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ABSTRACT
Facebook takes performance monitoring seriously. Performance
issues can impact over one billion users so we track thousands of
servers, hundreds of PB of daily network traffic, hundreds of daily
code changes, and many other metrics. We require latencies of
under a minute from events occuring (a client request on a phone, a
bug report filed, a code change checked in) to graphs showing those
events on developers’ monitors.

Scuba is the data management system Facebook uses for most
real-time analysis. Scuba is a fast, scalable, distributed, in-memory
database built at Facebook. It currently ingests millions of rows
(events) per second and expires data at the same rate. Scuba stores
data completely in memory on hundreds of servers each with 144
GB RAM. To process each query, Scuba aggregates data from all
servers. Scuba processes almost a million queries per day. Scuba is
used extensively for interactive, ad hoc, analysis queries that run in
under a second over live data. In addition, Scuba is the workhorse
behind Facebook’s code regression analysis, bug report monitoring,
ads revenue monitoring, and performance debugging.

1. INTRODUCTION
At Facebook, whether we are diagnosing a performance regres-

sion or measuring the impact of an infrastructure change, we want
data and we want it fast. The Facebook infrastructure team relies
on real-time instrumentation to ensure the site is always running
smoothly. Our needs include very short latencies (typically under a
minute) between events occuring on the web servers running Face-
book to those events appearing in the graphs produced by queries.

Flexibility and speed in querying data is critical for diagnosing
any issues quickly. Identifying the root cause for a issue is often
difficult due to the complex dependencies between subsystems at
Facebook. Yet if any issues are not fixed within minutes to a few
hours, Facebook’s one billion users become unhappy and that is
bad for Facebook.
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Originally, we relied on pre-aggregated graphs and a carefully
managed, hand-coded, set of scripts over a MySQL database of per-
formance data. By 2011, that solution became too rigid and slow.
It could not keep up with the growing data ingestion and query
rates. Other query systems within Facebook, such as Hive [20] and
Peregrine [13], query data that is written to HDFS with a long (typ-
ically one day) latency before data is made available to queries and
queries themselves take minutes to run.

Therefore, we built Scuba, a fast, scalable, in-memory database.
Scuba is a significant evolution in the way we collect and analyze
data from the variety of systems that keep the site running every
day. We now use Scuba for most real-time, ad-hoc analysis of arbi-
trary data. We compare Scuba to other data management systems
later in the paper, but we know of no other system that both ingests
data as fast and runs complex queries as fast as Scuba.

Today, Scuba runs on hundreds of servers each with 144 GB
RAM in a shared-nothing cluster. It stores around 70 TB of com-
pressed data for over 1000 tables in memory, distributed by par-
titioning each table randomly across all of the servers. Scuba in-
gests millions of rows per second. Since Scuba is memory-bound,
it expires data at the same rate. To constrain the amount of data,
Scuba allows rows to specify an optional sample rate, which in-
dicates that Scuba contains only a fraction (often 1 in 100 to 1 in
1,000,000) of the original events. This sampling is necessary for
events like Facebook client requests, which occur millions of times
per second. Sampling may be either uniform or based on some
key, such as user id. Scuba compensates for the sample rate when
computing aggregates.

In addition to a SQL query interface (for a subset of SQL in-
cluding grouping and aggregations but not joins), Scuba provides
a GUI that produces time series graphs, pie charts, distributions of
column values, and a dozen other visualizations of data besides ta-
bles with text. Figure 1 shows a time series graph with a week over
week comparison of page traffic in the Scuba GUI. In the backend,
an aggregation tree distributes each query to every server and then
gathers the results to send back to the client.

Although Scuba was built to support performance analysis, it
soon became the system of choice to execute exploratory queries
over other time-sensitive data. Many teams at Facebook use Scuba:

• Mobile development teams use Scuba to track which frac-
tions of users are running different mobile devices, operating
systems, and versions of the Facebook app.

• Ads uses Scuba to monitor changes in ad impressions, clicks,
and revenue. When a drop occurs, they can narrow it down
quickly to a particular country, ad type, or server cluster and
determine the root issue.



Figure 1: Scuba’s web user interface. The query shown on the left side generates a time series graph with a week over week
comparison of three columns related to Facebook page dispatches. The dotted lines represent the same days one week earlier. It is
very easy to see daily and weekly cyclical behavior with these graphs.

