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Abstract Autonomous manipulation in unstructured envi-
ronments will enable a large variety of exciting and important
applications. Despite its promise, autonomous manipulation
remains largely unsolved. Even the most rudimentary manip-
ulation task—such as removing objects from a pile—remains
challenging for robots. We identify three major challenges
that must be addressed to enable autonomous manipulation:
object segmentation, action selection, and motion generation.
These challenges become more pronounced when unknown
man-made or natural objects are cluttered together in a
pile. We present a system capable of manipulating unknown
objects in such an environment. Our robot is tasked with
clearing a table by removing objects from a pile and placing
them into a bin. To that end, we address the three aforemen-
tioned challenges. Our robot perceives the environment with
an RGB-D sensor, segmenting the pile into object hypothe-
ses using non-parametric surface models. Our system then
computes the affordances of each object, and selects the best
affordance and its associated action to execute. Finally, our
robot instantiates the proper compliant motion primitive to
safely execute the desired action. For efficient and reliable
action selection, we developed a framework for supervised
learning of manipulation expertise. To verify the performance
of our system, we conducted dozens of trials and report on
several hours of experiments involving more than 1,500 inter-
actions. The results show that our learning-based approach
for pile manipulation outperforms a common sense heuristic
as well as a random strategy, and is on par with human action
selection.

D. Katz (B) · A. Venkatraman · M. Kazemi · J. A. Bagnell · A. Stentz
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1 Introduction

Robots have been extremely successful for the past few
decades in performing complex manipulation tasks on fac-
tory floors. However, they have had very limited success
in our everyday environments. In our homes and offices,
autonomous manipulation remains largely unsolved. Robots
cannot perform simple everyday tasks such as clearing a pile
of toys in the living room, tidying up a messy dinning table,
or sorting a box of unused items in the garage. Why is it
that robots can reliably perform pick-and-place tasks on the
factory floor, yet miserably fail to do so anywhere else?

Let us consider a typical pick-and-place task of unknown
objects in a pile. Manipulating such a pile requires close
integration between perception, planning, and motion gen-
eration. The robot must move with care to avoid damage
to itself and the environment, perform the task quickly and
make as few assumptions as possible about the environment
and the pile. On the factory floor, there exists near perfect
control over the environment, removing the need for a robot
to interact with clutter and piles of unknown objects. There-
fore, many of the situations that occur in everyday-robotics
and the resulting challenges in perception, decision making,
and motion generation are eliminated or greatly reduced.

In this work, we identify several key prerequisites for
manipulating a pile of unknown objects. First, the robot must
acquire pertinent knowledge for interacting with individual
objects in the pile. This is difficult because object segmenta-
tion remains an open problem, and is particularly challenging
for a pile of overlapping and unknown objects. Because we
cannot rely on prior object models, as the pile may contain
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Fig. 1 Perceiving and manipulating unknown objects in a pile: Each
detected object has a set of affordances (pushing, pulling or grasp-
ing). The robot selects the best next interaction for clearing the pile of
unknown objects. The orange boundaries mark reachable space. The
robot cannot grasp an object behind the white boundary, but may push
or pull on it

natural objects, debris, and parts, the robot must hypothesize
a segmentation of the environment into objects and compute
for each object a set of affordances (Gibson 1977; Barck-
Holst et al. 2009). We address object segmentation in a pile
by proposing a geometry based segmentation algorithm.

Second, the robot must be able to choose which one of
the affordances to execute next. Uninformed action selection
can lead to slow performance, or worse, may damage the
robot or objects in the pile. An intuitive heuristic—a set of
rules—may be helpful in determining the next action, but is
likely to fail often as it is difficult to anticipate the behavior of
objects in a pile and the outcome of interactions. We propose
a learning approach to manipulation. Our object represen-
tation exposes the structure of the pile and the affordances
of the individual objects. Using this representation within a
supervised learning framework, our robot is able to learn the
necessary manipulation expertise to efficiently and reliably
clear a pile of unknown objects (Fig. 1).

And finally, to avoid collision with other objects and
enable careful interaction with target objects, the robot must
generate safe motion trajectories. We developed a library of
novel compliant controllers for poking, pulling and grasp-
ing unknown objects. These controllers are executed within
a state-of-the-art motion planing pipeline.

In our experiments, the robot interacts with a pile of
unknown objects placed on a table. The robot’s task is to
pick up individual objects and place them in a bin. We used
both man-made and natural objects of varying shape, size,
and appearance. Evaluating real-world manipulation perfor-
mance is challenging. The interactions between the robot
and objects and the interactions between objects in the pile
are such that it is impossible to conduct the same experi-
ment twice. Instead of repeating the exact same experience,

we conducted numerous experiments using the same set of
objects in arbitrary, different pile configurations. Thus, we
conducted several hours of experiments consisting of over
1,500 interactions. Our results demonstrate that perceiving
object affordances and learning to rank these affordances to
determine the best next action facilitates a robust, efficient,
and reliable pile clearing behavior. For transparency, we have
uploaded many unedited videos of our experiments to http://
www.youtube.com/user/pileRSS2013/videos.

The main contributions of this work are our novel
geometric-based object segmentation method, a learning-
based approach for pile manipulation, and a set of compliant
control primitives which enable safe and reliable interaction
with piles of unknown objects. This article is based on our
prior work (Katz et al. 2013a,b; Kazemi et al. 2012; Bagnell
et al. 2012).

