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Typing with ten fingers on a virtual keyboard in virtual or augmented reality exposes a challenging input interpretation problem.

There are many sources of noise in this interaction context and these exacerbate the challenge of accurately translating human

actions into text. A particularly challenging input noise source arises from the physiology of the hand. Intentional finger movements

can produce unintentional coactivations in other fingers. On a physical keyboard, the resistance of the keys alleviates this issue.

On a virtual keyboard, coactivations are likely to introduce spurious input events under a naive solution to input detection. In this

paper we examine the features that discriminate intentional activations from coactivations. Based on this analysis, we demonstrate

three alternative coactivation detection strategies with high discrimination power. Finally, we integrate coactivation detection into a

probabilistic decoder and demonstrate its ability to further reduce uncorrected character error rates by approximately 10% relative and

0.9% absolute.
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1 INTRODUCTION

The freedom afforded by modern virtual and augmented reality headsets providing egocentric hand tracking encourages

the exploration of effective bare-handed mid-air text entry methods. Ten finger typing is a familiar and efficient text

entry strategy in conventional computing environments and with further hand tracking improvements may become

feasible on virtual and augmented reality headsets. Mid-air typing with ten fingers suffers, however, from the lack of a

fixed physical reference frame and passive resistance to key presses. This fundamental distinction from typing on a

physical keyboard exposes the nontrivial challenge of discriminating intended finger movements from those produced

by coupled motion of the hand and fingers. In this paper, we examine the features that distinguish intentional finger

movements from unintentional finger movements in mid-air typing. For conciseness, we subsequently refer to these

unintentional finger movements as coactivations.

A simple and highly extensible strategy for providing a virtual keyboard is the virtualization of the input surface.

Intersections between the tracked fingertips and this virtual surface can thus be treated as input observations. Under

this detection strategy, however, coactivations that intersect with the input surface introduce spurious observations.
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Unintentional observations that insert corresponding characters into the input field are frustrating to users and likely

to yield high error rates.

The input detection strategy based on intersections with a virtual surface (described above) is simple and effective

but suffers more from coactivations than other potential strategies. A deep neural network might, for example, be

trained to decode tracked finger movements directly into characters or words and learn to ignore finger coactivations.

This approach is, however, less extensible than the virtualized input surface and would necessitate large amounts

of user data which is currently difficult to collect and not widely available. In this paper, we present the design of a

novel software module capable of detecting coactivations based on interpretable dynamic features of finger motion

while typing. This design strategy ensures that the proposed technique has utility beyond the confines of the specific

keyboard configuration examined. Further, the module is readily integrated into a probabilistic decoding framework

based on the virtual input surface paradigm to complement deletion assessments for input observations in the decoder.

To better understand coactivations and evaluate detection strategies, we leverage a dataset previously collected by

Dudley et al. [6] of 24 users typing on a mid-air virtual keyboard with high-precision finger tracking. We mine this

dataset to develop an understanding of the causal factors and distributions related to coactivations. This understanding

supports the identification of the dominant features that distinguish coactivations from intended finger movements.

The dataset is subsequently partitioned to evaluate the performance of three alternative detection strategies in terms of

detection accuracy. Finally, to demonstrate the utility of the developed technique we integrate coactivation detection

functionality into a probabilistic input decoding framework. The key contributions of this paper are therefore:

(1) A characterization of coactivations as encountered in ten finger mid-air typing in virtual reality.

(2) An exposition of the features that distinguish coactivations from intentional finger movements in this setting.

(3) Three coactivation detection strategies based on the identified features, evaluated on the partitioned dataset.

(4) An integration of coactivation detection into a statistical decoder and a demonstration of the benefit coactivation

detection can provide in reducing character error rates.

2 RELATEDWORK

This work is informed by prior research efforts exploring mid-air text entry and other more general studies examining

synergistic movements in the hand. These two areas are briefly reviewed in the following subsections.

2.1 Mid-Air Text Entry

There have been many mid-air text entry strategies proposed and evaluated but no dominant method has emerged

[4, 7, 10, 12]. Bowman et al. [4] evaluated four different text input techniques for immersive virtual environments: speech,

glove, pen and chording keyboard approaches achieving 13wpm, 6wpm, 10wpm and 4wpm respectively.Bowman

et al.’s work serves to highlight that different techniques offer certain trade-offs in terms of speed and accuracy, and

that the most appropriate choice may depend on context.