• Site reliability watches server errors by using Scuba. When
a spike occurs, they can pinpoint whether it is due to a bug in
a particular endpoint, a service in a particular datacenter or
server cluster, or a physical issue with part of a datacenter.

• Bug report monitoring runs thousands of queries every hour
to look for spikes in the number of bugs reported by Face-
book users, grouped by dozens of demographic dimensions
(location, age, friend count, etc).

In general, users start by asking high-level aggregate queries to
identify interesting phenomena in their data and then dive deeper
(hence the name Scuba) to find base data points of interest. In all
of the above cases, being able to break down the data along multiple
dimensions in an ad hoc manner is crucial.

Scuba is also the engine that underlies Facebook’s code regres-
sion analysis tool, bug report monitoring tool, real-time post con-
tent monitoring tool (e.g., how many Facebook posts mention the
movie “Argo”?), and many other tools. The key feature of Scuba is
that queries take less than a second to execute, even when scanning
hundreds of GB of data, and results are usually live over events that
occurred a minute ago.

In Section 2, we describe some of the use cases supported by
Scuba at Facebook, including performance monitoring, trend spot-
ting, and pattern mining. A detailed description of Scuba’s archi-
tecture, storage, and query capabilities is in Section 3. We present a
simple analytical model of Scuba’s query execution in Section 4. In
Section 5, we evaluate Scuba experimentally. We study its speedup
and scaleup properties with real data and queries. In Section 6, we
compare Scuba to related work. We conclude in Section 7 with a
list of ways that Scuba differs from most other database systems.
We find that these differences make Scuba suit our use cases at
Facebook.

2. SCUBA USE CASES
Scuba currently stores over 1000 tables. In this section, we de-

scribe a few representative use cases of Scuba.

2.1 Performance Monitoring
The original and most common use of Scuba is for real-time

performance monitoring. Julie monitors the performance of face-
book.com. She starts by looking at a Scuba dashboard of tens of
graphs showing CPU load on servers; numbers of cache requests,
hits, and misses; network throughput; and many other metrics.
These graphs compare performance week over week, as in Fig-
ure 1, or before and after a big code change. Whenever she finds
a significant performance difference, she then drills down through
different columns (often including stack traces), refining the query
until she can pin the difference to a particular block of code and fill
out an urgent bug report.

Julie’s dashboard runs canned queries over data that is no more
than seconds old. Performance bugs can often be spotted (and
fixed!) within minutes to hours of their introduction — and while
they are still being tested on a fraction of the site. Alerts on spikes
in these performance graphs automate much of her initial monitor-
ing. Logging and importing data in real-time over all of Facebook’s
servers would be too expensive; Julie’s table contains samples of
about 1 in 10,000 events (but it varies for different tables and types
of events). Scuba records the sampling rate and compensates for it.

2.2 Trend Analysis
Another time sensitive use of Scuba is trend spotting. Eric looks

for trends in data content. He extracts sets of words from user posts
and looks for spikes in word frequencies over time and across many
dimensions: country, age, gender, etc. Like Julie, Eric analyzes
seconds-old data. He built a tool for Facebook’s communications



team to graph how many posts mention current phrases. This tool
was used live before the Oscar awards, for example, to see how
many posts in the last hour contained the names of contending
movies. Unlike Julie, Eric usually writes new custom queries as
he tries out new ideas for trend analysis. He also writes custom
Javascript functions to calculate statistics about the data, such as
co-variance between integer columns.

2.3 Pattern Mining
Product analysis and pattern mining is a third use case of Scuba.

Unlike Julie and Eric, Bob is not a software engineer. He is a prod-
uct specialist, analyzing how different Facebook users respond to
changes in the website or mobile applications. He looks for pat-
terns based on different dimensions, such as location and age of
user, product (device, OS, and build), and keywords in bug reports,
without knowing which dimensions might matter. Bob looks at
data in many tables without knowing exactly how it was logged or
which columns might exist. He looks for whatever patterns he can
find. He uses Scuba in order to run rollup queries in milliseconds,
not the minutes they take in Hive.

3. SCUBA OVERVIEW
In this section, we provide an architectural overview of Scuba.

As shown in Figure 2, Scuba’s storage engine consists of many in-
dependent servers, each divided into logical units of storage called
“Leaf Nodes” (or leaves). The number of cpu cores determines
the number of leaves, currently 8 per server. Each leaf contains a
partition of data for most tables and all queries go to all leaves, as
described below. We now describe the data model of Scuba.