2 Related work

In our work, we divide autonomous manipulation into
three main components: perception, action selection, and
motion generation. Perception segments the environment
into objects and computes relevant features for manipu-
lation and motion planning. Action selection determines
object affordances, calculates the corresponding manipula-
tion actions, and ranks the actions according to a learned
metric predicting success. Finally, motion generation instan-
tiates and executes the appropriate compliant controllers to
achieve the selected action. Each of these three components
relates to a vast body of work; the most relevant examples in
each area are discussed below.

2.1 Object segmentation

Object segmentation is one of the fundamental problems in
computer vision. It has been studied for decades, and yet
extracting objects from a complex scene remains an open
problem. Fortunately, to manipulate objects in a pile, it is
unnecessary to have fully identify individual objects. Instead,
we only need to capture properties of the environment that
are specifically informative for grasping and manipulation.

Existing segmentation algorithms (David 2002; Zappella
2008) process an image and divide it into spatially con-
tiguous regions sharing a particular visual property. These
algorithms assume that boundaries between objects corre-
spond to discontinuities in color, texture, or brightness—
and that these discontinuities do not occur anywhere else.
These assumptions are easily violated in a pile because of the
significant overlap between objects. Thus, existing methods
become brittle and unreliable. Moreover, color changes or
texture gradients are not particularly informative for manip-
ulation. Another proposed method has been to utilize visual
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edges (Hermans et al. 2012) for the task of object boundary
detection. Image edges, however, do not reason about the 3-D
structure of objects and may not provide useful information
for manipulation.

An interesting category of segmentation algorithms lever-
age motion for identifying object boundaries. With these
methods, the motion is either assumed to occur (Zhang et
al. 2007; Stolkin et al. 2008; Goh and Vidal 2007) or it can
be induced by the robot (Kenney et al. 2009; Katz and Brock
2008; van Hoof et al. 2013; Hausman et al. 2013). Although
relative motion is a strong cue for segmentation, generat-
ing this motion in an unknown pile is oftentimes dangerous
and undesirable. Our proposed method does not deliberately
disturb the pile to generate motion for the purpose of seg-
mentation. However, due to the nature of pile manipulation,
relative motion occurs frequently, and when it does, our algo-
rithm utilizes it to inform segmentation.

Segmentation can also be computed by considering 3-D
geometry to determine the boundaries between objects (Tay-
lor and Cowley 2011; Yang et al. 2010). Here, a bound-
ary is defined as a depth discontinuity, and objects are
modeled using parametric representations of predetermined
shapes such as spheres, cylinders, and planes. These meth-
ods assume that objects can be described using a single basic
shape. In practice, this is rarely the case. In fact, even if com-
plex shapes are allowed, the geometry of the pile and the
quick and abrupt way in which it can change make explicit
shape modeling impractical. Nevertheless, for manipulating
and grasping an object, its geometry can be informative.
Therefore, our proposed method uses geometric properties
to achieve segmentation. We use a non-parametric approach
that considers both depth discontinuities as well as continuity
in surface normal orientation to create object hypotheses.

Object segmentation in unstructured environments is
unsolved. We believe that perception alone cannot be
expected to provide models that are immediately action-
able. This is because, without assuming prior knowledge,
every segmentation algorithm becomes less reliable in clut-
ter. The same applies to the method we propose. Therefore,
we complement our segmentation algorithm with learning
which enables the robot to identify unreliable segments and
improve its action selection based on partial and unreliable
perceptual information. This increases the performance of
our system and can be considered as a means to improve the
performance of perception with experience. We believe that
such integration between all aspects of autonomous manip-
ulation is essential for successful task execution in unstruc-
tured environments.

2.2 Learning manipulation expertise

For every object segmented by perception, our method
instantiates a controller (or several controllers) to safely

interact with the object. These potential interactions repre-
sent the object affordances (Barck-Holst et al. 2009; Gib-
son 1977). Choosing which of the possible actions to take is
important: an action may be more or less likely to succeed,
safe or dangerous, free up space around an object or con-
dense the pile. The sequence of actions determines the num-
ber of interactions necessary to clear the pile. Thus, choos-
ing the next best action is crucial for efficiency. Our method
uses supervised learning to score and rank the objects’ affor-
dances.

Learning manipulation expertise is challenging because of
the large state space associated with perceiving and manip-
ulating objects. It is virtually impossible to encounter the
same state twice. In practice, learning manipulation from
real-world data is also challenging because perception may
fail or provide unreliable answers. To combat this and the
time-intensive nature of real-world collection, prior work in
the field have used renderers to generate visual features for
training data for grasping locations (Saxena et al. 2008) or
simulate enough robot–object-interactions (Ugur et al. 2012)
in order to automatically find a meaningful clustering of
motion primitives to learn affordances. However, using real,
collected data has the advantage that the training samples
come from a similar distribution as at test time. In compari-
son with Ugur et al. (2012) and Saxena et al. (2008), we learn
from real-sensor collected data. We also show that learning
the affordances for object hypothesis from a simple set of
pre-programmed motion primitives containing a pull, push,
and two axis-aligned grasping actions is enough to achieve
successful manipulation for clearing a pile. Interesting exam-
ples in the literature that apply learning to manipulation tasks
include using relational reinforcement learning to learn a pol-
icy for modeling articulated objects (Katz et al. 2008) or
for manipulating basic objects such as cubes, cylinders and
spheres (Lang and Toussaint 2010). There has also been work
to learn the effects of pushing objects from geometrically
grounded features (Hermans et al. 2013). Additionally, super-
vised learning has been used to find and rank multi-contact
grasp locations on objects in partially cluttered scenes (Le et
al. 2010). However, learning grasping among other manipu-
lation skills in densely cluttered unstructured environments,
such as in piles of objects, remains largely unsolved.

