
Pixel Codec Avatars:
Supplemental Document

Shugao Ma Tomas Simon Jason Saragih Dawei Wang
Yuecheng Li Fernando De La Torre Yaser Sheikh

Facebook Reality Labs Research
{shugao, tsimon, jsaragih, dawei.wang, yuecheng.li, ftorre, yasers}@fb.com

A. More Qualitative Results
Please see the supplemental video for results. It con-

sists of two parts. The first part shows the decoding result
of our method with PiCA (Full) at novel viewing direc-
tions and distances that are unseen during training, for
a sentence-reading test sequence. In the video, one can see
that the rendered face is highly photorealistic, even though
both the viewing direction and distance, as well as the facial
expressions are all unseen during training. Note that while
there are some visible artifacts in the eye region, achieving
photorealistic looking eye appearance is a very challenging
task [2], and having explicit eye modeling is future work.
The second part shows some test expressions at novel test
views. We also flip to the rendering results by the baseline
method for comparison at certain frames. In particular one
can see the teeth, tongue and month shape are all better re-
constructed by PiCA. Note the video is compressed due to
submission file size limit.

B. Architecture Details
B.1. Encoder and Decoder Architectures

Encoder The encoder consists of three major components:
the tex-head, geom-head and the tex-geom-encoder. The
tex-head has two blocks of conv+leakyrelu, where the conv
for both layers have kernel size 4, stride 2. The first one
has 512 output channels, and the second has 256 chan-
nels. The geom-head has one block of conv+leakyrelu
where the conv has kernel size 1, stride 1 and output chan-
nel number 256. The output of tex-head and geom-head are
both 256x256x256, and are concatenated and passed to tex-
geom-encoder, which has 5 blocks of conv+leakyrelu. The
kernel size and stride are all 4 and 2 for all conv, while the
output channel numbers are 128, 64, 32, 16 and 8 respec-
tively. The output of tex-geom-encoder is further passed to
two separate 1x1 conv layers to produce mean and variance.
leakyrelu always having leaky threshold set to 0.2.

Per-Object Decoder This decoder decodes the local ex-

pression code and the dense mesh from the latent code
which is of dimension 8x8x4. It consists the geometry de-
coder, containing 5 blocks of the building block showing
in Fig. 3b in the main text, with output channel numbers
32, 16, 16, 8, 3 respectively. The output size is 256x256x3,
from which the dense mesh can be retrieved using the uv
coordinates of the mesh vertices. The expression decoder
takes the concatenated latent code and view direction as in-
put, which is of size 8x8x7, and it contains 5 building blocks
as showing in Fig. 3b as well, with output channel numbers
32, 16, 16, 8, 4 respectively. Note in both cases the first
conv in the block in Fig. 3b has a per-channel per-spatial
location bias parameter, following [1].

Pixel Decoder The entries in the 2D and 1D encoding maps
in the pixel decoder are initialized to have uniform dis-
tribution in the range [-1, 1]. The 3D coordinate input
(x,y,z) are first converted to a 4-dimensional vector via a
two layer SIREN with output channel numbers 4 and 4 re-
spectively, and then it is concatenated with the encoded uv
(8-dimension) and the local expression code to form a 16
dimensional input to the final SIREN. The final SIREN has
4 layers with output channel numbers 8, 8, 8, 3 respectively
to compute the RGB color at a pixel.

B.2. Geometric Smoothness

To recap, G ∈ Rw×w×3, with w=256, is a decoded po-
sition map describing the geometry, and S(·) : Rw×w×3 →
RNV ×3 is a function that bilinearly interpolates the position
map at the vertex uv locations to produce face-centric xyz
locations for the set of NV mesh vertices, where NV is the
number of vertices in a fixed mesh topology. Our geometric
smoothness regularization term LS combines two common
gradient-based smoothness energies,

LS = λg [||Dx(G)||2 + ||Dy(G)||2] (1)
+ λl||WLL(S(G)−Vµ)||2, (2)

where we identify:

Gradient Smoothness. Linear operators D∗ compute the
x and y derivatives of the position map using finite differ-
ences. These terms prevent large changes across neighbor-
ing texels in the position map itself.
Mesh Laplacian. The linear operator L ∈ RNV ×NV

represents the mesh Laplacian discretized using cotangent
weights [3] computed on the coarse neutral input mesh.
Here, Vµ ∈ RNV ×3 is a mean face mesh used as a reg-
ularization target. The diagonal matrix WL ∈ RNV ×NV

weights the regularization on hair and mouth vertices at 1.25
and the remaining vertices at 0.25. This regularization pre-
vents the differential mesh coordinates (as computed by the
mesh Laplacian) from deviating excessively from the regu-
larization target.

The regularization target Vµ is initialized with the coarse
neutral mesh geometry. However, because the coarse ge-
ometry lacks detail in the mouth, hair, and eye regions, us-
ing it as a regularization target tends to oversmooth these
areas. Therefore, we update the target on the fly during
training using exponential smoothing, obtaining a slowly-
changing, moving average estimate of the mean face geom-
etry at dense resolutions. At every SGD iteration, we update
Vµ as follows:

Vµ ← (1− λµ)Vµ + λµ
1

B

B∑
b=1

S(Gb), (3)

where λµ = 1e−4 and b ∈ {1. . .B} iterates over samples
in the SGD batch. No SGD gradients are propagated by the
update in Eq. (3).

In our experiments, we set λl = 0.1 and λg = 1.

B.3. Differentiable Rasterizer
We use a differentiable rasterizer for computing the

screen space inputs given dense mesh and local expression
code map, as illustrated in Fig.2 in the main text. Note that
the geometry information affects the final decoded image
via two gradient paths: one is in the rasterization, and the
other is as input to the pixel decoder. We empirically found
that allowing gradient from the image loss to pass to the ge-
ometry decoder from both paths leads to unstable training
and geometry artifacts, so we disable the second gradient
path mentioned above to achieve stable training. Intuitively,
this is to enforce that the geometry decoder should focus on
producing correct facial shape, instead of coordinating with
the pixel decoder to produce correct color values.

References
[1] Stephen Lombardi, Jason Saragih, Tomas Simon, and Yaser

Sheikh. Deep appearance models for face rendering. ACM
Trans. Graph., 37(4), 2018.

[2] Gabriel Schwartz, Shih-En Wei, Te-Li Wang, Stephen Lom-
bardi, Tomas Simon, Jason Saragih, and Yaser Sheikh. The
eyes have it: An integrated eye and face model for photoreal-
istic facial animation. ACM Trans. Graph., 39(4), 2020.

[3] Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa,
Christian Rössl, and Hans-Peter Seidel. Laplacian surface
editing. In Proceedings of the EUROGRAPHICS/ACM SIG-
GRAPH Symposium on Geometry Processing, pages 179–188.
ACM Press, 2004.