3.1 Data model
Scuba provides a standard table model to its users. Each table

has rows containing columns of data of four possible types:

1. Integers: Integers are used in aggregations, comparisons,
and grouping. Timestamps are also stored as integers.

2. Strings: Strings are used for comparisons and grouping.

3. Sets of Strings: Sets of strings are used to represent, say,
words in a Facebook post or the set of features (such as graph
search, news feed redesign, etc.) that are true for a given user.

4. Vectors of Strings: Vectors of strings are ordered and are
mostly used for stack traces, where the order corresponds to
the stack level.

Note that floats are not supported; aggregation over floating point
numbers on many leaves can cause too many errors in accuracy. In-
stead, Scuba recommends that users choose the number of decimal
places they care about, say 5, and store trunc(X ∗ 105) as an inte-
ger instead of the floating point X .

Since Scuba captures data about time-varying phenomena, every
row has a mandatory timestamp. These timestamps represent the
time of the actual event (client request, bug report, post, etc.). Any
table may have an arbitrary number of columns of one or more
types. All tables contain integers and strings; only some tables
contain sets or vectors of strings.

3.2 Data layout
Figure 3 shows the compression methods Scuba uses for each

data type. Integers that can be represented naturally using N bytes
- 1 bit are directly encoded using N bytes. Dictionary encoding
means that each string is stored once in a dictionary and its index in

the dictionary (an integer) is stored in the row. String columns can
be stored compressed or uncompressed, depending on how many
distinct values there are. For compressed string columns, each in-
dex is stored using the number of bits necessary to represent the
maximum index. Uncompressed columns store the raw string and
its length. For sets of strings, the indexes are sorted and delta en-
coded and then each index is Fibonacci encoded. (Fibonacci encod-
ing uses a variable number of bits.) The encoded indexes are stored
consecutively in the row. For vectors, there is a 2 byte count of the
strings and a 1 byte size for the number of bits in the maximum
dictionary index. Each index is then stored consecutively in the
row using size number of bits. All dictionaries are local to each
leaf and separate for each column. Compressing the data reduced
its volume by over a factor of 6 (it varies per table) as compared to
storing 8 byte integers and raw strings in every column.

Scuba currently stores the table in row order, since its original
use cases accessed most columns of the table in every query. Given
that Scubas use cases have become more general since then, we
are now exploring column-oriented storage layouts. Others [18,
8] have shown that column stores generally get better compression
and better cache locality.

Scuba’s data model differs from the standard relational model
in two key ways. First, there is no create table statement; a table is
created on each leaf node whenever the leaf first receives data for it.
Since the leaves receive data at different times, the table may exist
only on some leaves and may have a different schema on each leaf.
Scuba presents a single table image to its users, however, despite
the different schemas, by treating any missing columns as null val-
ues. Second, the columns within the table’s rows may be sparsely
populated; it is common for there to be 2 or 3 different row schemas
within a table or for a column to change its type over time (usually
to achieve better compression). Together, these two differences let
Scuba adapt tables to the needs of its users without any complex
schema evolution commands or workflows. Such adaptation is one
of Scuba’s strengths.

3.3 Data ingestion, distribution, and lifetime
Figure 2 shows the ingestion path of data into Scuba. Facebook’s

code base contains logging calls to import data into Scuba. As
events occur, these calls are executed and (after weeding out en-
tries based on an optional sampling rate) log entries are written to
Scribe. Scribe is an open-source distributed messaging system for
collecting, aggregating, and delivering high volumes of log data
with low latency. It was developed by and is used extensively at
Facebook [5]. A tailer process then subscribes to the Scribe cat-
egories intended for Scuba and sends each batch of new rows to
Scuba via Scuba’s Thrift API. (Thrift [7] is a software library that
implements cross-language RPC communication for any interfaces
defined using it.) These incoming rows completely describe them-
selves, including their schema.

For each batch of incoming rows, Scuba chooses two leaves at
random and sends the batch to the leaf with more free memory.
The rows for each table thus end up partitioned randomly across all
leaves in the cluster. There are no indexes over any table, although
the rows in each batch have timestamps in a very short time win-
dow. (These time windows may overlap between batches, however,
since data is generated on many servers.)