The virtualization of the keyboard opens up new opportunities in terms of exploring exotic key layouts [22, 31] and

interactions [3, 14, 19, 21, 27]. However, the Qwerty layout and touch - interaction remain the de-facto standard in

modern computing and it is highly desirable to leverage this familiarity where possible. ATK [30] demonstrates the

potential (29wpm) of 10 finger mid-air typing with fingers tracked using a leap motion. Dudley et al. [6] investigated

the performance limits of typing on a virtual keyboard in VR. Users were observed to have significant difficulty in

effectively utilizing all ten fingers in this setting [6]. Nevertheless, participants achieved notional entry rates in the
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order of 30 to 35wpm on a mid-air virtual keyboard with ten fingers, albeit with relatively high error rates [6]. These

results suggests that traditional designs fail to fully support the user in ten finger typing on a virtual keyboard. Others

have tackled related mid-air text entry scenarios, such as for supporting input on large wall displays Markussen et al.

[18, 19], Shoemaker et al. [25]. However, such contexts rarely demand prolonged or high rate text input.

The new capabilities afforded by virtual keyboards also expose new challenges. For example, mid-air text entry

can quickly become uncomfortable due to the need to maintain the arm cantilevered in space. Yanagihara et al. [29]

describe a curved virtual keyboard for word-gesture text entry, in part designed to reduce fatigue. Another important

consideration exposed in VR is how best to represent hands and fingertips to support text entry [11, 17]. These studies

and the broader related work covered in this section highlight that supporting efficient and enjoyable text entry in VR

is non trivial. An effective solution, particularly when all ten fingers are engaged, hinges on being able to mitigate the

aspects that make a virtual keyboard distinct from a physical keyboard.

2.2 Unintended Finger Movements in Typing

Our hands are capable of an extremely wide range of both dynamic and fine motion. This is achieved by a complicated

structure consisting of several types of tissue including tendons, ligaments, and muscles [16, 20, 28]. The variety of

tissues connecting different components within the hand also imposes certain constraints. For example, the middle

and ring digits share ligaments and other connective tissues which prevents one from moving through its full range of

motion without movement of the other.

As well as being physically constrained, the movement of our muscles is also constrained by our neuromuscular

system. These constraints are used to reduce the number of degrees of freedom that need to be independently controlled,

making it easier to control a group of muscles at once [24]. These physical and neuromuscular constraints combine to

make it difficult to control one muscle without unintentionally moving other ones. This coupled motion of the human

digits is fundamental to the mechanisms that cause coactivations. Understanding these mechanisms may provide useful

insights into how best to detect them. Soechting and Flanders [26] investigated the 22 degrees of freedom of the hand

and fingers and found hierarchical relationships between these degrees of freedom producing consistent repeatability

of given keystrokes. This indicates that the nervous system imposes constraints to reduce the number of independent

degrees of freedom of the hand. Baker et al. [1, 2] explore the angles, velocities and accelerations of the finger joints

during typing on standard and ergonomic keyboards. Baker et al. [2] found that user hand kinematics adapt to the

environment imposed by the keyboard configuration. This work provides a useful reference regarding the dynamic

movements occurring during typing and suggests that users of a virtual keyboard will also adjust their behaviour

based on the keyboard shape. Particularly informative to this work, Fish and Soechting [9] investigated the correlations

between finger lengths and between finger orientations during typing tasks. Fish and Soechting [9] found that in most

cases there was significant correlation between digits and that the highest was between neighbouring digits. They also

found that while digits move in coordinated motions, once one was needed to complete a task, it was decoupled from

the group and the correlation dropped substantially. This work was however performed on a physical keyboard with

passive resistance provided by the keys. This differs from the setup used in this project, but it is expected that these

observations will be relevant because up to the moment a digit contacts a key, its motion is unrestricted, which is true

for both setups.

Häger-Ross and Schieber [15] investigated the degree to which human fingers can be moved independently. The

objective of this study was to determine whether humans move other digits when attempting the move just one and, if

so, quantify this movement. Häger-Ross and Schieber [15] showed that there was significant motion of the digits that
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were intended to be held stationary. These results agree with the findings of Fish and Soechting [9]. Individuation is

used as a metric to indicate how much other digits move when the digit of focus moves while stationarity measures

how little the digit of focus moves when each of the other digits move. The thumb and index finger were found to have

the greatest individuation and stationarity from the other digits, followed by the pinky finger, with the middle and ring

fingers having the least [9]. This suggest that the middle, ring and pinky digits are more likely to cause coactivations.