Our work most closely resembles recent work on dense
clutter and pile manipulation (Chang et al. 2012; Gupta and
Sukhatme 2012). Chang et al. (2012) present a framework for
object singulation with a final objective to grasp and remove
relatively flat objects (e.g. candy bars) from the table. In this
work, the framework chooses pushing actions until an object
is spatially separated enough for the robot to safely grasp it.
We address these issues by learning when grasps are likely to
be successfully executed and we utilize force-feedback com-
pliant motions to safely grasp objects. In our framework,
for the similar task of object clearing, we can greedily exe-
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Fig. 2 System overview: perception (red) generates a segmentation
of the scene into facets. Information about individual facets is used by
learning (blue) to classify and score the affordances of each facet. Then,

actions are ranked according to their scores, and the selected action is
executed by instantiating a compliant controller (green)

cute any predicted grasping affordancess and use pushing and
pulling motions when none are available. Gupta et al. (2012),
considers simple motion primitives in order to singulate and
remove Lego blocks from a table. Here, the robot and pipeline
are built provided with a priori knowledge of the object
type. For example, the assumption of uniformly colored Lego
blocks allows for Euclidean color clustering. Knowledge of
the bricks also allows the robot to safely interact with the
pile without concern of breaking either the objects or the
robot’s manipulator. Our work extends (Chang et al. 2012;
Gupta and Sukhatme 2012), augmenting the perception and
manipulation portions of the pipeline to handle more complex
objects (unknown, natural, and complex shapes), to consider
more complex clutter (larger piles), and by introducing a new
learning component to guide the interaction.

2.3 Motion generation

To execute a desired action, we first generate and exe-
cute a feasible trajectory to position the hand close to the
target object. Then, we instantiate a compliant controller
designed to achieve the desired manipulation behavior (push-
ing, pulling or grasping). We use CHOMP (Ratliff et al.
2009) to generate smooth trajectories and rely on a library
of force feedback compliant motion primitives that are safe
and appropriate for manipulation under uncertainty (Kazemi
et al. 2012).

3 System overview

Our proposed system for manipulating unknown objects in a
pile has three main components (Fig. 2): perception, learning-
based action selection, and manipulation. Perception gener-
ates a set of object hypotheses, “facets” (Sect. 4). Action
selection predicts the affordances of each object using trained
SVM classifiers and chooses the best next action with the
objective of clearing the pile safely and efficiently (Sect. 5).

The manipulation pipeline then computes a motion plan and
executes the appropriate compliant controller (Sect. 6).

4 Perceiving objects

Our perception pipeline is composed of two parts. The first
computes a segmentation of the scene into facets (hypothe-
sized object surfaces). For every facet, we extract the neces-
sary information to instantiate our compliant controllers for
pushing, pulling or grasping. The second part of the percep-
tion pipeline computes a set of visual features for each facet
that is later used within a supervised learning framework to
classify the affordances of each object.

4.1 Facet segmentation

To interact with unknown objects in a pile, we must first
identify individual objects. Using 3-D information measured
with an RGB-D camera, our algorithm segments the scene
into hypothesized object facets. A facet is an approximately
smooth circumscribed surface. An object facet is not neces-
sarily a flat surface (plane), but rather a region maintaining
continuity in both depth and the orientation of its surface nor-
mals. Dividing an object into facets is intuitive and repeatable
under changes of perspective, lighting condition, and partial
occlusion.

Facet detection is composed of the following three steps:
computing depth discontinuities, estimating surface normals,
and color-based image segmentation. This process is illus-
trated in Fig. 3. We compute depth discontinuities by con-
volving the depth image with a non-linear filter. This filter
computes the maximal depth change between every pixel
and its immediate 8 neighbors. If this distance is larger than
a device-specific threshold, the pixel is marked as a depth dis-
continuity. A 2cm threshold was used due to the resolution
of our RGB-D sensor (Kinect). The surface normal at every
point of the 3-D point cloud is estimated by fitting a local
plane to the neighborhood of the point. We then compute the
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Fig. 3 Facet detection algorithm: The input (top left) is an RGB-D
image. The algorithm extracts geometric discontinuities: depth discon-
tinuities (bottom left) and normal discontinuities (bottom right). Finally,
we merge depth and normals into a single RGB image. Object facets
(top right) are extracted by computing color segmentation on that image

normal to that plane using least-square plane fitting. Figure 3
provides a visualization of the surface normals.