The leaf receiving the batch stores a gzip compressed copy of the
batch file to disk for persistence. It then reads the data for the new
rows, compresses each column, and adds the rows to the table in
memory. The elapsed time from an event occuring until it is stored
in memory and available for user queries is usually within a minute.

Memory (not cpu) is the scarce resoure in Scuba. We currently
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Figure 2: Scuba system architecture: from data ingestion on the left to user queries on the right.

Data Type Compression type Representation in row
Integer Variable length 1-8 bytes
String Dictionary Index, uses number of bits for max dictionary index
String (alternate) Uncompressed 4 bytes length + actual string
Sets of String Dictionary Fibonacci encoding of deltas between sorted indexes
Vectors of String Dictionary 2 bytes count + 1 byte index size + each index

Figure 3: Data types and compression methods in Scuba.

add new machines every 2-3 weeks to keep up with the increase
in tables and data. Since Scuba is intended for analysis of today’s
data, possibly with week over week comparisons, we delete old
data at the same rate we receive new data in order to constrain table
size. Data can be pruned for one of two reasons:

• Age: The row, as determined by its timestamp, is too old.

• Space: The table has exceeded its space limit and this row is
one of the oldest in the table.

Most tables have default constraints of 30 days1 and 100 GB,
although there are higher limits for high volume tables like fbflow,
which holds network traffic data, and ads metrics, which records
revenue-generating data like ad clicks and impressions. Every 15
minutes, a cron job evicts data that has exceeded its age limit. If the
table exceeds its space limit, the oldest data for the table is evicted
until it is under its limit.

In order to keep some data around longer than the space limits
allow, Scuba also provides subsampling of data. In this case, a
uniform fraction of the rows older than a certain age are kept and
the remainder deleted. In the future, we would like to explore more
sophisticated forms of sampling, such as stratified sampling, that
might choose a more representative set of rows.

3.4 Query model
Scuba provides three query interfaces, as illustrated on the right

in Figure 2.

• The web-based interface shown in Figure 1 allows users to
issue form-based queries and choose one of about a dozen vi-
sualizations, including tables, time series graphs, pie charts,
stacked area graphs, and many more. Figures 4, 5, and 6
show three more of these visualizations. Switching between
visualizations takes only seconds.

• The command line interface accepts queries in SQL.
1Archival data is not stored in Scuba. Facebook uses other, disk-
based, systems for long-term retention.

• The Thrift-based API allows queries from application code
in PHP, C++, Java, Python, Javascript, and other languages.

The SQL interface and GUI themselves use the Thrift interface to
send queries to Scuba’s backend. Scripts can also issue queries
using either the SQL or Thrift interfaces. Finally, we provide a
mechanism to execute user-defined functions written in Javascript.

Scuba queries have the expressive power of the following SQL
query:

SELECT column, column, ...,
aggregate(column), aggregate(column), ...

FROM table
WHERE time >= min-timestamp

AND time <= max-timestamp
[AND condition ...]

GROUP BY column, column, ...
ORDER BY aggregate(column)
LIMIT number

The aggregate functions supported include the traditional count,
min, max, sum, and average functions, as well as other useful
functions such as sum/minute, percentiles, and histograms. The
WHERE clause must contain a time range, although other condi-
tions are optional. The LIMIT clause defaults to 100,000 rows to
avoid memory issues in grouping and rendering problems at the
client. The GROUP BY and ORDER BY clauses are wholly op-
tional.

Any comparison to a string may include a regular expression.
Conditions on sets of strings are set-column includes any/all/none
of string-list and set-column is empty. Conditions on vectors of
strings are vector-column includes any/all/none/start/end/within of
string-list. The order of strings in the string-list is significant.

Joins are not supported in Scuba. When combining data from
multiple sources is necessary, joining is usually done before im-
porting the data into Scuba.



Figure 4: Scuba’s pie chart visualization: this query returns the 10 pages with the highest counts for the last day. The page names
have been scrubbed.

Figure 5: Scuba’s sankey view: network traffic flow between services. In sankey diagrams the height of the bars is proportional to
the quantity of the flow. In this example, the user is drilling down into Service 4.

3.5 Query execution
Figure 7 shows a step-by-step break down of how Scuba executes

a user query. All communication between aggregators and leaves
is via Thrift.