Feit et al. [8] provide a complementary perspective by identifying common typing behaviours as patterns from an

interaction rather than kinematic point of view. Although pursuing a fundamentally different approach to text, Sridhar

et al. [27] highlight the issue of coactivations in mid-air text entry. In summary, although finger coactivations is a well

recognized issue in text entry there has been limited specific exploration of its characteristics in mid-air virtual typing.

Further, there are no established methods for detecting or mitigating spurious observations arising from coactivations.

3 APPROACH

As briefly outlined in section 1, we first seek to understand when and how coactivations occur before attempting to

detect and eliminate them. This approach sits in contrast to, for example, a deep-learning strategy that might circumvent

the need for understanding the mechanisms that produce coactivations. The motivation behind this strategy is: i) to

provide a generalizable characterization of coactivations in mid-air ten finger typing; ii) to avoid the requirement for

very large amounts of training data; and iii) to deliver a detection strategy that can be readily adapted to alternative

keyboard configurations. This results in an understanding of coactivations that is relevant beyond the specific confines

of this study and an approach to detection that is easily realized by others. This investigation therefore involves two

distinct stages: Stage 1) understanding when and how coactivations occur; and Stage 2) implementing and evaluating

strategies for coactivation detection and elimination.

In Stage 1, we begin by studying the occurrence of coactivations in a recorded dataset [6] of 24 users typing on a

mid-air virtual keyboard in VR. The dataset contains precision finger tracking data captured while users transcribe set

phrases (170 phrases per user). Users were not given the facility to correct errors when encountered, however, an oracle

strategy (detailed in [6]) was used to simulate the effect of typing with high quality auto-corrections. This configuration

was used to capture representative data of how users would type under ideal conditions. The dataset was manually

reviewed to identify possible characteristics of coactivations. This analysis is reported in section 4. The outcome of

Stage 1 is an improved understanding of the nature of coactivations encountered in ten finger mid-air typing.

In Stage 2, the discriminative power of each of the possible characteristics identified in Stage 1 is evaluated to

determine their potential as features in a feature vector. The promising features are then used to construct three

alternative coactivation detection techniques: naïve Bayes, support vector machine, and neural network. The careful

approach taken in Stage 1 ensures that these detectors achieve high accuracy with minimal features. Finally, the best

performing model, the neural network, is incorporated into an existing statistical decoder. This provides a demonstration

of how coactivation detection can support reduced error rates in mid-air ten finger typing.

4 UNDERSTANDING COACTIVATIONS

The mid-air ten finger typing dataset was manually reviewed to identify the circumstances in which coactivations

occur. We limited this analysis to coactivations specifically causing unintended input observations. This review also

provided an initial set of features distinguishing a coactivation from an intended finger movement.
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(a) Count of coactivations.
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(b) Count of intended touch events.

Fig. 1. Distribution of intended and coactivated touch events by
each digit of each hand.
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(a) Left hand.
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(b) Right hand.

Fig. 2. Ratio of coactivations cause by each digit of each hand
compared to the total number of times that digits was used.

4.1 When and Where do Coactivations Occur?

Coactivations can be divided into two types characterized by the order of the intended and unwanted key selection. If

the intended key is selected first, the unwanted key is a post-intended-coactivation and if the unwanted key is selected

first is it a pre-intended-coactivation. Post-intended-coactivations made up 3.5% of touch events recorded in the dataset

and the majority (91%) of all coactivations. Subsequent references to coactivations imply the combined group of post-

and pre-intended-coactivations, however, we limit the scope of coactivation detection and mitigation to post-intended-

coactivations since: i) these are the overwhelming majority of coactivations; and ii) post-intended-coactivations can be

dealt with immediately in a relatively simple online detection implementation.

As outlined in section 2, coactivations are caused by the coupled motion of a pair of digits. We hypothesized that

the occurrence of coactivations would vary depending on which finger is involved in a key press and, related to this,

which key on the layout this press is targeting. The distribution of coactivation counts per digit is shown in Figure

1(a). In Figure 1(a) and throughout we use the following initials for conciseness: (T)humb, (I)ndex, (M)iddle, (R)ing,

(P)inky, right hand (RH), left hand (LH). This figure shows that the majority of coactivations observed were caused by

the ring digit and not the pinky finger as expected. This figure also shows that the right hand was responsible for two

thirds of the coactivations which is consistent with a right handed bias among participants. Figure 1(b) shows the same

hand split for intended counts, which was equated to the underlying hand usage. Normalizing the coactivation count

per hand by hand usage yields an approximately equal portion of coactivations per hand. This indicates that neither

hand is more prone to coactivations. The prior probabilities of each digit to cause a coactivation was also calculated

and are shown in Figure 2. This figure shows that the ring and pinky fingers produce a much higher proportion of

coactivations than the other digits.