Next, we extract regions that are continuous in depth
and surface normals. To exploit existing segmentation algo-
rithms, we map the three Euler angles of every normal onto
the three image color channels (RGB). We then overlay the
depth discontinuities onto the color representation of the sur-
face normals to form a color discontinuity where there is
depth discontinuity. We have thus represented the facet seg-
mentation problem as a standard color segmentation problem
of extracting contiguous color regions (Comaniciu and Meer
2002). Therefore, we can extract facets using mean-shift seg-
mentation, a standard color segmentation algorithm. More
details and an experimental evaluation of facet detection is
available in Katz et al. (2013a). Our contribution compared
to that in Katz et al. (2013a) is algorithmic. Our version is
more efficient and uses GPU acceleration where possible.
This allows up to a x10 runtime speedup, which is essential
for real-world manipulation.

Every segmented facet represents a hypothesized region
where the robot can interact with the pile. For every facet,
we compute its center of gravity (COG), the principal and
secondary axes, and the length of each axis. We compute the
COG of a facet by averaging the 3-D positions of the associ-
ated point cloud. We determine the principal and secondary
axes by performing principal components analysis (PCA) on
the region’s corresponding 3-D point cloud. The length of
each axis is the largest distance between a pair of points on

Fig. 4 Extracting information for manipulation: our algorithm com-
putes the COG (pink circle), principal axis (red) and secondary axis
(green) for every facet. This information together with the length of
each axis suffices to instantiate our compliant controllers for pushing,
pulling or grasping

or very close to the axis. Figure 4 illustrates the output of this
process. We utilize this information to populate our robot’s
environment from which we can then instantiate our manip-
ulation pipeline after action selection.

Facet detection has two main limitations. First, our sensor
(Kinect) cannot perceive reflective materials. And second,
our method is unable to distinguish between two objects that
are touching each other (having no depth discontinuity) and
simulatenously have similar surface normals. This could be
solved by considering color, texture, and experience. Because
the robot disturbs the pile throughout its interactions, this
case does not persist, and therefore has limited impact on
our performance. To help alleviate errors in facet segmenta-
tion stemming from 3-D sensor noise, calibration errors, etc.,
our manipulation pipeline consists of compliant controllers
that use force-control to compensate for partial and noisy
perception. Thus, we are able to react to uncertainty in visual
perception upon interaction with the environment.

4.2 Facet affordances

With the list of segmented facets and the information nec-
essary to instantiate any of our controllers for every facet,
we must now decide what is the next best action considering
that not every action is feasible or desirable. For example,
grasping a facet may not be possible because of other objects
in the pile around the facet, or pulling an object that lies
underneath other objects could result in an unwanted signif-
icant disturbance of the pile, risking both the robot and the
objects. Thus, we must determine what are the affordances
of each facet, accounting for its surroundings and create a
ranking in order to determine what action to take next. These
affordances depend not only on the facet itself, but also on
its surroundings and the robot’s capabilities.

Table 1 lists the 41 features we compute to determine the
affordance of each facet. This list can be easily extended
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Table 1 List of facet features
associated with affordances

These features are used within
our supervised learning
framework to select the best
next action

# Feature Description

1 CloudSize Number of 3-D points associated with the facet

2 FacetArea Projected 2-D area associated with the facet

3 Distance Facet’s Euclidean distance from the robot

4 Height Facet’s Euclidean distance from the support surface

5 Length Distance between the farthest points along the principal axis

6 Width Distance between the farthest points along the secondary axis

7 LW-ratio Ratio between the length and width of the facet

8 SurfaceAngle Angle between the facet and the support surface. The facet is
represented as the surface defined by the principal and
secondary axes

9 MoveMatch Robot’s confidence in the facet segmentation. This is computed
by considering two consecutive frames. If a facet was
disturbed and it can be retrieved in the second frame, the
robot’s confidence in its segmentation increases. For more
details about matching facets across view see Katz et al.
(2013a)

10–41 FreeSpace Density of 3-D points around a facet determines the amount of
free space around it. For efficiency, we only consider the area
close to the extreme points of both the primary and secondary
axes. Free space is represented by measuring the number of
3-D points in 8 small cylinders for each end of each axis. The
cylinders are of radius 0.5cm, start at 2cm below the facet and
end at 5cm above the facet. This feature is motivated by the
notion that an empty or nearly empty cylinder indicates room
for the fingers

to include additional features. In the next section, we detail
utilizing these features within a supervised learning frame-
work to determine the actual affordances of a facet: can it
be pushed, pulled, and/or grasped along its principal or sec-
ondary axis.

5 Learning object affordances

We developed a supervised learning approach to manipula-
tion for computing facet affordances. This is the most sig-
nificant contribution of our work. Learning relies on the 41
features computed by perception (see Table 1). For training
data, we labeled 37 scenes containing a total of 550 facets
computed from a variety of different objects (Fig. 5). For
each scene we used two image frames. We initially setup the
scene (first frame), and in some cases disturbed the scene
(second frame). Labeling was done for the second frame.
The motion caused by disturbing the scene (if any) was used
to compute feature #9 in Table 1. We developed a graphi-
cal user interface for displaying and labeling the segmented
facets. For each facet, five binary labels were assigned by the
user: actionable, push, pull, grasp-P and grasp-S (grasping

along the principal or secondary axis). Note that the labels
are not mutually exclusive and do not represent a preferred
action. Instead, they respectively indicate whether a facet
chould be interacted with, pushed, pulled, or grasped along
either axis. This type of labelling by the user was used as
a ground truth measure of both feasibility (can an action be
at all performed) along with some implicit desirability (does
it make sense for an action to be executed on the object).
The specific distribution of the training labels can be seen in
Table 2.