1. A client locates one of several Root Aggregators in the Scuba
cluster and sends a query. The Root Aggregator receives the
query, parses it, and validates it to make sure the query is
well-formed.

2. The Root Aggregator identifies four other machines in the
cluster to act as Intermediate Aggregators at the next level
down. This step creates a fanout of five (four other machines
plus itself). The Root Aggregator replaces any average func-
tions with a sum and a count (so aggregation can be com-
puted at the end) and sends the query to the Intermediate Ag-
gregators.

3. The Intermediate Aggregators create further fanouts of five
and propagate the query until the (only) Leaf Aggregator on
each machine receives the query.

4. The Leaf Aggregator sends the query to each Leaf Server on
the machine to process in parallel.

5. The Leaf Aggregator collects the results from each Leaf
Server and aggregates them. It applies any sorting and limit

constraints, however, for its limit, it uses max(5 ∗ limit,
100), hoping that all groups in the final top limit are passed
all the way up the tree. The Leaf Aggregator also collects
statistics on whether each Leaf contained the table, how
many rows it processed, and how many rows satisfied the
conditions and contributed to the result. The Leaf Aggrega-
tor returns its result and statistics to the Intermediate Aggre-
gator that called it.

6. Each Intermediate Aggregator consolidates the partial results
it receives and propagates them up the aggregation tree.

7. The Root Aggregator computes the final result, including any
averages and percentiles, and applies any final sorting and
limit constraints.

8. The Root Aggregator returns the result to the waiting client,
usually within a few hundred milliseconds.

Several details about how the Leaf Server processes the query
are important. First, each Leaf Server may contain zero or more
partitions of the table, depending on how big the table is and how
long the table has existed. Very new or very small tables may be
stored on only a few or a few hundred leaves out of the thousands
of leaves in our cluster.

Second, the Leaf Server must scan the rows in every partition of
the table whose time range overlaps the time range of the query.



Figure 6: Scuba’s world map view: the colors indicate the percentage of change in bug reports about photos over the last hour. Note
that when this query was executed, some leaves were unavailable. However, the missing leaves are likely to affect the data from today
and a week ago equally, so the percentage change numbers will be accurate.
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Figure 7: Step-wise breakdown of executing a Scuba query.

Non-overlapping partitions are skipped. These time ranges for the
partitions are the only form of “index” that Scuba has.

Third, the Leaf Server optimizes regular expression matching per
string column predicate. Whenever the string column uses a dic-
tionary (which roughly corresponds to whenever string values are
likely to be repeated in the column) the Leaf Server maintains a
per-query cache of the results of matching the expression against
each string value. This cache is indexed by the dictionary index for
the string.

Fourth, if an Aggregator or Leaf Server does not respond within
a timeout window (such as 10 ms), its results are omitted from the
final computation. We have found that in practice this approach
works well because of the large number of samples involved in
answering Scuba queries. A few missing pieces of data do not
adversely impact average and percentile computations, The much
lower response time achieved by ignoring a few leaves compen-
sates for the missing data. In addition, Scuba maintains and checks
an independent service for the count of rows expected per table per
query. It then uses this count to estimate the fraction of data that

is actually missing. If the fraction is 99.5% or less, Scuba prints
a warning in the GUI. We are also working on repeating the query
automatically for those clients that require 100% accurate results.

Finally, multiple Leaf Servers and one Aggregator Server run on
each physical machine. Each machine can provide the Aggregator
Server at any level of the aggregation tree.

Currently, the aggregation tree fanout is five. We experiemented
with fanouts of 2,4,5,6 and empirically found five to produce the
best response times. Independently, Rosen, et al’s [14] theoretical
analysis of aggregation trees showed that the fan out of the aggre-
gation tree with the least response time is a constant, independent
of the number of leaf nodes in the tree. Their empirical analysis
also showed that a fanout of five led to minimum response times in
their system.



Parameter Description
D Number of leaf nodes per machine
N Number of machines in the Scuba cluster
F Fan out at each aggregator
TD Time to distribute a query from an aggregator

to its children (transfer time)
TG Time to gather query results at an aggregator

(transfer time)
TA Time to update the local aggregation state at

an aggregator with results from one child
TS Time to scan data at a leaf node and compute

local aggregated results

Figure 8: Input parameters to model Scuba’s performance.

