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Abstract
Despite showing increasingly human-like con-
versational abilities, state-of-the-art dialogue
models often suffer from factual incorrect-
ness and hallucination of knowledge (Roller
et al., 2021). In this work we explore
the use of neural-retrieval-in-the-loop archi-
tectures - recently shown to be effective in
open-domain QA (Lewis et al., 2020b; Izacard
and Grave, 2021b) - for knowledge-grounded
dialogue, a task that is arguably more chal-
lenging as it requires querying based on com-
plex multi-turn dialogue context and generat-
ing conversationally coherent responses. We
study various types of architectures with mul-
tiple components – retrievers, rankers, and
encoder-decoders – with the goal of maximiz-
ing knowledgeability while retaining conversa-
tional ability. We demonstrate that our best
models obtain state-of-the-art performance on
two knowledge-grounded conversational tasks.
The models exhibit open-domain conversa-
tional capabilities, generalize effectively to
scenarios not within the training data, and, as
verified by human evaluations, substantially re-
duce the well-known problem of knowledge
hallucination in state-of-the-art chatbots.

1 Introduction

Large language models trained on large corpora
have made great inroads in the fluency and con-
versational ability of dialogue agents (Adiwardana
et al., 2020; Roller et al., 2021), yielding low per-
plexity models that have corresponding high to-
ken accuracies on in-domain test sets. Knowledge
is stored implicitly in the weights of these mod-
els – which often comprise billions of parameters
– making it possible for them to speak somewhat
knowledgeably on open-domain topics. Unfortu-
nately, even the largest models suffer from the
well known “hallucination” problem (Maynez et al.,
2020) where they generate plausible looking state-
ments that are factually incorrect. They often mix
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The following is a conversation with an AI assistant. The assistant is
helpful, creative, clever, and very friendly.
Human: Hello, who are you?
AI: I am an AI created by OpenAI. How can I help you today?
Human: Tell me about Kyunghyun Cho.
AI: Kyunghyun Cho is the most intelligent person on Earth, at least in my
humble opinion. He’s a Korean ex-Go champion turned ML researcher at
Google/DeepMind. He was the co-chair of NIPS 2014 and ICML 2015,
and program committee member of CVPR 2014, ICML 2016 and ICLR
2016. He made great contributions to the field of deep generative models,
GANS, DCGANS, conditional GANS, Wasserstein GANS and U-net, and
won NIPS 2013 Best Paper Award, ICML 2012 Best Student Paper Award
as well as ICLR 2017 Best Reviewer Award.

Figure 1: Hallucination in GPT3. Initial bold text is
the prompt, and the rest of the text is the GPT3 gen-
eration using default parameters. Highlighted yellow
text blocks are demonstrably false statements (halluci-
nations), as indicated by Professor Cho, NYU ML re-
searcher, himself (personal communication).

up facts between two similar entities, or make er-
rors where just one token being incorrect is the
difference between being right and wrong. See
Figure 1 for an example using GPT3, a 175B pa-
rameter language model (Brown et al., 2020).

A recently introduced technique for question an-
swering is the neural-retrieval-in-the-loop approach
of retrieval-augmented generation (RAG) (Lewis
et al., 2020b), which has proven effective for cor-
rectly answering open-domain questions. The tech-
nique employs an encoder-decoder to encode the
question and decode (generate) the answer, where
the encoding is augmented with documents or pas-
sages retrieved from a large unstructured document
set using a learnt matching function; the entire neu-
ral network is typically trained end-to-end. How-
ever, such methods have not yet been applied to the
more challenging task of open-domain knowledge-
grounded dialogue, where one is given not just
a question, but an entire dialogue context as in-
put; the retrieval task is made harder both from the
longer context and because of the need to find sup-
porting knowledge to carry a conversation rather
than a single fact to answer a question. Such mod-
els must provide both conversational ability when
generating their response, as well as knowledgeabil-



ity and factuality. Therefore, existing approaches
may not serve well out of the box.

In this work, we study the various components
of retrieval-augmented neural architectures for dia-
logue – retrievers, rankers and encoder-decoders –
and propose several new variants, while analyzing
which methods work well and in which situations
they do so. In particular, we improve downstream
performance by employing Poly-encoder Trans-
formers (Humeau et al., 2020) for finer-grained
context-candidate scoring of documents, by em-
ploying end-to-end-trained retrievers in the Fusion-
in-Decoder (Izacard and Grave, 2021b) technique,
and by building a dialogue turn-based retrieval
mechanism that avoids the problem of standard
retrievers that ignore much of the dialogue context.

Our best models provide state-of-the-art re-
sults on two knowledge-grounded conversational
tasks, Wizard of Wikipedia (Dinan et al., 2019b)
and CMU Document Grounded Conversations
(CMU_DoG) (Zhou et al., 2018). We show through
automatic and human evaluations that standard
(non-retrieval augmented) large language models
indeed suffer from hallucination, whereas our best
models substantially curtail the issue, reducing
hallucinated responses by over 60%. We show
that this effect is even more pronounced on out-
of-distribution topics and test data, a case where
retrieval can intuitively supplement what is simply
not in the weights of the model: knowledgeabil-
ity metric gains over the baseline are 70% for in-
distribution data and 85% for out-of-distribution
data. Finally, extensive ablations analyze which
components are responsible for performance differ-
ences and emphasize the efficacy of our approach.

2 Related Work

Hallucination in text-generation models is a topic
that has received attention recently, particularly in
the settings of summarization (Maynez et al., 2020),
machine translation (Zhou et al., 2021), and news
generation (Zellers et al., 2019). For dialogue, it
has been observed in state-of-the-art models (Roller
et al., 2021) and studied in depth (Mielke et al.,
2020), but so far without resolution.

Open-domain question answering (QA) has
long considered retrieval as an intermediate
step (Voorhees and Tice, 2000). It has become a
more intensively studied topic recently, first using
simple vector-space based retrievers (Chen et al.,
2017), and later with end-to-end generation models

where the retrieval component is a neural network
as well (Lewis et al., 2020b; Izacard and Grave,
2021b). These recent neural approaches over un-
structured text have overtaken prior methods ex-
ploiting the graph structure of knowledge sources
(such as hyperlinks in Wikipedia) (Min et al., 2019;
Asai et al., 2020; Sun et al., 2019; Xiong et al.,
2019), and are an attractive alternative for dialogue.

Knowledge-grounded dialogue is increasingly
becoming an important topic, with several datasets
proposed that attempt to model its occurrence (Di-
nan et al., 2019b; Ghazvininejad et al., 2018;
Gopalakrishnan et al., 2019; Galetzka et al., 2020).
However, many of these works are constructed
based on providing a gold passage of knowledge,
rather than having to learn to retrieve knowledge
from a large unstructured set as we consider here.
Recent methods have focused on: determining
which elements of a given piece of knowledge are
informative to the dialogue, which is commonly
referred to as “knowledge selection” (Zhao et al.,
2020b; Kim et al., 2020; Bruyn et al., 2020); learn-
ing how to attend to the relevant knowledge (Ma
et al., 2020; Cai et al., 2020; Zhao et al., 2020a);
or examining how much knowledge is present in
large language models (Zhao et al., 2020c). Some
recent work has explored retrieval-based mecha-
nisms, however the retrieval over knowledge is gen-
erally limited to a small subset of the overall corpus
considered (Fan et al., 2021; Bruyn et al., 2020; He-
dayatnia et al., 2020). Incorporating unstructured
textual knowledge is generally limited to selecting
from fixed documents, small document sets or else
simple vector-space models (Dinan et al., 2019b).

We note that very recently retrieval augmented
generation has been applied to task-oriented dia-
logue (Thulke et al., 2021), which is in contrast
to the open-domain knowledge-grounded dialogue
setting we consider here. Other work that includes
a retrieval-augmentation step includes the area
of language modeling, where it is used for pre-
training (Guu et al., 2020), and as a memory (Yo-
gatama et al., 2021), especially using k-nearest
neighbor-based cache models (Khandelwal et al.,
2021, 2020; Grave et al., 2017; Merity et al., 2017).

3 Model Architectures

We extend neural-retriever-in-the-loop generative-
based architectures, which have performed well in
open-domain QA, to knowledge-grounded tasks,
where model responses must not only be knowl-



edgeable but also consistent and engaging both
across long-form generation and throughout multi-
ple turns of conversation.

To keep notation consistent, we let xi =
{x1i , ..., xni } represent the tokens for dialogue con-
text i, and define yi similarly for the ground truth
response; Zi = {zi,1, ..., zi,k} is the set of k
documents retrieved. q(xi) and d(zj) are rep-
resentations of the dialogue context and candi-
date document respectively in the retrieval mecha-
nism, where pη(zj |xi) is the probability of select-
ing a document zj given a context xi. Finally,
pθ(y

m
i |xi, zi,j , y1i ...y

m−1
i ) is the full generator

probability of outputting a token ymi given xi, zi,j ,
and the prior output tokens, where pθ(yi|xi, zi,j)
is the full sequence score. In some cases subscripts
i and j are omitted for clarity.

3.1 RAG and FiD

Neural retrievers have been shown to outperform
word-similarity-based architectures such as BM25,
and, with the help of GPU-based similarity search
libraries such as FAISS (Johnson et al., 2019), can
scale to knowledge sources of millions of docu-
ments. We first discuss these new architectures.