The normalized proportion of ordered pairs of digits containing a post-intended-coactivation is shown in Figure 3

along with their standard errors. There are 40 pairs in total, each digit followed by another digit on the same hand.

Coactivations, by definition, cannot be caused by the same digit although this case is included in the graph for clarity of

presentation. Figure 3 shows that the majority of post-intended-coactivations are caused by a digit less dominant to

the intended one. For example, coactivations of the middle, ring and pinky occur after the intended use of the index

digit, coactivations of the ring and pinky occur after intended use of the middle digit, and so on. It also shows that

the intended use of the middle digit followed by a post-intended-coactivation of the ring digit makes up a significant

proportion of the times that pair is used, consistent with observations made by Häger-Ross and Schieber [15].
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Fig. 3. Ratio of coactivations cause by each pair of digits, of each hand compared to the total number of times that pair of digits is
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Fig. 4. Coactivation count distribution over the letters of the keyboard.

The distribution of coactivations across the layout was analyzed by plotting the raw and normalized coactivation

count per letter as heat-maps, shown in Figures 4(a) and 4(b), respectively. These figures reveal that coactivations occur

most frequently at the sides of the keyboard closest to the ring and pinky digits. Also, there are higher counts on the

right side, consistent with the hand usage shown in Figure 1. The normalized figure shows the majority of the edge key

events were coactivations. These results offer an insight into the prior probability for each key to be coactivated.

4.2 Features Indicative of a Coactivation

Four features hypothesized to be indicative of a coactivation were identified through the dataset inspection exercise and

with reference to the literature examining coupled finger movement. These are: i) digit depth of travel; ii) digit velocity;

iii) inter-key interval; and iv) averaged digit velocity correlation. Each of this features are briefly described below.

4.2.1 Digit Depth.

Coactivating digits were observed to typically trail behind the intended digit. There were many cases in the dataset

where, upon a touch event, the coactivating digit would reach a shallower depth before both digits were retracted.
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4.2.2 Digit Velocity.

The intended activation of a digit produces a motion path with a given velocity. As the motion of coactivating digits is

not intended, we hypothesize that these digits move with a lower velocity than the intended digit, particularly at the

point of intersection with the virtual keyboard plane.

4.2.3 Inter-Key Interval.

Due to inherent limitations in motor skills and the speed at which one can process information, there is an upper bound

on realistic entry rates. Dhakal et al. [5] found the average fast typist had an interval between touch events of around

120 ms and a lower bound of around 60 ms. For a typical user, this suggests that touch events within 120 ms are likely to

be unintended and ones within 60 ms are almost certainly unintended. The interval between touch events is therefore a

likely indicator of coactivations.

4.2.4 Averaged Digit Velocity Correlation.

Coupled motion of digits causing a coactivation was observed to exhibit similar motion paths between digits. This

observation is consistent with Fish and Soechting [9], who found that while typing there is a reasonable degree of

correlated digit movement when the digits were not engaged in a keypress task. Once a digit was selected for a task,

its correlation to the other digits decreased substantially. It seems reasonable to assume that this decoupling may not

always occur in the virtual keyboard setting given the lack of physical resistance. This motivates consideration of

correlation in the average digit velocity profile of two digits as an indicator of coactivations.

5 FEATURE EVALUATION

The four potential features identified in section 4.2 are now analyzed by plotting histograms of the intended and

coactivated touch events. This distribution analysis was performed with half of the dataset (i.e. data from 12 of the 24

participants) to maintain the remainder as an unseen validation set. The intended and coactivated distributions are

compared to determine the effectiveness of each as a discriminative feature. Note that in subsequent descriptions, the

keyboard frame is defined as a fixed frame of reference where the Z -axis is normal to the keyboard plane such that z is

zero at the keyboard surface and is increasingly positive at greater depth into the keyboard (further from the user).