4. PERFORMANCE MODEL OF SCUBA
As described in the previous section, Scuba uses an aggregation

tree to execute user queries. In this section, we construct a simple
analytical model of the system. This model helped us understand
the performance characteristics of a single query.

Figure 8 describes the parameters of this model. We first describe
the parameters of the aggregation tree used for query processing.
The expected number of levels L in an aggregation tree with fanout
F and N machines is shown in Equation 1.

L = dlogF (N)e (1)

Most of the Aggregators will have an actual fanout of F . How-
ever, when the number of machines in the Scuba cluster, N , is not
a perfect power of F , the fanout of the lowest level of Intermediate
Aggregators is smaller than F . Equation 2 shows the fanout at the
penultimate level in the aggregation tree.

R =
N

FL−1
(2)

FL−1 represents the number of Aggregators at level L−1 in the
aggregation tree. Therefore, R represents the fanout at the last level
of the tree to reach all N Leaf Aggregators from each of the FL−1

Intermediate Aggregators. (Recall that each machine has one Leaf
Aggregator.)

We can now describe the fanout at level L in Equation 3.

FL =


F if L > 1

R if L = 1

D if L = 0

(3)

The last case in Equation (3) describes the fanout D from a Leaf
Aggregator to the Leaf Nodes on the same machine.

Each Aggregator in the tree performs the following steps:

1. Distribute the query to each child Aggregator and wait for
results.

2. Incorporate results from each child as they are received.
When all children have responded or the query times out,
stop waiting.

3. Return consolidated aggregation results and response statis-
tics to the caller.

Note that once queries are forwarded to its children by an Aggre-
gator, the children proceed in parallel. So the total response time of

a query computed using an aggregation tree with L levels is repre-
sented by TL in Equation 4.

TL =

{
TD + TG + TL−1 + TAFL if L > 0

TS if L = 0
(4)

Expanding Equation (4) and incorporating Equation (3) produces
Equation 5.

TL = TS + L(TD + TG) + F (L− 1)TA +R+D (5)

TL is thus the predicted time for any query (in the absense of
query contention). We validated (and refined) this model by plug-
ging in actual values for TA, TD , TG, and TS in each query and
comparing them to our experimental results. However, we do not
present the comparison here.

5. EXPERIMENTAL EVALUATION
In this section, we present the results of experiments to measure

Scuba’s speed up and scale up on a test cluster of 160 machines.

5.1 Experimental setup
The machines in our test cluster are Intel Xeon E5-2660 2.20

GHz machines with 144 GB of memory [19]. There are four racks
of 40 machines each, connected with 10G Ethernet. The operating
system is CentOS release 5.2.

For these experiments, we vary the number of machines in the
cluster from 10 to 160. In every experiment, each machine has 8
Leaf Nodes and 1 Aggregator. Each Aggregator always serves as a
Leaf Aggregator and can additionally be an Intermediate and Root
Aggregator.

5.2 Experimental queries and data
The experiments are meant to isolate the various parameters of

the model in Section 4. Therefore, we use 1 table containing 29
hours worth of real data (copied from our production cluster) and 2
very simple queries. The total amount of data in the table is about
1.2 TB. (Except where stated otherwise, each leaf has 1 GB; there
are 8 leaves per machine and 160 machines. (1 ∗ 8 ∗ 160 = 1280)
We ran two different queries.

SELECT count(*), SUM(column1) as sum1,
SUM(column2) as sum2

FROM mytable
WHERE time >= now()-3*3600

The first query, shown above in SQL, isolates scan time at the
leaves. It scans over 3, 6, or all 29 hours of the data (depending on
the constants), computes 3 aggregation metrics, and passes (only)
those 3 numbers (and query statistics) up the aggregation tree.

SELECT count(*), sum(column1) as sum1,
service,
(time - now())/60*60 + now() as minute,

FROM mytable
WHERE time >= now()-3*3600

and time <= now()
GROUP BY service, minute
ORDER BY sum1 DESC
LIMIT 1800

The second query is more complicated, especially in SQL, as
shown above. This query produces a time series graph over the last



Figure 9: Time series query in Scuba GUI

3, 6, or 29 hours with 1 minute granularity, graphing one line for
each of the top 10 services. The same query is much easier to ex-
press in the Scuba GUI, as shown in Figure 9. This query produces
2 aggregation metrics per service, per minute. The limit of 1800 =
180 minutes ∗ 10 services. This query passes and aggregates 1800
points for each of 2 metrics at every level of the aggregation tree;
its aggregation time TA is noticeable.