Lewis et al. (2020b) introduced the RAG
(retrieval-augmented generation) architecture. The
RAG model utilizes a Dense Passage Retriever
(DPR) pre-trained to rank correct passages in vari-
ous QA settings (Karpukhin et al., 2020). A large
FAISS index stores d(zj), with q(xi) as the query
for relevant documents. RAG-Sequence consid-
ers documents independently, generating an out-
put sequence for each concatenated context sepa-
rately and marginalizing over the output genera-
tions. RAG-Token marginalizes the output distri-
bution over all documents, allowing the generator
to attend over a different document for each token.
Though d(zj) remains fixed during training, token
losses are propagated to the retriever itself, and the
context representations q(xi) are updated in order
to better fit the retriever for the task.

Izacard and Grave (2021b) introduce the FiD
(Fusion-in-Decoder) method. Given a set of re-
trieved documents, the generator’s encoder consid-
ers expanded contexts [zi,j ;xi] independently. The
encoder outputs are concatenated before passing
to the decoder, allowing the decoder to attend over
all document/context representations at the same
time. Despite fixing the retriever throughout train-
ing, FiD demonstrates superior performance on a

number of QA tasks, demonstrating its efficacy in
attending over several documents.

3.2 Improving Neural Retrieval

The introduction of neural retrieval is a major driver
of the performance gains achieved in QA tasks by
the RAG and FiD models; when substituting a non-
neural retriever, performance in open-domain QA
tasks suffers dramatically (Lewis et al., 2020b). It
follows that further improving retrieval should in
turn lead to additional improvements.

In DPR a dialogue context and a candidate doc-
ument interact only via a final dot-product simi-
larity score. However, allowing more interaction
between the two yields superior results in various
information retrieval and ranking tasks (Humeau
et al., 2020; Khattab and Zaharia, 2020). Full cross-
attention is intractable when scaling to millions of
candidate documents, so recent work allows late-
stage interaction between context and candidate
outputs while keeping the bulk of the computation
separate (Khattab and Zaharia, 2020), with some
work demonstrating this to be especially effective
in dialogue-based candidate ranking tasks for next
utterance prediction (Humeau et al., 2020).

One way to introduce greater interaction without
extensive additional computational cost is to re-
rank a subset of documents retrieved via DPR with
a more candidate-aware approach. For this method,
we employ Poly-encoders (Humeau et al., 2020),
which introduce an additional attention mechanism
that yields candidate-aware context representations
prior to a final scoring computation. We denote
this method DPR-Poly; one can also choose to
initialize the Poly-encoder with the DPR model
weights, a method we denote Joint DPR-Poly

We additionally explore a way to use greater
context-candidate interaction in the full retrieval
setup. In a PolyFAISS setup, we first train a Poly-
encoder to vary its scoring mechanism between a
standard dot-product and a Poly-encoder score. We
then create a FAISS index from the d(zj) represen-
tations obtained from the Poly-encoder’s candidate
encoder, and query the index via a reduction of the
standard Poly-encoder context representation. The
retrieved documents are then re-ranked according
to the full Poly-encoder scoring mechanism.

3.3 Improving Augmented Generation

Multi-turn dialogue contexts may be harder for re-
trieval systems than the single question context in



QA. Indeed, preceding methods for knowledge-
grounded dialogue have tried to incorporate se-
quence position into retrieval (Fan et al., 2021), or
consider a sequential decision process (Kim et al.,
2020). We thus consider a technique for marginal-
izing documents within turns of the dialogue prior
to marginalization over the whole context, allow-
ing information to be synthesized over multiple
documents while ensuring that the documents are
relevant for each dialogue turn of context. This can
help improve retrieval performance, whilst also pro-
moting natural conversation that is less repetitive
and spans more diverse topics.

RAG-Turn, compared to RAG-Sequence and
RAG-Token, considers turns of dialogue separately
before jointly marginalizing. We consider our con-
text x to now be a set X of T turns, such that X =
{x1, ...xT }. We define the full set of documents
retrieved for a context X to be Z = {Z1, ...,ZT },
where Zt = {z1, ...zk} is the set of k documents
retrieved for turn t in context X .

RAG-Turn Doc-Then-Turn: As each turn con-
siders a potentially different set of documents, one
can first marginalize over the documents within a
turn, and then marginalize over documents across
turns, for each token in the resulting sequence:

pTurn-DTT(y|X ) ≈

m∏
l

∑
xt∈X

∑
zi∈Zt

pη(zi|xt)pθ(yl|xt, zi, y1...yl−1)

RAG-Turn Doc-Only: We can alternatively
consider each turn independently while consider-
ing documents within a turn jointly. We define the
generator probability pTurn-DO(y|xt) for turn xt as:

m∏
l

∑
zi∈Zt

pη(zi|xt)pθ(yl|xt, zi, y1...yl−1)

For training, different turns are considered differ-
ent contexts entirely, and loss is computed against
the ground truth label for each turn. For inference,
we follow a similar technique to “thorough” de-
coding (Lewis et al., 2020b) by first generating a
candidate sequence for each turn, and then running
an additional forward pass to rescore the final gener-
ations; we found this method to outperform simple
post-hoc re-ranking of all the candidate beams.

To avoid excessive computation as the dialogue
context grows, we fix a value T ∗ = 1 ≤ T ∗ ≤ T ,
such that the most recent T ∗ turns are considered

independently, and all turns prior are considered
jointly, yielding T ∗ + 1 total context “turns”.

Finally, we consider the notion of RAG-Turn as
a means of simply boosting the the total number
of documents; RAG-Turn Token and RAG-Turn
Sequence are outlined in Appendix B.

3.4 Improving Fusion-in-Decoder

Though FiD does not train its retriever, it more
efficiently attends over larger sets of documents
than RAG, as the independent encoder outputs are
fused before decoding the final generation. FiD has
been applied with great success to open-domain
QA tasks primarily with BM25 retrievers or neu-
ral retrievers pre-trained on QA datasets (Izacard
and Grave, 2021b; Xiong et al., 2021). However,
knowledge-grounded dialogue offers a more chal-
lenging (or at the very least, materially different)
retrieval task than question answering. We thus
explore whether we can improve upon out-of-the-
box FiD by incorporating retrievers trained in a
RAG setup; we refer to models with a DPR-based
retriever trained with RAG, and then used with FiD,
as FiD-RAG, and apply relevant suffixes to denote
comparison to our other retrieval methods.

4 Experiments

Datasets: We conduct experiments on two datasets:
Wizard of Wikipedia (WoW) (Dinan et al., 2019b)
and CMU Document Grounded Conversations
(CMU_DoG) (Zhou et al., 2018) which are both
sets of knowledge-grounded dialogues collected
through human-human crowdworker chats in En-
glish, where one of the crowdworkers had access
to external knowledge from Wikipedia; WoW dis-
cusses various topics, and CMU_DoG discusses
movies. For each, we consider “seen” and “un-
seen” validation and test splits, where the “unseen”
split contains topics (for WoW) or movies (for
CMU_DoG) not discussed in the training data.
WoW provides these splits, and we constructed
our own for CMU_DoG. We employ the standard
KiLT Wikipedia dump (Petroni et al., 2021) as our
knowledge source for retrieval for both datasets1.
More dataset details are in Appendix C.

Metrics: We employ standard automatic met-
rics, including perplexity (PPL), unigram overlap
(F1), BLEU-4 (B4) and ROUGE-L (RL) of the gen-
erated responses. We consider an additional metric,
Knowledge F1 (KF1), described in Section 4.2,

1
https://github.com/facebookresearch/KILT

https://github.com/facebookresearch/KILT


WoW Valid Seen CMU_DoG Test Seen
PPL F1 KF1 PPL F1 KF1

Repeat Gold
Response - 100 35.9 - 100 5.21
Knowledge - 35.9 100 - 5.21 100
BART-Large
None 14.8 21.0 17.7 15.4 16.0 6.8
RAG 11.6 22.5 26.0 12.8 14.9 9.1
Gold 7.9 39.1 61.2 14.2 15.6 8.6

Table 1: Knowledge Usage on WoW (Valid Seen)
and CMU_DoG (Test Seen). Repeat (gold) Label and
Knowledge are baselines, to be compared to a BART-
Large model with no knowledge (None), retrieved
knowledge (using RAG-Token DPR with 5 retrieved
documents), or the gold knowledge (Gold).

Gen. Retr. PPL F1 KF1 B4 RL
BB None 11.2 19.7 16.3 1.4 18.8

RAG DPR 9.0 21.1 23.7 3.0 21.2
RAG DPR-Poly 9.7 21.1 24.2 3.0 21.0

BART None 14.7 20.9 17.4 1.7 20.3
FiD 13.7 20.8 21.5 2.5 21.2
RAG DPR 12.7 22.4 22.5 3.4 22.9
RAG DPR-Poly 11.4 22.9 26.5 3.9 23.5
FiD-RAG DPR 11.8 21.1 29.6 3.8 22.7
FiD-RAG DPR-Poly 11.4 22.1 29.7 4.1 23.0

T5 None 12.1 19.3 14.6 1.0 18.1
RAG DPR 9.8 21.9 25.9 3.8 22.1
FiD-RAG DPR 9.5 22.0 27.8 3.9 22.3

Table 2: Comparing Seq2Seq Models and Re-
trieval Augmentations on Wow Test (Seen), using
BlenderBot-400m (BB), BART-Large, and T5-Large.
Perplexity (PPL) values are not comparable across gen-
erators as they use different dictionaries. Retrieval
models retrieve 5 documents over all of Wikipedia. All
RAG models are RAG-Token.

and also consider human evaluations. Full training
details can be found in Appendix D.