5.1 Digit Depth

The depth of a touch event was computed based on the maximum depth of travel immediately following entry within

the virtual keyboard plane. The depth of the touch event was taken as the deepest point of a continuous downward

movement from the detection plane. The resulting distributions of intended and coactivated touch event depths are

shown in Figure 5(a). Figure 5(a) shows that the mean of each distribution occurs at a different depth. The mean

intended touch event depth and its standard deviation was 15 ± 7 mm whereas the average coactivation depth was

much shallower, 5 ± 3 mm. This is a promising result indicating that digit depth may be an effective feature.

Due to the coupled motion of the digits, it is possible that deeper intended touch events would be more likely to pull

a neighbouring finger down into the detecting plane, producing a coactivation on the next touch event. To examine

this, the depth of the previous digit was plotted and classed according to the current touch event. This is shown in

Figure 5(b). Figure 5(b) shows only a slight difference between the distributions means but has the unique property of

only relying on data from the previous touch event.
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(c) Digit Velocity feature.

Fig. 5. Depth and velocity feature results for the combined dataset of participant 1 to participant 12.

5.2 Digit Velocity

The touch event velocity was calculated as the average velocity of the activating digit from approximately 30ms before

to approximately 30ms after the touch event. This range was chosen using the following logic. Dhakal et al. [5] found

the average interval between keypresses was 239 ms. In this time four movements need to take place. The activating

digit must move from its rest height to the detection plane, from there to its max depth, back to the detection plane,

and then back to the rest height. If each of these actions take approximately the same amount of time, then the full

downwards motion will occur from about 60 ms before a keypress to about 60 ms after it. Taking the centre half of this

motion to remove the portions where the digit was accelerating and decelerating, resulted in a 60 ms window over

which to average. As before, this feature was calculated for half the dataset and plotted as histograms shown in Figure

5(c). This feature was evaluated in the keyboard frame of reference. This figure shows a clear separation between both

the peaks and means of the distributions, which is a promising result. The average intended and coactivated touch

event velocities were 0.31 ± 0.17 mm/ms and 0.12 ± 0.08 mm/ms respectively.

5.3 Inter-key Interval

The interval assigned to each coactivated touch event was the time between that event and the coactivation’s corre-

sponding intended touch event. Intended touch events can cause multiple coactivations and so this interval may not

necessarily be calculated between consecutive events. The interval assigned to intended events was the time between

that event and the previous intended touch event. The resulting distributions are shown in Figure 6(a). Figure 6(a)

shows the greatest separation of the distributions among the features examined. However, it does not identify which of

the two touch events, used in its calculation, is the coactivation. This feature must therefore be combined with others to

distinguish the coactivation.

5.4 Average Digit Velocity Correlation

The average velocity correlation assigned to each touch event was calculated between pairs selected in the same way

as for the inter-key interval feature. The correlation was calculated as the average dot product of the digits’ velocity

vectors, normalized by the magnitude of the vectors. The average was taken from 50 ms before the first touch event to

50 ms after the second touch event. The times were chosen using a similar logic to the velocity feature. The motion to

select a key begins approximately 60 ms before the touch event and ends approximately 60 ms after it. The first and

last 10 ms of the motion was removed to reduce the part of the motion where there is little to no movement. Using a
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(b) Digit correlation.

Fig. 6. Inter-key and correlation feature results for the combined dataset of participant 1 to participant 12.

window that extends from before the first touch event to after the second ensured the motion of the two events was

captured. The equation used is given below, where Xj
Ti

is the three-dimensional position of digit j at time Ti :

Corr =
VD1

· VD2

| |VD1
| | | |VD2

| |
where VD j =

Xj
T2

− Xj
T1

T2 −T1
. (1)

This feature was also evaluated in the keyboard frame. The resulting distribution is shown in Figure 6(b). The mean

and standard deviation of the intended and coactivated distributions were 0.43 ± 0.29 and 0.84 ± 0.13 respectively. This

shows that on average the velocity of a coactivating digit was highly correlated with its corresponding intended digit.

It also shows, however, that there is a non-insignificant degree of correlation between all digits.

6 DETECTING COACTIVATIONS

In this section we describe the design of a coactivation detection technique implemented using three alternative models.

We begin with an overview of the chosen features before describing the model selection and training procedure in

section 6.2. Finally, we report on the cross-validated accuracy evaluation of the developed models in section 6.3.