5.3 Single client experiments
The first set of experiments test query latency for a single client.

For these experiments, we use the 29 hour version of each query
and run each query 200 times. We plot the mean response time and
the error bars indicate the minimum and maximum response times.

5.3.1 Speedup
We first measure speed up of a single query over data distributed

in a 20 machine cluster. We varied the amount of data from 1 GB
to 8 GB per Leaf. The total amount of data thus varied from 160
GB to the full 1.2 TB.

Figure 10 shows the results. The time to scan data at each leaf is
proportional to the amount of data. The aggregation cost, however,
is independent of the amount of data at each leaf; it is a function
of the query and the cluster size. In this experiment, the cluster
size is constant. With 20 machines and a fanout of 5, there are 3
levels in the tree (1 Root Aggregator, 5 Intermediate Aggregators,
and 20 Leaf Aggregators). The scan query passes only one point up
the aggregation tree so aggregation takes negligible time. The time
series query needs to aggregate a large number of points at every
level of the tree, so it takes longer.

5.3.2 Scaleup
We then measure scale up as we vary the number of machines in

the cluster from 10 to 160 (doubling the number of machines each
time). Each leaf has 1 GB of data.

Figure 11 shows that the time to scan the data (done in parallel on
each Leaf) is constant. The aggregation cost grows logarithmically
with N . Since the aggregation cost is negligible for the scan query,
its response time is constant as the number of machines increases.
The time series query, however, needs to aggregate many points at
every Aggregator and its response time increases with the number
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Figure 10: Measuring speed up as the amount of data increases.
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Figure 11: Measuring scale up as the number of machines in-
creases.

of Aggregators and the number of levels in the aggregation tree.
The model presented in Section 4 was very useful in helping us
understand these scale up results.

5.4 Multi-Client Experiments
The final experiment tests query latency and throughput as the

number of clients increases from 1 to 32. Each client issues 200
consecutive queries with no time between them. For this experi-
ment, we use 160 machines with 1 GB of data at each Leaf. We
also use the 3 hour, 6 hour, and 29 hour variants of both the scan
and time series queries. The 3 hour variant only needs to scan about
10% of the data at each leaf.

Figure 12 shows the throughput of each query as we vary the
number of clients. The first thing to notice is that for each query, the
throughput rises as the number of clients increases, until the CPUs
at the leaves are saturated. After that, the throughput flattens out.
For all queries, the throughput is flat after 8 clients. The next no-
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Figure 12: Measuring throughput as the number of clients in-
creases.
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Figure 13: Measuring latency as the number of clients in-
creases.

table point is that the scan queries each achieve higher throughput
than their time series query counterparts for the same time range.
This point is not surprising, since the scan queries are faster. Fi-
nally, for a given number of clients, the throughput for each query
type decreases as the time range of the query (and hence the amount
of data scanned) increases.

Figure 13 shows that the response time for the queries increases
in proportion to the number of clients, as expected.

6. RELATED WORK
The work related to Scuba falls into four categories. First, there

are other systems intended for ad hoc, real-time analysis. Hy-
Per [11] also stores data in memory, but on a single, large, expen-
sive machine. Scuba, on the other hand, uses a cluster of relatively
cheap, commodity computers and scales easily by adding more ma-
chines. HyPer also does not use compression so it requires much
more memory for the same amount of data.

Shark [9, 22] and Impala [1] are both intended for real-time anal-
ysis over data in Hive. Shark emphasizes completeness of query re-
sults and failure recovery and both systems cache data in memory
during query processing. However, they both suffer from the long
latency to import data into Hive.

Powerdrill [10] and Dremel [12] are two of Google’s data man-
agement systems meant for analytics. Both are highly distributed,
like Scuba, and scale well. Dremel provides a much more complex
semi-structured and sparse data model than Scuba; Powerdrill is
reported to be much faster than Dremel but still takes about 30-40
seconds/query, according to the paper. In both system, the primary
copy of the data lives on disk, so the amount of data stored is less
important.