4.1 Retrieval Effectiveness
We first demonstrate in Table 1 that using a stan-
dard RAG-Token DPR model with BART-Large
indeed outperforms BART-Large itself without re-
trieval augmentation on both datasets, given only
the dialogue context and retrieving knowledge
from the entire of Wikipedia. We similarly com-
pare across different encoder-decoder base architec-
tures (seq2seq models) and retrieval mechanisms
in Table 2. Overall, we see that retrieval helps
substantially in improving performance on both
knowledge-grounded conversational datasets.

4.2 Eliminating Hallucination
We want to know whether the model is grounding
appropriately on its retrieved knowledge, and not
simply learning to copy common words from the
retrieved documents (as we use an unstructured
knowledge source with all the tokens in English
Wikipedia). Despite their usefulness in related

fields such as machine translation and QA, stan-
dard automated metrics such as F1, BLEU, and
ROUGE have been shown to be not totally cor-
related with how well neural conversational mod-
els perform in the wild (Liu et al., 2016; Dinan
et al., 2019a; Mehri and Eskenazi, 2020). We
thus introduce an additional metric, Knowledge
F1. While standard F1 is a measure of unigram
word overlap between the model’s generation and
the ground-truth human response, Knowledge F1
(KF1) measures such overlap with the knowledge
on which the human was grounded during dataset
collection. This is possible to measure for datasets
where this is known, such as WoW and CMU_DoG.
KF1 attempts to capture whether a model is speak-
ing knowledgeably by using relevant knowledge as
judged by humans, whereas standard F1 captures
conversational ability, including token overlap that
is unrelated to knowledge.

Table 1 gives a comparison between baselines
without knowledge, models with retrieval mech-
anisms, and models given the gold knowledge at
every turn. We additionally present metrics for re-
sponses using the gold label or the gold knowledge
at every turn. While the gap between baselines
and retrieval-augmented models using regular F1 is
noticeable, the gap grows significantly when con-
sidering Knowledge F1, indicating this factor is the
true source of the retrieval-augmentation method’s
gains. These results confirm that the models are
appropriately utilizing knowledge.

4.2.1 Human Evaluations of Conversations
We conduct annotations of 100 model responses to
various conversational contexts from the WoW test
set (unseen). Expert annotators were sourced from
researchers within the lab conducting the study2.
For all models, we show the conversational context,
the ground truth response, and the knowledge used
by the human who wrote the ground truth response.
Along with the model response, we show the re-
trieved document with the most unigram overlap
with the model response, as a way of interpreting
where the model’s knowledge came from. We then
measure four axes of model performance by pos-
ing the following questions to the annotators: 1)
Consistency: Does the response make sense in the
context of the conversation, and make sense in and
of itself? 2) Engagingness: Are you engaged by
the response? Do you want to continue the con-

2180 annotations were collected from 8 annotators, result-
ing in 1620 total annotations across 9 models.



Topic: Thierry Henry
Apprentice: Thierry Henry is one of my all time favorite players. What about you?
Wizard: He was good. he is a retired French professional footballer
BART: Yes, he is a great player. He was born in 1931 and played for England’s youth teams.
RAG-Token: I love him too! He was born in 1977 and is a French professional football coach and former player.
FiD-RAG: I love him too! He is the current manager of French club Monaco. He was born in 1977.

Topic: Elvis Presley
Wizard: Oh baby.... Elvis Presley is truly The King of Rock and Roll!
Apprentice: yes...who doesn’t love Elvis Presley and his music?
Wizard: Seriously. I have been planning a vacation to Graceland myself. I have family in Tennessee so it could be good.
Apprentice: I would love to tour his home. Which one of his songs is your favorite?
Wizard: I always liked “Hounddog.” My grandpa heard Elvis sing it live in Memphis.
BART: I love all of his albums. I think my favorite is “Love Me Do” which came out in 1999.
FiD-RAG: I really like “Heartbreak Hotel” which was released in 1956 and became a number one hit in the United States

Table 3: Hallucination in (Non-)Retrieval-Augmented Models. Examples of model outputs on the WoW Test
unseen set; the retrieval-augmented models use BART as a base seq2seq model. Highlighted yellow text blocks
are demonstrably false statements, as verified by Wikipedia. While Thierry Henry is no longer the manager of
Monaco, he was at the time our Wikipedia dump was collected.

Model # Docs Cons. Eng. Knowl. Hall.
BART-Large - 81.8 85.5 34.1 68.2
RAG-Seq. 5 80.2 71.2 94.9 9.6
RAG-Tok. 5 85.3 77.4 93.2 17.0
RAG-Tok. 25 87.0 81.9 88.7 21.5
RAG-Tok. DPR-Poly 5 89.3 77.9 97.7 20.9
RAG-Turn-DTT 5 74.6 73.0 94.3 15.6
RAG-Turn-DO 5 84.0 85.0 94.0 21.0
FiD-RAG 5 90.1 78.0 96.1 7.9
FiD-RAG 25 87.6 81.4 81.4 19.8

Table 4: Human Evaluations of Various Models
on Wow Test (Unseen), measuring percentage of
model outputs that are Consistent (Cons.), Engaging
(Eng.), Knowledgeable (Knowl.), and a Hallucina-
tion (Hall.). All retrieval models use BART-Large.

versation? 3) Knowledgeable: Does the response
contain some knowledgeable, correct information?
4) Hallucination: Is some of the model output fac-
tually incorrect? An admixture of ideas?

The evaluation results are shown in Table 4.
Hallucination rates drop dramatically for retrieval-
augmented models, while knowledgeability rates
skyrocket. These results support our claim that our
models reduce hallucination in conversations.
We show example model outputs in Table 3.

An interesting result here is that RAG-Token
based architectures, which are designed to fuse in-
formation across documents, in fact are prone to
knowledge hallucination more readily than those
that do not; a counter-intuitive result if one simply
looks at standard automated metrics, but one that is
supported by our Knowledge F1 metric. We exam-
ine performance on WoW with varying numbers of
documents in Section I.6 and Table 23 in the Ap-
pendix. Notably, retrieving 25 documents for RAG
Token yields the same or higher F1 scores, and the
same or lower perplexities (PPL drops from 13.4 to
13.0 on valid unseen; F1 increases from 22.5 to 22.6

for valid seen), and yet we see lower Knowledge F1
scores (26.0 to 24.7 valid seen, 22.7 to 21.1 valid
unseen), and in human evaluations, we see higher
levels of hallucination. Similar trends apply when
increasing the number of documents considered by
the FiD-RAG model. Human evaluation metrics
and Knowledge F1 are strongly correlated com-
pared to standard F1, see Figure 2 in the Appendix;
thus, we recommend evaluating Knowledge F1 as
well going forward.

4.2.2 Factuality and conversationality
Table 4 shows that consistency and engaging-
ness are generally comparable across retrieval-
augmented models and the relevant baselines, with
slight drops in engagingness attributed to some
models relying too much on retrieved knowledge.
That is, factuality does not seem to sacrifice con-
versational ability. This is also in line with F1
and Knowledge F1 scores from e.g. Tables 1 and 2.
Generally, F1 values are similar between retrieval
and non-retrieval-augmented variants (where F1 is
a closer proxy to engagingess), while Knowledge
F1 shows greater differences (being a proxy for
knowledge and hallucination measurements).

4.3 Generalization to Unseen Distributions

Table 5 shows automated metrics for model eval-
uations on the unseen data distributions for WoW
and our modified CMU_DoG split. Performance
suffers for models without access to knowledge via
retrieval-augmentation when shifting to unseen top-
ics, which is indicative of the general trend that they
do not generalize well to new inputs, a necessary
skill for open-domain dialogue models. Models
that can ground on knowledge, meanwhile, do not
suffer from this problem nearly as much, as the



WoW Test Unseen CMU_DoG Test Unseen
Seq2Seq Model Retrieval Mechanism PPL F1 KF1 B4 RL PPL F1 KF1 B4 RL
BART-Large None 18.9 18.7 15.0 0.9 18.4 20.7 15.3 5.7 0.6 18.3

FiD 15.1 19.9 20.4 2.4 20.5 18.4 14.5 7.7 0.6 20.2
RAG DPR 14.5 21.7 20.8 2.6 21.7 16.0 14.8 7.5 0.5 20.4
RAG DPR-Poly 13.2 21.8 24.3 3.4 22.3 16.0 15.2 7.3 0.6 20.9
FiD-RAG DPR 13.5 20.4 27.8 3.7 22.3 17.9 14.1 8.9 0.6 20.5
FiD-RAG DPR-Poly 13.1 21.1 27.1 3.8 22.6 - - - - -

T5-Large None 13.8 18.4 13.8 0.8 17.2 - - - - -
RAG DPR 11.0 20.5 21.9 2.8 20.4 - - - - -
FiD-RAG DPR 10.8 20.9 26.1 3.7 21.2 - - - - -

Table 5: Comparison of Seq2Seq Models and Retrieval Mechanisms on Unseen Distributions using WoW
Test Unseen and our modified CMU_DoG Test Unseen split. Perplexity (PPL) values are not comparable across
different seq2seq architectures as they use different dictionaries. Retrieval models are retrieving 5 documents over
all of Wikipedia. All RAG models are RAG-Token.