To classify the affordances of a facet, we use a sim-
ple linear classifier (linear SVMs Bishop 2006) with SVM-
light Joachims 1999) on our 41 features. Each feature is nor-
malized by its variance and thresholded outside of two stan-
dard deviations1.

To compute the efficacy of our 41 features for learning
affordances, we trained each classifier with 450 randomly
selected instances, and tested on the remaining 100. The

1 We scale each feature fi using its mean E( fi ) and variance V ( fi ).
f scaled
i = ( fi − E( fi ))/

√
V ar( fi ). If a scaled feature is more than two

standard deviations away from the mean, we cap f scaled
i at either −2

or 2. Finally, we divide f scaled
i by 2 to guarantee that all features are in

the range [−1, 1].
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Fig. 5 Example scenes: training scenes were made by creating piles
and clutter with numerous natural and man-made objects. To try to learn
a well generalized model for each affordance, a variety of objects and
pile densities were used in the training set

Table 2 Classifying facet affordances: we compare the distribution of
positive and negative instances in the training examples to the classifi-
cation rate achieved after training

Class % Positive % Negative % Classification rate

Actionable 75 25 81.20

Push 43 57 91.75

Pull 59 41 93.45

Grasp-P 26 74 80.34

Grasp-S 37 63 80.10

The results show significant improvement of 24.8, 80.8, 84.0, 24.4,
and 46.2 % in the misclassification rate respectively for each of the
aforementioned classes compared to the naive approach of selecting
the most probable label for each class

resulting classification rates and the distribution of positive
and negative labels in the training set are summarized in
Table 2. Grasping affordances are correctly classified in 80 %
of the cases and pushing and pulling are correctly classified
in over 90 % of the cases. We are also able to detect when a
facet is invalid (not actionable) in 81 % of the cases. This is
important for recovering from segmentation errors. A more
careful analysis of the results shows that most of our mis-
classifications (≥90 %) are true negatives, implying that the
learner is conservative in deciding to act, which results in
safer behavior.

Given a new scene, the robot is now ready to com-
pute a segmentation, determine facet affordances, and rank
the actions according to the score computed for every <

f acet, action > pair by the classifiers. In our experiments,
we create an action list by first adding the top 3 grasping
actions followed by the top 3 pushing or pulling actions.
Finally, we add all remaining actions (sorted by score). When
an action cannot be performed (either because the planner

Fig. 6 To manipulate a facet, we first compute an action launch pose
(i.e., robot hand/end-effector pose) based on the COG and orientation of
the facet: the hand’s palm is chosen parallel to the facet’s principal and
secondary axes, and its position is set with an offset above the facet’s
COG

detects a possible collision or because a trajectory to the goal
configuration is infeasible), we continue to the next action
in the list. Our bias towards grasping actions was motivated
by the target objective of picking and placing objects into
a bin. In future work, we intend to replace this action plan-
ning logic with reinforcement learning, allowing the robot to
automatically learn the appropriate sorting of actions. This
will enable us to develop simple strategies and learn from
experience the appropriate scaling between the scores of the
different classes.

6 Compliant motion primitives

To interact with the environment, we propose three types
of parameterized controllers: pushing, pulling and grasping.
Each controller is instantiated by perception based on the
computed COG, principal and secondary axes, and the length
of each axis. These controllers are inspired by and extend
on the compliant grasping primitives developed in Kazemi
et al. (2012). Interacting with unknown objects in a pile is
challenging because the robot has only partial and inaccurate
knowledge of the shape and configuration of objects. Thus,
our controllers must be robust to uncertainty in modeling
and localization. Inspired human grasping behaviors and as
shown by Kazemi et al. (2012), the notion of compliance
offers safe and robust manipulation in particular in cluttered
environments.

To manipulate a facet, we first compute an action launch
pose (i.e., robot hand/end-effector pose) based on the COG
and orientation of the facet: the hand’s palm is chosen parallel
to the facet’s principal and secondary axes, and its position
is set with an offset above the facet’s COG (see Fig. 6).

Given the kinematic model of the robot we perform inverse
kinematics to obtain a feasible configuration for the robot to
reach the desired hand/end-effector pose. Due to the kine-
matic redundancy of our system, for a given end-effector
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pose there may exist more than one feasible configura-
tion to achieve the same end-effector pose. We perform an
IK ranking to pick the ”best” collision-free configuration
according to a cost function based on the closeness to joint
limits.

Our system uses CHOMP (Bagnell et al. 2012) to plan a
smooth collision-free trajectory to the desired configuration.
Then, we execute a compliant controller which maintains
proper contact with the environment by responding to the
detected contact forces. Our compliant controllers support
pushing, pulling and grasping (either along the principal axis
or the secondary axis). They are velocity-based operational
space controllers, relying on force feedback acquired by a
force/torque sensor mounted on the robot’s wrist.