6.1 Feature Selection

From among the features tested in section 5, the current and previous digit depth and velocity, inter-key interval, and

average correlation features were identified as worthy elements of the feature vector. These features combine data from

multiple time steps, extract useful information and reduce the size of the feature vector.

One problem with some of these features are their dependence on information occurring after the current touch

point to be classified. Although using all the features listed above is likely to produce the best performance, for a model

to run easily online, it should run in real time with no such dependencies. The depth of the current touch event relied

on the current digit’s z position several time steps after the event had occurred and therefore it was removed.

The average correlation, shown in subsection 5.4, also relied on data from time steps recorded after the touch event.

The extra 50 ms of data included after the second touch event was used to achieve a more accurate average. The

correlation calculation was altered to remove these extra time steps. The extra time steps included before the first

touch event were also removed to reduce the complexity of implementation. Removing the current depth feature and

modifying the calculation of the correlation feature, leaves a total of five input features with no post-event information

dependencies: the current and previous digit velocity, the depth of the previous touch event, the time interval, and the

average velocity correlation. These alterations limit the features, and therefore the feature vector, to only data prior to

9
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the current touch event, allowing the model to be more easily incorporated into an online system. Further evaluation

of these five features in subsection 6.2.1 reveals that the previous digit velocity performs poorly and is subsequently

removed from the final feature vector, leaving four features implemented into the final models.

6.2 Model Selection

Three alternative models were selected for evaluation. These were a naïve Bayes model, a support vector machine and a

neural network. Each of these models was trained and tested using cross validation. We partitioned the dataset into

training and test sets for K-fold cross validation. Effort was taken to assign participants into representative groupings.

There was high variation between the users in the dataset in terms of coactivation counts and typing speed. Stratified

folds were therefore assembled based on two criteria. First, participants were grouped to minimize the difference in total

coactivation counts per group. An exhaustive search found several hundred groupings where the maximum difference

between totals was one. Second, final group assignments were made based on the objective of minimizing the difference

in average words per minute (WPM) across groups.

The design of each coactivation detection model is now summarized in the following subsections. Note that we

describe the design of the neural network first since we leverage its ability to isolate the influence of individual features

to further refine the feature vector used by the other models.

6.2.1 Neural Network.

Although the task of detecting coactivations is inherently a time dependent problem, it was decided to address the

problem with a time independent solution. This choice was motivated by the fact that time dependent solutions are

often more complex and more difficult to train. and thus demand more data, which is expensive and difficult to collect

for this problem. In preliminary results, the time independent features investigated also proved effective in identifying

coactivations and therefore we pursued a time independent solution.

The architecture chosen for the neural network comprises the following layers: 32 node dense with batch normaliza-

tion, ReLU activation and 20% dropout, followed by another 32 node dense with batch normalization, ReLU activation

and 20% dropout, then a 16 node dense with batch normalization, ReLU activation and 20% dropout, and finally a 1

node dense with a sigmoid activation function. The network therefore has just less than 2,000 trainable parameters.

The model was trained on three of the groups, with the fourth used for testing and validation. To train, all coactivations

and an equal number of intended touch events were selected from each participant in the training group. This ensured

the model was trained on an equal number of positive and negative cases. As a result, approximately 7,500 data points

were used in the training of the model’s 2,000 parameters—3.75 data points per parameter. We used 32 nodes per layer

to maximize the complexity of the relationships that can be learned while maintaining a sufficient number of training

points per parameter [23]. The specific choice of 32 nodes stems from the convention of assigning node counts at

powers of base two.

Calibration of the output is also an important consideration given the objective of integrating the model with a

statistical decoder. A binary cross-entropy loss function was selected given its suitability to this type of problem. The

cross-entropy loss function is a probabilistic loss and is minimized when the model’s predictions approximates the

ground truth conditional distribution [13].

To test the effectiveness of each feature, the feature vector was reduced to a single feature at a time for testing. The

model was trained and tested using cross validation. A confusion matrix was created for each fold of the validation

and used to calculate the mean and standard deviation of the accuracy, precision, recall and F1 score. These evaluation

10
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(a) Previous depth feature.
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(c) Current velocity feature
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(d) Prev. velocity feature
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(e) Vel. correlation feature.

Fig. 7. ROC curves for potential feature vector elements.

metrics are given for each feature in Table 1. The ROC curves for the first fold of the cross validation for the features

previous digit depth, interval, current and previous digit velocities in the keyboard frame, and average digit velocity

correlation in the keyboard, are shown in Figures 7(a), 7(b), 7(c), 7(d), and 7(e) respectively.