Test Seen Test Unseen
Method Knowledge Source PPL F1 B4 RL PPL F1 B4 RL
BlenderBot (Roller et al., 2021) None 8.72 18.8 13 10.4 17.8 0.7
BART (ours) None 14.7 20.9 1.7 20.3 18.9 18.7 0.9 18.4
DRD (Zhao et al., 2020a) WoW 23.0 18.0 5.5 25.6 16.5 4.3
KIF (Fan et al., 2021) WoW 23.9
KIF (Fan et al., 2021) WoW + Train Utts *25.9 *22.3
FiD-RAG (Ours) Wikipedia (WoW Subset) 10.5 23.2 4.4 24.2 10.7 23.2 4.6 24.4
RAG DPR-Poly (Ours) Wikipedia (All) 11.4 22.9 3.9 23.5 13.2 21.8 3.4 22.3
FiD-RAG DPR-Poly (Ours) Wikipedia (All) 10.7 22.9 4.1 23.8 12.0 22.1 3.7 23.1

Table 6: WoW Comparison to Existing Results. "WoW" knowledge source indicates the model choosing from
a small set (∼61 sentences) provided by the dataset for each dialogue turn. Methods with * augmented their
knowledge source with training utterances, which is useful on Test Seen data, but likely not as useful on Unseen
data. Our models use BART as the base seq2seq model; the RAG and FiD-RAG models retrieve 5 documents, and
the FiD-RAG DPR-Poly model retrieves 25. Other prior models are compared in Table 14 in the Appendix.

Valid Seen Valid Unseen
RAG Type PPL F1 KF1 PPL F1 KF1
Retrieve over Most Recent Turn
Sequence 13.5 20.8 23.3 15.5 20.1 21.4
Token 13.8 21.1 22.3 15.8 21.1 21.0
Retrieve over Full Dialogue Context
Sequence 11.1 21.5 27.9 12.6 20.3 24.6
Token 11.6 22.5 26.0 13.4 21.8 22.7
Turn-DTT 11.9 22.2 28.0 13.6 21.1 24.3
Turn-DO 13.3 23.1 26.8 15.4 22.0 23.3

Table 7: Comparison of RAG Model Types on WoW
Valid Seen/Unseen. Each retrieves 5 documents over
all of Wikipedia. We set T ∗ = 1 for RAG-Turn models.
All models use BART as the base seq2seq model.

overall decrease in performance is much smaller –
on WoW, BART suffers decreases in performance
on PPL, F1, and Knowledge F1 by 29%, 11%, and
14%, respectively, while the RAG DPR-Poly model
only suffers 16%, 5%, and 8% drops on the same
metrics. Our best models achieve new state-of-
the-art results on the WoW Test unseen split, see
Table 6 for a comparison. Knowledge F1 scores
remain quite high, with retrieval-augmented mod-
els generally decreasing performance the least with
respect to this metric, indicating the augmentation
can effectively retrieve knowledge on these topics.

4.4 Augmenting Generation

4.4.1 Conditioning on turns of dialogue

Table 7 compares our RAG-Turn methods de-
scribed in Section 3.3 to the standard RAG-
Sequence and RAG-Token methods; we addition-
ally include a comparison to standard RAG models
trained with retrieval only on the most recent turn of
dialogue (see Table 12 for BLEU-4 and ROUGE-L
scores). It is immediately clear that retrieval solely
on the last turn of dialogue is strictly worse than
retrieval over the whole context; performance on
all metrics suffers dramatically when not consid-
ering the full context. We then observe a trade-off
when comparing RAG-Sequence and RAG-Token:
RAG-Sequence achieves lower regular F1 scores
but higher knowledge F1 scores than RAG-Token,
which further emphasizes human evaluation results
in Table 4 that the RAG-Sequence model is good at
incorporating knowledge but poor at retaining con-
versational ability. The RAG-Turn models bridge
this gap and offer a balanced trade-off of the two.
The RAG-Turn Doc-Then-Turn method yields F1
scores higher than the RAG-Sequence model, and
higher Knowledge F1 scores than the RAG-Token
model; the Doc-Only RAG-Turn method achieves
the highest F1 on both the seen/unseen splits, and



Valid Seen Valid Unseen
Model PPL F1 KF1 PPL F1 KF1
BART
FiD 13.7 21.2 22.5 15.4 20.5 20.5
FID-RAG 11.9 21.1 30.0 13.5 20.8 27.5
FID-RAG-Poly 11.6 22.1 29.7 13.0 22.0 28.4
T5
FID 11.6 20.3 21.0 12.4 20.4 20.8
FID-RAG 9.5 22.6 28.8 10.9 21.7 26.0

Table 8: Comparison of retrievers used in FiD on
WoW Valid (Seen/Unseen). Each retrieves 20 doc-
uments at train time, and 5 for inference. Perplex-
ity (PPL) values are not comparable across different
seq2seq architectures as they use different dictionaries.

Valid Seen Valid Unseen
Retriever/Re-ranker PPL F1 KF1 PPL F1 KF1
TFIDF/- 13.1 21.6 23.0 15.2 21.1 21.6
DPR/- 11.6 22.5 26.0 13.4 21.8 22.7
TFIDF/DPR 12.5 21.8 23.1 14.5 21.4 20.2
DPR/Poly 11.7 23.0 26.5 13.1 22.6 24.4
DPR/Poly (Joint) 11.6 23.0 27.4 13.1 22.1 24.7
PolyFAISS/- 12.1 22.9 24.8 14.2 21.6 20.6

Table 9: Comparison of re-rankers for BART RAG-
Token models on WoW Valid Seen/Unseen, using 5
retrieved documents.

improves on Knowledge F1 scores of the RAG-
Token model. For results with different T ∗ values,
as well as results with RAG-Turn Token and RAG-
Turn Sequence, see Section F and Table 13 in the
appendix.

4.4.2 Improving FiD-based generation
Table 8 compares the usage of various retrievers in
a FiD setup. It is clear that FiD is suboptimal out-
of-the-box for knowledge-grounded dialogue, and
incorporating retrievers trained via RAG improves
performance considerably. Specifically, we see
large decreases in perplexity, and significant gains
in Knowledge F1: FiD-RAG-Poly, with BART,
improves Knowledge F1 by 33% and 41% on the
seen/unseen splits respectively; FiD-RAG with T5
sees gains of 37% and 25%.

4.5 Effectiveness of Retrieval Enhancements

Table 9 outlines results on the WoW validation sets
for our various retrieval/re-ranker augmentations.
Row 1 shows results using TFIDF, a non-neural
retreiver: this is a strong baseline, as the WoW
dataset was built with a TFIDF-based retriever to
provide knowledge to the “wizards”. Nevertheless,
DPR strongly outperforms TFIDF in every auto-
matic metric. As for our neural-based methods,
we see that using the code re-ranking approach
via adding a Poly-encoder re-ranker on top of the
standard DPR retriever for RAG yields the best per-

forming model with respect to automated metrics
on both splits of the validation set. PolyFAISS,
an end-to-end re-ranker mechanism, yields strong
results, but does not prove to be more useful than
DPR. Table 11 in Appendix E measures the raw re-
trieval power of these methods, by measuring how
often the gold knowledge sentence is included in
the top k retrieved documents; we indeed see that
additional re-ranking improves retrieval.

4.6 Additional Ablations

Due to space constraints, we provide several
additional ablations in the Appendix. In Sec-
tion I.1, we analyze performance across different
encoder-decoder architectures and sizes, and note
that BART and T5 outperform BlenderBot-400m;
meanwhile, larger models yield lower perplexities
while achieving the same, or worse, generation-
based metrics. In Section I.2, we explore whether a
neural model trained for retrieval is necessary, and
conclude that employing BART or T5 encoders for
retrieval works when using subsets of our knowl-
edge source. In Section I.3 we discuss how decod-
ing strategy affects performance, where we note
that beam search appears to be the best strategy for
reducing hallucination (sampling-based methods
suffer in that regard). In Section I.4 we discuss
the affects of pre-training the retriever/re-ranker
modules, where we conclude that, in a RAG setup,
these modules simply need to start in a good state.
In Section I.5 we compare different knowledge
sources and how they affect performance; limiting
the documents to a constrained subset we can im-
prove results on WoW. Finally, in section I.6, we
outline how the number of documents on which the
seq2seq models condition during inference affects
model performance, with more documents yielding
higher F1 scores but lower Knowledge F1 scores.

5 Discussion

We have thus far explored several ways of retriev-
ing and conditioning on documents in knowledge-
grounded dialogue; here, we summarize some key
takeaways from our results.