To grasp an object, we servo the hand along the palm’s
normal, until contact is detected between the fingertips and
the support surface or the object. Then, we close the fingers,
while the hand is simultaneously servo controlled in compli-
ance with the forces measured at the wrist. The fingers are
coordinated using position-based controllers until they reach
the object. This ensures safe and proper contact between the
fingertips and the support surface. Figure 7 illustrates this
process for grasping a block. Note that the palm is aligned
with the facet and centered above the facet’s COG. Also, the
hand’s aperture is determined by the length of the facet along
the relevant axis.

Pushing and pulling begin in a similar way: we servo the
hand along the palm’s normal until contact is detected. To
push an object, the hand is servo controlled along a vector
parallel to the palm’s normal and away from the robot until we
either completed a trajectory of 5 cm, or the forces exerted
onto the hand or fingers exceed a safety threshold. During
the push motion the hand is also servo controlled along the
palm’s normal to maintain proper contact with the object.
To pull an object, we apply force along the palm’s normal
(to maintain contact), while pulling the object towards the
robot. Again, the action ends after moving for 5 cm or if
an unsafe amount of force is detected. We have thoroughly
tested the implementation of the three compliant controllers
on a 7-DOF Barrett Whole Arm Manipulator (WAM) and a
3-fingered Barrett hand.

7 Experimental evaluation

To evaluate our system, we conducted dozens of experi-
ments with a robotic manipulation system (Bagnell et al.
2012) developed for DARPA Autonomous Robotic Manip-
ulation program. Videos of all of the experiments con-
ducted for this paper are available at http://www.youtube.
com/user/pileRSS2013/videos. In our experiments, a vari-
ety of unknown man-made and natural objects are placed in
a pile on a table in front of the robot (e.g., Fig. 1). The objects

Fig. 7 The steps of compliant grasping: the Barrett hand assumes a
cup-like pre-shape on top of the facet’s center of gravity and is par-
allel to an axis of the facet. It moves towards the object until contact
is detected. The fingers close onto the object while the hand is servo
controlled in compliance with the forces due to contact with the support
surface/object

overlap and occlude each other to varying degrees. The robot
is composed of a 7-DOF WAM and a 3-finger Barrett hand
equipped with force/torque sensor at the wrist. It acquires
RGB-D measurements of the environment using a Kinect.
The robot is tasked with clearing the table by removing all
objects into a bin.

We conducted three types of experiments. First, we
evaluate the performance of 5 methods for selecting the
next action: our learning-based approach, 2 random action
selection strategies, a common-sense heuristic, and human-
operator selected actions. Second, we analyze interesting
instances highlighting the benefits of our learning-based
approach. And finally, we compare the affordance classifi-
cation of our learning method to action selection by human
subjects.

7.1 Clearing piles of unknown objects

The main contribution of this work is developing a learning-
based approach to manipulation. Our learned classifiers rank
the affordances of segmented facets and generate a sorted list
of actions. We compare the performance of learning to three
other methods for action selection: random, heuristic-based
selection, and a human operator. For random, we consider
two strategies: select a facet at random and then either select
one of our four action at random (all-random) or select only
one of the two grasping actions at random (grasping-only-
random). Our heuristic-based approach uses the following
intuition:
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1. Grasping the topmost object is safer and more likely to
succeed

2. Grasping along the secondary (shorter) axis increases the
chance of the object fitting into the robot’s hand.

3. If an object is out of reach for grasping (behind the white
line in Fig. 1), pulling is required.

4. Pushing can disturb/reorganize the pile and is therefore
useful if the above actions cannot be performed.

We call this a common-sense heuristic as it encodes simple
and seemingly obvious rules. It is possible to hard-code a
more complicated heuristic utilizing all of the 41 features
from Table 1; however, this can be difficult, time-consuming
and brittle, in part due to errors such as noise and calibration
offsets.

For the ‘Human’ experiments, a human operator selects
the next action for the robot to execute using a graphical user
interface to click on a facet and choose an action. In these
experiments the human operator was one of the authors who
is an expert in robotic grasping and is well familiar with the
capabilities of the manipulation system.

Table 3 and Figs. 8 and 9 summarize the results of our
experiments. We conducted extensive experiments consisting
of 10 trials using each of our 5 methods for action selection.
In our experiments, the robot attempted over 1,500 actions.
In all experiments we used a randomly shuffled pile of the
same 10 objects. When using all-random, the robot was never
able to clear the pile. For example, the robot was able to
remove only 2 objects after 50 actions. In Table 3 we present
the results for the other 4 selection methods. We count the
number of actions in every trial. A successful action occurs
when the robot is able to plan a trajectory, executes it, and
achieves the manipulation objective. A failed action occurs
when the planned trajectory cannot be executed because of
collision, the goal configuration cannot be reached by the
robot, or the action itself fails (e.g. object slips out of hand).
For each trial, we report the percentage of failed actions due
to planning (% PF) and failure to achieve the manipulation
goal (% EF).

Figure 8 shows the average number of actions and a stan-
dard deviation for each action selection strategy. The perfor-
mance achieved by the (expert) human operator is not sig-
nificantly better than our learning-based approach. In fact,
lower performance was expected from the human operator
if he/she was a non-expert with no background in robotic
grasping and inexperienced with the manipulation capabili-
ties of the system. Using our heuristic, the average number
of actions is about 50 % higher than learning, and it increases
by another 20 % when randomly selecting a grasping
action. These results show the strength of our learning-based
approach.

