented reality scenarios. Overall, we believe that this is
a flexible optimization framework for computer vision that
is extensible to various scenarios, noise factors, and other
imperfections of the computer vision pipeline. We hope to
inspire future work along these lines, for instance, by in-
corporating more complex BRDF models, joint geometric
refinement and completion, and further stochastic regular-
izations and variance reduction techniques.
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Figure 11: Mixed-reality setting: we insert two new 3D ob-
jects (chairs) into an existing 3D scene. Our goal is to find a
consistent lighting between the existing and newly-inserted
content. In the middle column, we show a naive composit-
ing approach; on the right the results of our approach. The
naive approach does not take the 3D scene and light trans-
port into consideration, and fails to photo-realistically ren-
der the chair.

In this appendix, we provide additional quantitative eval-
uations of our design choices in Sec. A. To this end, we eval-
uate the choice of the batch size, the impact of the variance
reduction, and the number of bounces for the inverse path
tracing optimization. In addition, we provide additional re-
sults on scenes with textures, where we evaluate our subdi-
vision scheme for high-resolution surface material parame-
ter optimization; see Sec. B. In Sec. C, we provide exam-
ples for mixed-reality application settings where we insert
new virtual objects into existing scenes. Here, the idea is to
leverage our optimization results for lighting and materials
in order to obtain a consistent compositing for AR applica-
tions. Finally, we discuss additional implementation details
in Sec. D.

A. Qualitative Evaluation of Design Choices
A.1. Choice of Batch Size

In Fig. 12, we evaluate the choice of the batch size for the
optimization. To this end, we assume the compute budget
for all experiments, and plot the results with respect to time
on the z-axis and the ¢; loss of our problem (log scale) on
the y-axis. If the batch size is too low (blue curve), then
the estimated gradients are noisy, which leads to a slower
convergence; if batches are too large (gray curve), then we
require too many rays for each gradient step, which would
be used instead to perform multiple gradient update steps.
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Figure 12: Convergence with respect to the batch size: in
this experiment, we assume the same compute/time budget
for all experiments (x-axis), but we use different distribu-
tions of rays within each batch; i.e., we try different batch
sizes.

A.2. Variance Reduction
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Figure 13: Using multiple importance sampling during path
tracing significantly improves the convergence rate.

In order to speed up the convergence of our algorithm,
we must aim to reduce the variance of the gradients as much
as possible. There are two sources of variance: the Monte



Carlo integration in path tracing and the SGD, since we path
trace only a small fraction of captured pixels in every batch.
As mentioned in the main paper, the gradients of the ren-
dering integral have similar structure to the original inte-
gral, therefore we employ the same importance sampling
strategy in usual path tracing. The path tracing variance is
reduced using Multiple Importance Sampling (i.e., we com-
bine BRDF sampling with explicit light sampling) [32]. We
follow the same computation for estimating the gradients
with respect to our unknowns. A comparison between im-
plementation with and without MIS is shown in Fig. 13.

A.3. Number of Bounces

We argue that most diffuse global illumination effects
can be approximated by as few as two bounces of light.
To this end, we render an image with 10 bounces and use
it as ground truth for our optimization. We try to approx-
imate the ground truth by renderings with one, two, and
three bounces, respectively (see Fig. 14). One bounce corre-
sponds to direct illumination; adding more bounces allows
us to take into account indirect illumination as well. Op-
timization with only a single bounce is the fastest, but the
error remains high even after convergence. Having more
than two bounces leads to high variance and takes a lot of
time to converge. Using two bounces strikes the balance
between convergence speed and accuracy.
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Figure 14: A scene rendered with 10 bounces of light is
given as input to our algorithm. We estimate emission and
material parameters by using one, two, and three bounces
during optimization. Two bounces are enough to capture
most of the diffuse indirect illumination in the scene.

B. Results on Scenes with Textures

In order to evaluate surfaces with high-frequency surface
signal, we consider both real and synthetic scenes with tex-
tured objects. To this end, we optimize first for the light
sources and material parameters on the coarse per-object
resolution following the non-textured resolution. Once con-

verged, we keep the light sources fixed, and we subdivide
all other regions based on the surface texture where the re-
rendering error is high; i.e., we subdivide every triangle
based on its average ¢ error, and continue until conver-
gence. This coarse-to-fine strategy allows us to first sep-
arate out material and lighting in the more well-conditioned
setting; in the second step, we then obtain high-resolution
material information. Results on synthetic data [14] are
shown in Fig. 15, and results on real scenes from Matter-
port3D [6] are shown in Fig. 16.

C. Object Insertion in Mixed-reality Settings

One of the primary target applications of our method is
to add virtual objects into an existing scene while maintain-
ing a coherent appearance. Here, the idea is to first esti-
mate the lighting and material parameters of a given 3D
scene or 3D reconstruction. We then insert a new 3D object
into the environment, and re-render the scene using both
the estimated lighting and material parameters for the al-
ready existing content, and the known intrinsics parameters
for the newly-inserted object. A complete 3D knowledge is
required to produce photorealistic results, in order to take
interreflection and shadow between objects into considera-
tion.

In Fig. 11, we show an example on a synthetic scene
where we virtually inserted two new chairs. As a baseline,
we consider a naive image compositing approach where the
new object is first lit by spherical harmonics lighting and
then inserted while not considering the rest of the scene;
this is similar to most existing AR applications on mobile
devices. We can see that a naive compositing approach
(middle) is unable to produce a consistent result, and the
two inserted chairs appear somewhat out of place. Using
our approach, we can estimate the lighting and material pa-
rameters of the original scene, composite the scene in 3D,
and then re-render. We are able to show that we can pro-
duce consistent results for both textured and non-textured
optimization results (right column).

D. Implementation Details

We implement our inverse path tracer in C++, and all of
our experiments run on an 8-core CPU. For all the optimiza-
tions, we initialize the emission and albedo to zero. We use
Embree [33] for the ray casting operations. For efficient im-
plementation, instead of automatic differentiation, the light
path gradients are computed using manually-derived deriva-
tives.
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Figure 15: Results of our approach on synthetic scenes with textured objects. Our optimization is able to recover the scene
lighting in addition to high-resolution surface texture material parameters.
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Figure 16: Examples from Matterport3D [6] (real-world RGB-D scanning data) where we reconstruct emission parameters,
as well as high-resolution surface texture material parameters. We are able to reconstruct fine texture detail by subdividing the
geometry mesh and optimizing on individual triangle parameters. Since not all light sources are present in the reconstructed
geometry, some inaccuracies are introduced into our material reconstruction. Albedo in shadow regions can be overestimated
to compensate for missing illumination (visible behind the chair in Scene 1), specular effects can be baked into the albedo

(reflection of flowers on the TV) or color may be projected onto the incorrect geometry (part of the chair is missing, so its
color is projected onto the floor and wall).