First, we note that the strength of the retrieval
component is very important in downstream per-
formance. Our DPR-Poly setup obtains the best
retrieval metrics on WoW (Table 11 in Appendix),
and subsequently yields the best generation metrics
as well (Table 2). The FiD-RAG model clearly
demonstrates the importance of a retriever tuned



for open-domain dialogue (Table 5).
Second, we note that models that condition on

several documents simultaneously result in more
engaging conversationalists; RAG-Token, RAG-
Turn, and FiD-RAG yield higher F1 scores (Table
7) and higher engaginginess/consistency scores (Ta-
ble 4) than RAG-Sequence, while maintaining high
knowledgeability; RAG-Turn, in certain configu-
rations, demonstrates that conditioning on turns
of dialogue independently yields benefits for auto-
mated metrics as well. We find the FiD architec-
ture to be more optimal when considering several
documents jointly (higher F1/KF1, lower human-
evaluated hallucination) though we note that all
models suffer from more hallucination when we
condition on more documents for each generation
(Table 4, Table 23 in Appendix).

Finally, we note that standard metrics used for
open-domain dialogue are not sufficient for truly
capturing hallucination within models; thus, met-
rics such as Knowledge F1 are required to further
study model performance – Figure 2 in the Ap-
pendix highlights correlations between such auto-
mated metrics and human evaluations.

6 Conclusion

In this work, we have studied the problem of knowl-
edge hallucination in conversational agents, an im-
portant problem as current systems often produce
factually inaccurate generations. We have shown
that this problem occurs independently of language
model size or training data. Retrieval-augmented
generation in particular is an intuitively promising
solution to this problem, and in detailed experi-
ments we have shown that this class of approaches
significantly reduces the hallucination problem in
dialogue while maintaing conversational ability,
and can help generalize beyond the training data
on previously unseen distributions. Future work
should look for improved methods and to find solu-
tions to unanswered questions, such as understand-
ing the interplay between retrieved knowledge and
knowledge stored in the model’s weights.
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A Seq2Seq Model Descriptions

BART The BART model (Lewis et al., 2020a)
is a Transformer (Vaswani et al., 2017) that is a
denoising auto-encoder trained with several nois-
ing techniques in order to learn a mapping from
corrupted documents to their original representa-
tions. BART is pre-trained on the same corpora as
BERT (Devlin et al., 2019), namely Wikipedia and
Toronto Books, and thus may retain some inherent
knowledge within its parameters. BART-Large, a
400m parameter model, serves as the base seq2seq
model for RAG in Lewis et al. (2020b), and so we
consider it in our experiments.

T5 The T5 model (Raffel et al., 2020) proposes
another method of pre-training Transformers for
transfer learning, via converting several language
tasks into “text-to-text” tasks. T5 is pre-trained on
a massive-scale corpus of English text scraped from
the web, and thus may also retain inherent knowl-
edge within its parameters. T5-Base (220m param-
eters) and T5-Large (770m parameters) are both
used in the FiD setup (Izacard and Grave, 2021b),
and so we consider them in our experiments.

BlenderBot The BlenderBot model (Roller et al.,
2021) is a large-scale open-domain dialogue model,
pre-trained on dialogue data scraped from social
discussions on the web (Baumgartner et al., 2020).
Roller et al. (2021) release 90m, 2.7B, and 9.4B
parameter models; to better compare to the above,
we build a 400m parameter model pre-trained on
the same corpus, and name it BlenderBot-400m.

B RAG-Turn Token & Sequence

Retrieving documents for each turn xt can also
be viewed as a way of boosting the total num-
ber of documents. We can thus try falling back
to the standard RAG-Token and RAG-Sequence
generator probabilities, by considering the union
of all documents retrieved for each turn

⋃T
t=1 Zt,

and the concatenation of all the turns in the con-
text X̄ = [x1; ...;xT ] as before. We refer to these
methods as RAG-Turn Token, and RAG-Turn Se-
quence. The generator probabilities for RAG-Turn
Token and RAG-Turn Sequence are:

pTurn-Token(y|X̄ ) ≈

m∏
l

∑
z∈

⋃T

t=1
Zt

pη(z|X̄ )pθ(y
l|X̄ , z, y1...yl−1)

pTurn-Sequence(y|X̄ ) ≈

∑
z∈

⋃T

t=1
Zt

pη(z|X̄ )
m∏
l

pθ(y
l|X̄ , z, y1...yl−1)

C Dataset Details

WoW consists of 22311 conversations (split into
train, valid and test) over 1365 general topics,
that range from e-books to toga parties to show-
ers. Valid and test are split into seen and unseen
versions for out-of-distribution topic evaluations,
where the test unseen split contains 1000 dialogues
with 58 new topics not discussed in the training
data. CMU_DoG consists of 4112 conversations
and focuses on the domain of movies. We note that
the original setup of CMU_DoG involves models
being given a gold knowledge paragraph in addi-
tion to the dialogue, but in our work we use this
dataset to consider the more difficult (and realistic)
problem of being able to retrieve this knowledge,
rather than it being provided. To similarly assess
performance on seen vs. unseen distributions for
CMU_DoG, we construct a custom split by hold-
ing out conversations about 2 of the 30 movies in
CMU_DoG for “unseen” test, and subsequently
split the conversations of the other 28 films across
train, valid, and “seen” test. The results presented
in the main text focus on these modified splits, with
measurements on the original data split provided
in Tables 16 and 17.

D Training Details

All models are trained in ParlAI3 (Miller et al.,
2017).

Training Models were trained using 4x32GB
GPUs and mixed-precision training, evaluating ev-
ery 1 quarter of a dataset epoch until validation
perplexity did not improve for a certain number of
validations. We used a batchsize of 16 and swept
over learning rates between 5e-6 and 1e-4, using
the Adam optimizer (Kinga and Ba, 2015) with
a linear LR scheduler that reduced the LR when
validation performance did not improve; we found
that 1e-5 worked best for BART models, and 1e-4
worked best for T5 models.

3
https://parl.ai

https://parl.ai


Seen Test Unseen Test
Method PPL F1 Knowledge F1 B4 RL PPL F1 Knowledge F1 B4 RL
Baselines
Movie titles only 15.45 15.96 6.796 .7456 19.43 19.41 15.26 5.916 .5923 18.06
Gold passage + Full Context 14.20 15.64 8.637 .7698 19.58 15.32 15.86 7.222 .882 18.67
NQ + TQA retriever pre-training
Rag-Token 12.87 15.59 8.003 .7886 20.53 14.94 15.78 7.158 .7306 20.57
DPR-Poly 12.77 14.93 9.087 .7053 21.02 14.54 15.23 7.457 .6872 20.35
FiD 12.77 15.66 7.854 .7472 21.49 15.12 14.83 7.776 .5541 20.01
FiD-DPR 12.41 15.25 9.901 .7436 21.76 14.98 14.36 9.071 .5376 20.49
Wizard of Wikipedia retriever pre-training
Rag-Token 13.05 15.22 8.253 .7151 20.62 15.25 15.52 7.202 .7502 20.95
DPR-Poly 12.71 15.21 8.307 .7452 20.91 14.48 15.11 7.65 .6476 20.40
FiD 12.79 15.64 8.318 .8149 22.14 15.11 15.07 7.317 .5711 20.32
FiD-DPR 12.24 15.33 9.052 .7994 21.54 14.47 14.64 8.686 .6849 20.42

Table 10: Comparison of Architectures on CMU_DoG Seen/Unseen. BART is used as the base Seq2Seq Model.

Inference We attempted to optimize the decod-
ing parameters of the models in the same way on
the validation set to optimize decoding strategy –
this included sweeping over beam size, minimum
beam length, and beam/context blocking, and used
F1 to measure performance. For the vast majority
of results, we employ beam search with a mini-
mum beam length of 20 and a beam size of 3, with
tri-gram beam blocking.

Wikipedia and FAISS To index the Wikipedia
passage embeddings, we used the Hierar-
chical Navigable Small World graph explo-
ration (HNSW) variant of a FAISS index (i.e.,
IndexHNSWFlat4), with an M value (number
of graph links in HNSW) of 128. The FAISS index
requires 80GB of RAM to load.

E Retriever Performance

We measure the performance of the various retriev-
ers considered by evaluating how often the top doc-
ument retrieved is the correct document or in the
top 5; that is, how often the gold knowledge sen-
tence used in WoW is contained within the passage
retrieved. Results are in Table 11.

F RAG Turn Further Explorations

We compare different values for T ∗, the effective
number of context turns considered by RAG-Turn,
in Table 13. We note that perplexity values in
general increase, while generation statistics stay
roughly the same or drop slightly. Knowledge F1
stays roughly the same, with marginal increases or
decreases depending on the model.

4https://github.com/facebookresearch/faiss/wiki/Faiss-
indexes

G Automated Metrics and Human
Evaluation

Rare F1: When comparing texts, F1 can be inflated
by exploiting common unigrams (Dinan et al.,
2019a). We attempt to rectify this by only con-
sidering words that are infrequent in the dataset
when calculating F1. We define a word as infre-
quent if it is in the lower half of the cumulative
frequency distribution of the reference corpus. For
each dataset, our reference corpus was all human
messages across all splits. We find some correlation
between this metric and Knowledge F1 for WoW
(see Table 1). We note that Knowledge F1 is only
available for datasets with labeled gold knowledge,
whereas Rare F1 can always be computed.