Figure 9 shows for each action selection strategy, the per-
centage of successful grasps out of the total attempted grasps.

As expected, when a human selects a facet with a grasp action,
the probability of success is the highest. Learning performs
about 10 % worse. The likelihood of executing a successful
grasp drops dramatically for the heuristic-based approach
as well as for random. We believe that the results indicate
that the human prefers preparatory actions (push/pull) to sin-
gulate objects over attempting difficult grasps. While this
results in a higher grasping success rate, it also leads to more
actions. Learning is more adventurous in choosing grasps.
Although this results in more frequent failures to grasp, this
strategy pays off as the overall number of actions needed
is similar to what a person requires. Please see Table 3
which reports the detailed results for the action selection
strategies.

7.2 Doing the right thing

Our second set of experiments analyzes interesting instances
that demonstrate the behavior that was learned from the train-
ing data. In Fig. 10 (left), we presented the robot with a sin-
gle large object (the detected facet marked in red). Learning
classified this facet as negative for the “actionable” category,
and did not attempt to interact with it. The other approaches
(heuristic and random) kept interacting with the object with-
out success.

The middle image in Fig. 10 contains three facets (red
and green for the box that is out of the reachable area for
grasping and blue for the ball). The top three actions ranked
by learning are: pushing the orange ball (blue facet) into
the reachable area, pulling the green facet and grasping the
red facet along the longer axis. The heuristic would try to
grasp the ball (difficult configuration, likely to fail) or pull the
green facet (good). The red facet cannot be grasped (planning
failure because grasping along the short axis would result in
collision with the table), and since it cannot be grasped but yet
is not outside the graspable zone, the heuristic will not try to
pull it closer. Instead, it will keep pushing it towards the non-
graspable zone. The right image in Fig. 10 shows cases where
learning prefers pushing vs. pulling. As expected, learning
classifies the green and red facets as positive for pushing and
negative for pulling. The blue facet is classified as positive
for pulling and negative for pushing.

In Fig. 11 we observe a frequent failure mode of our
heuristic-based approach. Since it always grasps along the
shorter axis and does not consider whether there is free space
along this axis, it would randomly choose to grasp either the
red or blue facets. The result strongly depends on the struc-
ture of the scene (left: success, right: failure).

In Fig. 12 we demonstrate that learning oftentimes gen-
erates sequences of interaction that benefit the robot. In this
example, learning classifies both types of grasping as nega-
tive (the objects are too long for principal axis grasp and too
close to each other to grasp along the shorter axis). Learning
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Table 3 Results for 10
consecutive trials using the same
10 objects in arbitrary piles with
our four action selection
strategies:
random-grasping-only,
heuristic-based, learning-based,
and a human operator-based

The columns are (left to right):
trial id, number of actions to
clear the pile, percentage of
actions that were
grasping-principal-axis (% GP),
grasping-secondary-axis (%
GS), pushing (% PU), and
pulling actions (% PL), the total
number of failures and the
percentage of failures due to
either execution (% EF) or
planning (% PF)

Pile Actions Failures

# % GP % GS % PU % PL # % EF % PF

Random (grasping only)

1 12 50 50 – – 4 50 50

2 31 26 74 – – 22 36 64

3 44 48 52 – – 35 54 46

4 32 44 59 – – 23 65 35

5 35 60 40 – – 24 42 58

6 55 52 47 – – 44 77 23

7 32 57 43 – – 28 67 33

8 23 52 47 – – 15 46 54

9 47 51 49 – – 40 60 40

10 43 48 51 – – 36 83 17

Heuristic

1 35 – 94 3 3 25 100 0

2 10 – 100 0 0 0 0 0

3 22 – 90 5 5 10 80 20

4 63 – 92 5 3 51 16 84

5 33 – 100 0 0 23 43 57

6 14 – 100 0 0 4 100 0

7 65 – 87 5 8 52 13 87

8 19 – 95 0 5 12 34 66

9 17 – 88 0 12 8 37 63

10 23 – 83 4 13 10 50 50

Learning

1 15 20 66 7 7 6 17 83

2 15 7 87 0 6 4 75 25

3 12 25 67 0 11 1 100 0

4 33 12 79 6 3 19 15 85

5 28 11 78 11 0 16 18 82

6 13 8 85 7 0 3 67 33

7 14 28 50 15 7 2 100 0

8 36 14 78 3 5 24 84 16

9 8 12 88 0 0 0 0 0

10 17 18 70 0 12 9 45 55

Human

1 16 25 50 0 25 3 67 33

2 12 0 83 0 17 1 100 0

3 13 77 0 8 3 3 67 33

4 26 27 46 15 12 13 77 23

5 22 23 32 18 27 8 75 25

6 17 24 41 12 24 5 80 20

7 23 26 57 9 9 12 83 17

8 18 33 39 6 22 5 60 40

9 20 15 50 20 15 7 29 71

10 21 5 67 5 24 7 100 0
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Fig. 8 The average number of actions required to remove all objects
from the pile of 10 objects for all 4 action selection strategies. The
results show that learning and human-operator action selection have
similar performance, and are significantly better than the simpler meth-
ods (random and heuristic-based)
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Fig. 9 The average fraction of successful grasps out of the total number
of attempted grasps. The human action selection is more conservative,
leading to higher success rate. Learning attempts more difficult grasps,
which leads to more failures. However, note that both strategies require
a similar number of action on average (Fig. 8). Heuristic-based and
random action selection fail to execute a grasp in more than 60 and
70 % of the cases respectively

ranks pulling the red facet as the best next action, and after
executing it (right image), grasping both facets becomes pos-
sible.