Druid [2] and rrdtool/MRTG (Multi-Router Traffic Grapher) [4,
3] import data quickly, aggregate it on import, and then provide
very fast query response time. Druid runs on a fault-tolerant dis-
tributed cluster of machines while rrdtool runs on a single machine.
Neither can provide drill-downs to the original, raw, data, however,
or data types other than strings and aggregated numbers. Scuba
requires both for the common use case of tracking changes in per-
formance all the way through stack traces down to the actual code
change.

Splunk [6] is also a system for importing logged data, analyzing
it, and viewing in graphs and charts. It is intended for data both
generated and analyzed in a “cloud.” We have no numbers on how
fast it either imports or queries the data.

None of the above systems report a way to expire data automat-
ically, unfortunately, which is a key requirement for Scuba, as it is
memory-bound and most queries only need data that is 1-2 weeks
(or hours!) old.

Second, there are multiple systems that use compression to re-
duce memory and/or disk footprints. Westman et al [21] used a
row-based layout and found that dictionaries provide a good trade-
off between compression ratio and CPU usage. C-Store [18] and
Vertica, SAP Hana [15], Dremel, and Powerdrill all take a column-
based approach, which we would like to try next to get even better
compression.

Third, none of the above systems can trade accuracy for response
time, which Scuba does intentionally. BlinkDB [9], however, can
produce results over a sampled set of data in bounded time or with
bounded accuracy. While BlinkDB needs to precompute stratified
samples before it can answer queries, we would like to experiment
with its techniques to bound and report Scuba’s inaccuracy better.

Finally, all of the data in Scuba is timestamped and many of
the analyses are time-based. In the late 1980s, Snodgrass created
TQuel [16, 17] to reason about time and intervals. We ought to
revisit this work to see if there are features Scuba should incorpo-
rate.

7. CONCLUSION
There are multiple ways in which Scuba differs from most

database sytems, all of which make Scuba suit our use cases at
Facebook.

• Scuba prunes data as fast as it ingests data, since all tables



are stored in memory and memory is the scarce resource.
Pruning is automatic, although the parameters for how much
data to keep are adjustable per table.

• Scuba expects that many tables will contain sampled data,
because storing every event would be too much data. The
sample rate column is treated specially and query results
contain both a raw count and a count adjusted for the sam-
ple rates present in the table. (There may be multiple differ-
ent sample rates, as many as one per row.)

• Data import is as simple as inserting a logging call for events
in code and creating a process to listen for those events.
There is no schema declaration needed; the schema is in-
ferred from the logs and it can evolve over time.

• Similarly, a table can contain rows with different schemas,
usually because it contains a few different types of events.
For example, a table about user requests might have a mo-
bile brand column that is only populated for requests from
mobile devices.

• Visualization of the results is as important as generating
them. Scuba currently has about a dozen different ways to
visualize data: time series graphs, pie charts, bar charts, flow
diagrams, maps, etc. Most interactive queries are asked via
the Scuba GUI, not the SQL interface. (The SQL interface is
used in scripts.)

• Comparison queries are a first class citizen in the GUI: the
GUI can specify and run two queries that differ only in their
time range (to show, for example, week over week changes)
or in a condition value (to compare, say, users from 2 dif-
ferent countries). The results of both queries are plotted on
the same time series graph or displayed with a percentage
change in a table.

• Queries are run with best effort availability. If not all leaves
are available, then queries return a result over the data that
is available, along with statistics about what percentage of
the data they processed. Most other approaches, such as at-
tempting to fetch the data from disk on another leaf, would
take too long. Scuba’s users are generally happy with this ap-
proach, which has little effect on aggregates such as averages
and percentiles but guarantees a fast response. Future work
includes computing and displaying error bars on aggregates
derived from partial data.

At the same time, Scuba is not intended to be a complete SQL
database. It supports grouping and aggregations but not joins or
nested queries. It supports integers and strings but not floats, al-
though it also adds sets and vectors of strings (but not arbitrary
nesting of types).

There are changes we would like to make to Scuba. It is cur-
rently row-oriented, although we are exploring whether a column-
oriented layout might work better. Scuba could use native alerts;
right now, users write alerts on top of Scuba query results. Scuba
also needs to continue to scale as its user base grows. The model
and experiments presented in this paper are a first step in figuring
out how well it scales currently.

Nonetheless, Scuba has skyrocketed at Facebook in numbers of
users, data, and queries since it was first written two years ago.
Scuba provides the flexibility and speed in importing and querying
data that is critical for real-time performance and data analysis at
Facebook.
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