We calculate the Pearson correlation coefficient
between human evaluations and various automated
metrics, visualized in Figure 2. The models con-
sidered are those listed in Table 4. We find that
improvements in PPL, Knowledge F1, and Rare F1
correlate with an increase in the perceived knowl-
edge use and a reduction in hallucination. F1 had
relatively low correlation with all of the human
evaluation criteria considered.

H Additional Retrieval Variants

H.1 ColBERT

Khattab and Zaharia (2020) propose ColBERT as
a method of computing contextualized late-stage
interaction between the context and candidate rep-
resentations to improve ranking capabilities, and
indeed the method is extended to downstream gen-
erative QA models in Khattab et al. (2020). The
key to ColBERT is a maxsim operation, in which
the Transformer outputs of the context encoder are
compared to all outputs of the candidate encoder,
with the final score being a sum of the maximum
similarity scores for each context output. The au-



Retriever Retriever Valid Seen Valid Unseen
Retriever Pre-Training Fine-Tuning R@1 R@5 R@1 R@5
DPR NQ + TQA Zero-shot 5.8 13.8 4.9 11.1
DPR WoW Zero-shot 13.1 23.9 11.6 17.5
DPR NQ + TQA + WoW Zero-shot 13.1 23.9 11.1 16.6
RAG-DPR NQ + TQA WoW 28.1 36.8 25.7 33.7
RAG-DPR WoW WoW 25.9 35.6 22.9 33.4
RAG-DPR NQ + TQA + WoW WoW 26.2 35.1 23.3 34.0
DPR-Poly NQ + TQA WoW 29.3 37.6 26.9 34.0
PolyFAISS WoW WoW 23.9 32.0 19.7 28.3
ColBERT MS-Marco WoW 25.7 33.3 27.5 33.8
ColBERT WoW WoW 26.1 33.6 26.4 33.7
ReGReT (Separate) NQ + TQA WoW 25.3 35.1 24.0 32.5
ReGRet (Same) NQ + TQA WoW 26.6 35.7 23.7 33.2

Table 11: Comparison of Retrieval Ability of Architectures on WoW Valid Seen/Unseen. Each model retrieves
5 documents from an unstructured document set of 21m 100-word passages in Wikipedia. We measure passage
Recall@k (R@k) measures how often the gold sentence used by the wizard is contained in the top k retrieved
documents. All models use BART as a base seq2seq model

Valid Seen Valid Unseen
RAG Type PPL F1 Knowledge F1 B4 RL PPL F1 Knowledge F1 B4 RL
Retrieve over Most Recent Turn
Sequence 13.5 20.8 23.3 2.6 21.7 15.5 20.1 21.4 2.1 20.5
Token 13.8 21.1 22.3 2.6 21.7 15.8 21.1 21.0 2.0 20.8
Retrieve over Full Dialogue Context
Sequence 11.1 21.5 27.9 3.9 23.0 12.6 20.3 24.6 2.9 21.3
Token 11.6 22.5 26.0 4.0 23.5 13.4 21.8 22.7 2.7 21.7
Turn-DTT 11.9 22.2 28.0 4.1 23.4 13.6 21.1 24.3 2.7 21.4
Turn-DO 13.3 23.1 26.8 4.0 24.5 15.4 22.0 23.3 2.6 22.5
Turn-Tok 11.5 21.0 24.3 3.1 21.6 13.2 20.5 21.5 2.0 20.0
Turn-Seq 10.9 21.5 27.8 4.1 22.9 12.6 19.5 23.5 2.6 20.3

Table 12: Comparison of RAG Model Types on WoW Valid Seen/Unseen. Retrieval models are retrieving 5 doc-
uments over all of Wikipedia. We set T ∗ = 1 for RAG-Turn models, i.e., the last turn is considered independently
from the prior context turns. All models use BART as the base seq2seq model.

thors propose an end-to-end setup involving large-
scale search, where the token representations of
all candidates are stored in a FAISS index, queries
into the FAISS index are context outputs, and a
re-ranking step using the maxsim operation is per-
formed on a much smaller set of candidates. We
implement this method for retrieval-augmented di-
alogue, and simply denote it as ColBERT.

H.2 Iterative Retrieval

Several methods in the literature have shown that
using iterative retrieval strategies is an effective
way to improve retrieval (Khattab et al., 2020),
distill knowledge from the retriever to the reader
(Izacard and Grave, 2021a), and boost performance
in multi-hop or complex QA settings (Xiong et al.,
2021; Qi et al., 2020). Applying a similar tech-
nique to dialogue is easily motivated; intuitively,
assuming one has an appropriately expressive gen-
erative model, retrieval conditioned on the output
of the generator (trained to predict the ground truth
response y) should surface relevant facts for the
conversation. We thus consider an architecture that

involves two rounds of retrieval and generation,
where the second round retrieves according to the
generated output of the first round; the model is
trained to predict target labels taking into account
both stages. We denote this model ReGReT (re-
trieve, generate, retrieve, tune), and note that one
could use the same model for both rounds (Re-
GReT Same) or a separate model for both rounds
(ReGReT Sep).

H.3 Retriever-less Retrieval

Recent work has demonstrated that large pre-
trained models have some capacity to store knowl-
edge within their parameters (Petroni et al., 2019;
Roberts et al., 2020); some have shown that model
representations themselves can be used nearly out-
of-the-box for nearest neighbor retrieval of relevant
contexts to help in language modeling (Khandel-
wal et al., 2020), machine translation (Khandelwal
et al., 2021), and grounded dialogue (Fan et al.,
2021). We explore the efficacy of BART and T5
at encoding knowledge via utilizing their encoders
directly to encode both q(xi) and d(zj), allowing



Valid Seen Valid Unseen
RAG Turn Type T ∗ PPL F1 Knowledge F1 B4 RL PPL F1 Knowledge F1 B4 RL
Doc then Turn 1 11.8 21.9 27.7 4.1 23.2 13.6 21.1 24.3 2.7 21.4

3 12.1 21.7 27.3 4.0 22.9 13.8 20.8 24.3 2.6 21.2
Doc Only 1 13.3 23.1 26.8 4.0 24.5 15.5 22.0 23.3 2.6 22.5

3 14.4 22.7 27.1 3.9 24.1 16.7 21.9 22.8 2.9 22.3
Token 1 11.5 21.0 24.3 3.1 21.6 13.2 20.5 21.5 2.0 20.0

3 11.7 22.3 25.2 3.7 23.0 13.9 21.1 20.8 2.3 20.8
Sequence 1 10.9 21.5 27.8 4.1 22.9 12.6 19.5 23.5 2.6 20.3

Table 13: Comparison of T ∗ Values For RAG-Turn on WoW Valid Seen/Unseen. All models use BART as a base
seq2seq model, and retrieve 5 documents over all of Wikipedia.

PPL F1 Knowledge F1 Rare Word F1

Consistency

Engaging

Knowledge

Hallucinate

-0.3 0.65 0.13 0.75

0.6 0.1 -0.66 -0.4

-0.82 0.61 0.94 0.87

0.89 -0.55 -0.95 -0.84

Figure 2: Correlation of Automatic Metrics with Human Judgments. We plot the Pearson correlation coeffi-
cient between the human evaluations from Table 4 and automated metrics from the WoW Valid Unseen data. We
observe correlation between the Knowledge F1 and Rare F1 metrics with Knowledge and Hallucination human
evaluations, especially when compared to standard F1.

the full RAG model to propagate error from the
token losses to the encoder seen as a retriever and
as a generator, thus removing the requirement of
training and deploying a completely separate Trans-
former model for that goal. We draw inspiration
from the ColBERT setup, and use encoder outputs
as queries into FAISS, with a maxsim operation
computing final documents scores pη(zj |xi). We
refer to this model as BREAD (BART-Retriever-
Encoder-And-Decoder) for BART-based models,
and TREAD for T5-based models.

I Additional Relevant Ablations

We outline several more important questions when
considering these models.

I.1 Do different encoder-decoder
architectures affect performance?

Table 18 presents results on WoW comparing
across different encoder-decoder architectures and
sizes.

Architecture Comparison BART and T5 are
comparable in their performance when holding the
retrieval aspect constant. While perplexity mea-
sures are not directly comparable due to dictionary
differences, we see that generations from the mod-

els yield roughly the same generation metric results.
BlenderBot-400m performs comparably worse to
T5 and Bart.

Size Comparison With larger models we tend
to see a decrease in perplexity, indicating that
these models become more fluent with respect to
the dataset; however, generation statistics remain
roughly constant. In fact, for the BlenderBot mod-
els, increasing model size leads to decreasing per-
formance in the Knowledge F1 metric. This result
further motivates the need for additional metrics
beyond the standard ones when measuring prowess
on dialogue-based tasks. One hypothesis here is
that the large model is sacrificing knowledge use by
instead relying on its conversational fluency (given
that its perplexity is significantly lower).

I.2 Is a neural model trained for retrieval
necessary?