Fig. 11 Because our heuristic-based approach always grasps along the
shorter axis and does not consider collision, the success depends on
the structure of the scene. It would work if there is no collision along
the secondary axis (left) and fail otherwise (right). Our learning-based
approach identifies the difference and can choose between primary axis
and secondary axis as necessary

Fig. 12 Here (left) grasping along both axes will fail because the pri-
mary axis is too long to fit in the hand and using the secondary axis will
result in collision. Learning anticipates this failure and prefers to pull
the red facet first. In the next two steps, learning will remove the red
and blue facets that are now separated and easy to grasp

7.3 Action selection: human versus learning

Figure 13 visualizes the ranking computed by our learning-
based approach. For each affordance, the detected facets are
color coded according to the output of the classifier: positive
(green) and negative (red). For each affordance, the best facet
is marked in bright green and the worst in bright red.

Interestingly, we informally asked 10 laypersons who
were unfamiliar with our manipulation system to classify
the facets into the 4 types of affordances. Qualitatively, we
found that the classification suggested by the human subjects

Fig. 10 Doing the right thing: analyzing the performance of our
learning-based approach in interesting scenarios. Left Learning recog-
nizes the object is too big for grasping; it decides not to interact with it.
Middle Learning recognizes the red facet cannot be grasped (hand will
collide with the table) and the green facet is outside the reachable zone

grasping; it decides to pull the box (green facet) closer for grasping. The
ball (blue facet) is too close for grasping; learning decides to push it
towards the center. Right Learning correctly classifies the blue facet as
good for pulling but not for pushing. Conversely, learning recommends
pushing the green and red facets and not to pull on them
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principal axis

(a) Objects segmented into facets

(b) Pushing (c) Pulling

(d) Grasping (e) Grasping
secondary axis

Fig. 13 An example scene composed of natural and man-made objects.
We segmented the scene into facets and computed the classification
assigned by learning for each affordance: positive (green) and negative
(red). Bright green and bright red respectively represent the best and
worst facet for each affordance. This classification was qualitatively
similar to that suggested by 10 human subjects. Note that to simplify
the task for the human subjects, this scene was constructed to be signif-
icantly simpler than those the robot was typically tasked with

was similar to that computed by our learning framework. We
found these anecdotal observations very encouraging. How-
ever, we believe that analyzing the human action selection
preferences deserves a thorough human subject study which
is beyond the scope of this work. Only then one will be able
to provide an informative qualitative and quantitative com-
parison with the learning-based action selection strategy pro-
posed in this work.

8 Conclusion

This article describes our end-to-end system for autonomous
manipulation in unstructured environments. We applied our
system to the goal of removing unknown manmade and nat-
ural objects from a pile. In our approach, perception, learn-
ing and compliant motion generation are coupled together
to achieve robust and safe task execution. We provided

extensive experimental data demonstrating the merits of our
approach.

Our robot relies on supervised learning to generate clas-
sifiers that relate unreliable partial perceptual information to
action selection. Based on the learned classifiers, the robot
interacts with the environment more efficiently than what
was achieved with random interaction or by a common-sense
heuristic. In comparison with a human-operator selecting the
next best action for the robot to execute, our learning-based
approach achieves, on average, the same number of actions
necessary to clear the pile of objects.

Learning and generalizing manipulation knowledge
enables the robot to autonomously interact with dense clut-
ter. Learning becomes possible due to our novel algorithm
for segmenting an unknown scene into hypothesized object
facets. Perception provides the robot with a rich set of fea-
tures. These features are informative for manipulation and
grasping.

Our approach is not limited to supervised learning. While
human-generated labels serve an excellent starting point, we
expect our system to continue learning from its own expe-
riences. In future work, our system will incorporate a rein-
forcement learning component enabling it to learn from its
own decision making and real-world outcomes.

A key feature of our approach is safe interaction with the
environment in the presence of uncertainty. We realize that
perception is based on partial information due to occlusion.
We also accept that action selection may make mistakes or
select an action that is difficult to execute. Our system does
not simply execute what action selection suggests. Instead,
it utilizes a control strategy that guarantees safety and can
recover from errors. Our controllers are compliant and rely
on force sensing to determine how to execute a given task,
as well as when to stop executing an action. Our compliant
controllers overcome inevitable inaccuracies in perception
and action selection while maintaining safe interaction with
the environment.

We believe that there are many exciting extensions of this
work with practical value. An immediate extension to our
supervised learning approach is to use on-line self-supervised
learning to adjust the learned weights of the classifiers based
on the actual outcome of the robot’s actions. We believe that
this approach is essential for enabling autonomous manipula-
tion in unstructured environments. Many additional percep-
tual cues could also be implemented to increase the range
of what can be learned. And finally, our action selection
is limited to a single step. It would be interesting to learn
more complex strategies. This could significantly accelerate
manipulation, in particular due to the complex nature of piles
of unknown objects.
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