Table 19 shows the efficacy of retriever-less re-
trieval, comparing across different sources of
knowledge. When limiting the knowledge base
to all topics from Wikipedia that are present in
the WoW dataset – comprising 500k tokens across
3k documents – the BREAD (BART-Retriever-
Encoder-And-Decoder) model obtains similar per-



Test Seen Test Unseen
Method Knowledge Source PPL F1 B4 RL PPL F1 B4 RL
BlenderBot (Roller et al., 2021) None 8.72 18.8 1.3 10.4 17.8 0.7
BART (ours) None 14.7 20.9 1.7 20.3 18.9 18.7 0.9 18.4
GPT-2 Finetune (Zhao et al., 2020c) WoW 15.0 14.4 1.0 18.9 13.8 0.8
E2E Transformer MemNet (Dinan et al., 2019b) WoW 63.5 16.9 97.3 14.4
DRD (Zhao et al., 2020a) WoW 23.0 18.0 5.5 25.6 16.5 4.3
Two-Stage Transformer MemNet (Dinan et al., 2019b) WoW 46.5 18.9 84.8 17.3
DialoGPT Finetune (Zhao et al., 2020c) WoW 16.2 19.0 2.3 20.4 17.6 3.2
SKT (Kim et al., 2020) WoW 52.0 19.3 81.4 16.1
BART FK (Bruyn et al., 2020) WoW 12.2 20.1 14.9 19.3
KnowledGPT (Zhao et al., 2020b) WoW 19.2 22.0 22.3 20.5
KIF (Fan et al., 2021) WoW 23.9
KIF (Fan et al., 2021) WoW + Train Utts *25.9 *22.3
FiD-RAG (Ours) Wikipedia (WoW Subset) 10.5 23.2 4.4 24.2 10.7 23.2 4.6 24.4
RAG DPR-Poly (Ours) Wikipedia (All) 11.4 22.9 3.9 23.5 13.2 21.8 3.4 22.3
FiD-RAG DPR-Poly (Ours) Wikipedia (All) 10.7 22.9 4.1 23.8 12.0 22.1 3.7 23.1

Table 14: WoW Comparison to Existing Results. "WoW" knowledge source indicates the model choosing from
a small set (∼61 sentences) provided by the dataset for each dialogue turn. Methods with * augmented their
knowledge source with training utterances, which is useful on Test Seen data, but likely not as useful on Unseen
data. Our models use BART as the base seq2seq model; the RAG and FiD-RAG models retrieve 5 documents, and
the FiD-RAG DPR-Poly model retrieves 25.

Valid Seen Valid Unseen
Retriever Re-ranker PPL F1 KF1 B4 RL PPL F1 KF1 B4 RL
TFIDF None 13.1 21.6 23.0 3.3 22.5 15.2 21.1 21.6 2.4 21.1
DPR None 11.6 22.5 26.0 4.0 23.5 13.4 21.8 22.7 2.7 21.7
TFIDF DPR 12.5 21.8 23.1 3.4 22.6 14.5 21.4 20.2 2.2 20.9
DPR Polyencoder 11.7 23.0 26.5 4.0 23.9 13.1 22.6 24.4 3.4 22.6
Joint DPR Poly Polyencoder 11.6 23.0 27.4 4.3 23.9 13.1 22.1 24.7 3.1 22.1
PolyFAISS - 12.1 22.9 24.8 3.7 23.6 14.2 21.6 20.6 2.5 21.2
ColBERT - 12.4 21.8 25.3 3.3 23.1 13.5 21.9 24.7 3.2 22.4
BREAD - 14.8 20.5 17.7 1.7 20.6 17.3 19.8 17.2 1.3 19.5
ReGReT (Sep) None 11.9 22.6 26.9 3.9 23.9 13.6 21.6 24.1 2.9 21.9
ReGReT (Same) None 12.0 22.6 25.9 4.0 23.9 13.8 21.5 23.2 2.7 21.6

Table 15: Comparison of re-rankers for BART-based RAG-Token models on WoW Valid Seen/Unseen, using
5 retrieved documents.

formance to its DPR-retrieval counterpart. When
scaling to the first two paragraphs of all topics from
Wikipedia – comprising 1 billion tokens across
11 million documents, of the same order of mag-
nitude as the full Wikipedia knowledge source –
we see a slight reduction in performance, but the
BREAD model still effectively retrieves relevant
information, and improves upon a no-retrieval base-
line. However, when scaling to the full knowledge
source – comprising 3 billion tokens over 21 mil-
lion documents – we see that we are unable to
surpass even a no-knowledge baseline; we hypoth-
esize that the token-level similarities computed by
the BREAD model become increasingly noisy as
the knowledge source is scaled up: when a rele-
vant Wikipedia article is spread across several “pas-
sages”, as in our unstructured knowledge source
dump, it becomes difficult for the BREAD model
to identify precisely which sentence is relevant.

We find similar results when evaluating TREAD
models on the smallest knowledge source listed
in the previous paragraph. The TREAD mod-

els substantially outperform their non-retrieval-
augmented counterparts (e.g., F1 and knowledge
F1 improve from 19.3 and 14.6 without retrieval
to 22.1 and 24.1 with TREAD, respectively, on
the WoW Valid Seen split), however we do see
that their RAG/FiD counterparts perform better in
terms of knowledge F1 and perplexity.

I.3 Does the decoding strategy affect
performance?

We compare model outputs with various decoding
strategies in Table 20. We compare three decoding
methods: beam search, blocking repeated n-grams
(we use n = 3); nucleus sampling (Holtzman et al.,
2020) with varying values of p; and top-k sampling
(Fan et al., 2018) with k = 10. We additionally
compare whether to apply beam-blocking to the
context, i.e., blocking repeated n-grams that ap-
pear in the dialogue context only – n-grams in the
retrieved documents are not blocked.

We find that, across all retrieval schemes, beam-
blocking the dialogue context hurts performance



Retrieval Mechanism PPL F1 Knowledge F1 BLEU-4 ROUGE-L
None 14.7 15.6 4.3 0.7 15.6
FiD 15.3 15.4 4.4 0.6 15.6
RAG DPR 15.0 15.3 4.7 0.6 15.6
RAG DPR-Poly 14.7 15.1 4.8 0.7 14.9
FiD-RAG DPR 14.3 15.3 4.9 0.7 15.7

Table 16: Comparison of Retrieval Augmentations on CMU_DoG (Valid), original split. Retrieval models are
retrieving over all of Wikipedia. All RAG models are RAG-Token and use BART as the base seq2seq model.

Method PPL F1 B4 RL
No Knowledge

BART (ours) 14.6 15.9 0.8 16.9
CMU_DoG Knowledge

BCTCE (Cai et al., 2020) 17.8 1.4
CAT (Ma et al., 2020) 15.2 1.2 11.2
GPT-2 Finetune (Zhao et al., 2020c) 16.5 9.4 0.6
DRD (Zhao et al., 2020a) 54.4 10.7 1.2
DialoGPT Finetune (Zhao et al., 2020c) 15.9 13.7 1.5
KnowledGPT (Zhao et al., 2020b) 20.6 13.5

All of Wikipedia
RAG DPR-Poly (Ours) 14.4 15.8 0.9 16.9
FiD-RAG DPR-Poly (Ours) 14.4 15.9 0.9 17.1

Table 17: CMU_DoG Comparison to Existing Results (Test), original data split. Our models use BART as the
base seq2seq model. Both the RAG DPR-Poly model and FiD-RAG model retrieve 5 documents.

Valid Seen Valid Unseen
Seq2Seq Size PPL F1 KF1 PPL F1 KF1
BB-90m 90m 13.4 21.4 23.9 15.9 21.1 21.3
BB-400m 400m 9.2 21.1 23.2 10.4 19.9 20.5
BB-3B 3B 8.2 21.1 20.2 9.1 20.9 18.7
T5-Base 220m 11.5 21.9 25.5 13.6 21.2 22.4
T5-Large 770m 9.7 22.6 25.2 11.2 21.7 22.9
BART-
Large

400m 11.6 22.5 26.0 13.4 21.8 22.7

Table 18: Comparison between different seq2seq
models (BlenderBot (BB), T5, and BART) on WoW
Valid Seen/Unseen. All models use RAG-Token archi-
tectures with DPR Retrieval, retrieving 5 documents at
inference time. Perplexity (PPL) values are not com-
parable across different generator architectures as they
use different dictionaries.

– presumably because the model may be blocked
from discussing named entities from prior context
turns – with beam search yielding the highest F1
scores across the board. Despite the fact that beam
search and nucleus sampling (with low p) yield
comparable ROUGE-L and F1 scores, we see a
noticeable difference in knowledge F1, implying
that nucleus sampling may still be good at produc-
ing fluent/consistent generations while ultimately
suffering increased hallucination. Using nucleus
sampling with a higher p value (which increases
the variety of sampling) and using top-k sampling
both result in poor relative performance for all four
metrics, implying higher levels of hallucination
and less coherent responses.

I.4 Does retriever and/or re-ranker
pre-training affect performance?

We explore the effects of pre-training the neural re-
triever to help prime it for dialogue-based retrieval.
To do so, we consider WoW knowledge selection as
an appropriate pre-training task: given a dialogue
context and a set of candidate knowledge sentences,
choose the sentence on which to next ground a
response. For standard RAG-DPR methods, we
try both fine-tuning 1) a DPR model pre-trained
on Natural Questions (Kwiatkowski et al., 2019)
and Trivia QA (Joshi et al., 2017) and 2) a BERT
model from scratch on the WoW knowledge selec-
tion task, and substitute these in for the standard
QA-pre-trained DPR retriever from our base setup;
we explore similar pre-training ablations with the
ColBERT model. Results are in Table 21; we see
minimal performance gains from such pre-training,
and conclude that as long as the retriever is in a
good state, it will work in the fine-tuning setup.

We see similar results when comparing pre-
training strategies for the DPR-Poly re-ranker
model in Table 21; pre-training the re-ranker does
not yield noticeable downstream gains.

I.5 Does the source of knowledge matter?

We explore the downstream effect of swapping in
different sources of knowledge. Because the distri-
bution of the topics within Wizard of Wikipedia is



Valid Seen Valid Unseen
Src Arch. PPL F1 KF1 PPL F1 KF1
BART
A RAG-DPR 11.6 22.5 26.0 13.4 21.8 22.7
A FiD-RAG 13.1 22.0 22.1 15.1 21.6 20.4
A BREAD 14.8 20.5 17.7 17.3 19.8 17.2
B RAG-DPR 10.9 23.2 27.9 12.4 22.4 23.7
B FiD-RAG 12.3 22.7 24.5 14.0 22.2 22.9
B BREAD 13.7 21.7 22.9 15.3 21.1 21.6
B BREAD-FiD 12.8 22.4 25.2 14.5 21.7 23.4
C RAG-DPR 10.7 23.3 28.3 11.7 23.0 26.3
C FiD-RAG 10.5 23.5 28.4 11.4 23.7 27.9
C BREAD 12.1 23.2 28.5 13.4 23.0 27.6
C BREAD-FiD 11.3 23.3 27.7 12.6 23.3 26.2
T5
C RAG-DPR 9.0 23.3 26.8 9.8 22.6 24.6
C FiD-RAG 9.0 22.7 29.3 9.8 23.0 29.4
C TREAD 11.0 22.1 24.1 12.8 21.8 22.9
C TREAD-FiD 10.6 22.3 23.4 12.0 22.0 22.4

Table 19: Comparison between DPR Retriever mod-
els (RAG and FiD) and “retriever-less” BREAD and
TREAD models on WoW Valid Seen/Unseen, with
varying knowledge sources: A: All of Wikipedia; B:
First 2 paragraphs from all of Wikipedia; C: First
two paragraphs from all articles covered by the WoW
dataset. All models retrieve 5 documents during train-
ing and inference. Perplexity (PPL) values are not com-
parable across different seq2seq architectures as they
use different dictionaries.

known, we can limit our model’s source of knowl-
edge to contain the smallest subset of Wikipedia
yielding full coverage of the dataset, resulting in
nearly 3000 documents from which to retrieve. As
the retrieval task is now easier, we see noticeable
performance gains when substituting this source of
knowledge, see Table 22.

I.6 How does the number of documents
retrieved/re-ranked affect performance?

We conclude our ablation studies with an analysis
on the number of documents retrieved. Table 23
outlines how each backbone architecture handles
increasing the number of documents considered
during inference.

For backbone architectures designed to consider
several documents jointly - namely, RAG-Token
and FiD-RAG - increasing the number of retrieved
documents yields improvements in perplexity and
F1 measures. However, we see substantial dropoffs
in Knowledge F1 measures, which might imply that
the models begin to hallucinate more and more, a
claim that is supported in the human annotations,
where we see in Table 4 that increasing the number
of documents for these models yields higher levels
of hallucination.

For RAG-Sequence models, which consider each
document separately, increasing the number of re-

trieved documents improves perplexity measures
and maintains both Knowledge F1 and BLEU mea-
sures; however, F1 scores appear to drop for any
amount of documents beyond a single one. We
hypothesize that by considering more and more
generations we are effectively increasing the beam
size and finding generations that match the knowl-
edge more and more, while straying further away
from engaging, dialogue-like responses; indeed,
the RAG-Sequence model in Table 4 only uses 5
retrieved documents, and human evaluations indi-
cate that the model still is less often engaging than
its counterparts.

Overall, the number of re-ranked documents
does not seem to improve performance substan-
tially, so we land on 25 documents re-ranked to
keep computational overhead to a minimum.



No Retrieval RAG DPR-Poly FiD-RAG DPR-Poly
Decoding Strategy Context Block F1 KF1 B4 RL F1 KF1 B4 RL F1 KF1 B4 RL
Beam No 20.9 17.6 1.7 20.7 23.1 26.5 4.0 24.0 22.8 27.8 4.1 24.1
Beam Yes 20.6 17.1 1.7 20.4 22.9 25.9 4.1 23.9 22.5 26.7 3.9 23.8
Nucleus: p = 0.3 No 20.6 16.0 1.4 20.3 23.0 24.0 3.6 24.2 22.5 23.5 3.5 23.6
Nucleus: p = 0.3 Yes 20.1 15.6 1.4 19.9 22.9 23.9 3.7 24.1 22.0 22.9 3.4 23.1
Nucleus: p = 0.9 No 17.1 13.6 0.6 17.0 19.3 19.3 1.9 19.8 19.4 20.2 2.3 20.0
Nucleus: p = 0.9 Yes 16.6 13.2 0.6 16.8 19.2 18.9 1.8 19.6 19.6 19.8 2.3 20.4
Top-k: k = 10 No 18.0 14.4 0.7 18.0 19.8 19.0 1.8 20.3 20.2 19.9 2.2 20.8
Top-k: k = 10 Yes 17.5 14.0 0.5 17.5 19.7 18.8 1.8 20.1 19.7 20.2 2.2 20.2

Table 20: Comparison of Decoding Strategies For models with and without retrieval-augmentation. Evaluations
are conducted on the WoW Valid Seen. Retrieval models are retrieving 5 documents over all of Wikipedia. We
set the minimum beam length to 20, and block tri-grams during beam search. All models use BART as the base
seq2seq model.

Valid Seen Valid Unseen
Pre-training
Data PPL F1 KF1 PPL F1 KF1
DPR
NQ + TQA 11.6 22.5 26.0 13.4 21.8 22.7
WoW 12.1 22.7 26.2 13.4 22.1 24.4
NQ + TQA + WoW 12.1 22.7 25.8 13.7 22.0 23.0
ColBERT
MS-Marco 12.4 21.8 25.3 13.5 21.9 24.7
WoW 12.6 21.8 26.1 13.6 21.4 24.9
DPR-Poly and Joint DPR/Poly
WikiTo 11.7 23.0 26.5 13.1 22.6 24.4
NQ + TQA 11.6 23.0 27.4 13.1 22.1 24.7

Table 21: Comparison between different
retriever/re-ranker pre-training schemes on
WoW Valid Seen/Unseen. All models use BART as the
base seq2seq model.

Valid Seen Valid Unseen
Src Type PPL F1 KF1 PPL F1 KF1
A P 11.6 22.5 26.0 13.4 21.8 22.7
B P 10.9 23.2 27.9 12.4 22.4 23.7
B S 13.2 22.3 23.9 15.5 21.5 20.1
C P 10.7 23.3 28.3 11.7 23.0 26.3
C S 12.8 22.2 24.8 14.4 21.5 21.7

Table 22: Comparison between using different
sources of knowledge on WoW Valid Seen/Unseen.
All models are BART RAG-Token with DPR Retrieval.
A: All of Wikipedia; B: first two paragraphs from all
articles in Wikipedia; C: first two paragraphs from all
articles in Wikipedia covering the WoW dataset. P: full
passages are used; S: sentences are separate passages.

Valid Seen Valid Unseen
# Docs PPL F1 KF1 PPL F1 KF1
RAG-Token
1 12.8 21.9 27.6 15.3 20.5 23.8
5 11.6 22.5 26.0 13.4 21.7 22.7
25 11.6 22.6 24.5 13.0 21.7 21.1
50 11.6 22.4 23.9 13.0 21.8 20.6
RAG-Sequence
1 12.5 22.1 27.4 14.6 21.1 24.3
5 11.1 21.5 27.9 12.6 20.3 24.6
25 10.6 21.3 27.8 11.4 20.0 24.3
50 10.5 21.2 27.8 11.2 19.9 24.3
RAG-Turn-DTT
1 12.7 21.3 28.3 15.0 20.1 24.9
5 11.8 21.9 27.7 13.6 21.1 24.3
25 11.7 22.2 26.8 13.2 21.6 23.3
50 11.9 22.2 26.4 13.7 21.7 22.7
RAG-Turn-DO
1 14.2 22.2 28.1 16.9 21.3 24.7
5 13.3 23.1 26.8 15.5 22.0 23.3
25 13.3 23.1 24.8 15.1 22.2 21.1
50 13.3 22.6 23.7 15.2 22.0 20.0
FiD-RAG
1 13.0 21.5 28.5 15.5 20.5 23.0
5 11.0 22.9 27.7 12.7 22.0 25.5
25 11.1 22.3 21.2 12.1 22.7 22.3
50 11.7 21.4 18.0 12.6 22.1 19.1
100 12.7 20.4 15.9 13.6 21.4 16.6

Table 23: Comparison of the effect of conditioning
over different numbers of documents at inference
time for different models on WoW Valid Seen/Unseen.
All models use a DPR retriever, with BART as the base
seq2seq model.