An examination of the evaluation metrics presented in Table 1 and the ROC curves reveals that the interval feature

achieves the best performance while the previous key velocity feature performs the worst. The remaining features

demonstrate good performance. As a result, it was decided to remove the previous key velocity feature from the feature

vector. This was done as its ROC curve showed it contributed very little to the classification prediction and reducing

the feature vector would increase the data points per parameter, potentially improving the fit of the other features. The

final feature vector is therefore composed of the following features: previous depth, current velocity in the keyboard

frame, interval, and average velocity correlation in the keyboard frame.

6.2.2 Naïve Bayes.

The naïve Bayes model was chosen as it is a simple, commonly used classifier. The probability of a coactivation given

the values of the four selected features was found using Bayes theorem in combination with the empirical distributions.

The conditional distributions of the features were found by first normalizing the histograms presented in section 5.

6.2.3 Support Vector Machine.

The final model selected was a calibrated support vector machine (SVM). SVMs are well known and well understood

classifiers, which serve as reliable baselines for evaluating classification performance. A linear kernel was chosen for

simplicity and the SVM was calibrated using Platt scaling.

6.3 Detection Accuracy

To evaluate coactivation detection accuracy, the three models were trained on the chosen features and tested using the

same cross validation splits to ensure consistency. This was done using cross validation in the same way the individual

features were tested using the neural network described above. A confusion matrix was created for each fold of the

Feature Accuracy Precision Recall AUC

Previous Digit Depth 0.58 ± 0.07 0.20 ± 0.07 0.64 ± 0.11 0.64 ± 0.05

Current Digit Velocity 0.61 ± 0.03 0.22 ± 0.03 0.72 ± 0.01 0.70 ± 0.02

Previous Digit Velocity 0.54 ± 0.16 0.14 ± 0.04 0.47 ± 0.21 0.50 ± 0.03

Interval 0.96 ± 0.02 0.80 ± 0.11 0.96 ± 0.01 0.98 ± 0.01

Correlation 0.85 ± 0.02 0.48 ± 0.07 0.76 ± 0.05 0.88 ± 0.01

Table 1. Table of metrics showing the performance of various features (± 1 standard deviation).
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Model Accuracy Precision Recall F1 Score AUC

Neural Net 0.978 ± 0.011 0.882 ± 0.072 0.968 ± 0.009 0.921 ± 0.044 0.990 ± 0.006

SVM 0.973 ± 0.011 0.854 ± 0.065 0.971 ± 0.010 0.907 ± 0.042 0.985 ± 0.006

Naïve Bayes 0.976 ± 0.005 0.922 ± 0.028 0.902 ± 0.021 0.912 ± 0.023 0.984 ± 0.008

Table 2. Metrics showing the performance of the three models tested (± 1 standard deviation).
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(a) The z (mm) offset of the right hand digits plotted against time,

showing model coactivation predictions (0: intended, 1: coactivated)

and ground truths (green: intended, red: coactivated).

(b) Illustrated operation of the decoder’s coactivation detection and auto-

correction components. 1: Intended ’n’. 2: Intended ’o’. 3: Coactivated ’p’. 4: ’p’

removed by coactivation module. 5: ’tee’ entered by user. 6: Auto-correction

of ’notee’ to desired ’notes’.

Fig. 8. Sample evaluations of the decoder with the integrated coactivation detection.

validation and used to calculate the mean and standard deviation of the accuracy, precision, recall and F1 score. This

was repeated for each model and the resulting evaluation metrics are given in Table 2.

All models show a high level of accuracy in detecting coactivations and none of the models have significantly higher

accuracy than any of the other. The naïve Bayes model’s precision is higher than the SVM, but its recall is lower. This

suggests that the SVM and naïve Bayes trade off between false positives and false negatives. The neural network’s

precision and recall sits between these two. The neural network achieved the highest F1 score and was therefore chosen

as the model for subsequent integration and evaluation with the decoder.

7 USING COACTIVATION DETECTION IN STATISTICAL DECODING

To validate the utility of the developed coactivation detection functionality, we integrate it as a module within an

existing probabilistic text input decoder. As an illustration of the behavior of the module, independent of the decoder,

Figure 8(a) demonstrates how discrete input events are scored based on a continuous stream of finger tracking data.

Figure 8(a) plots the z offset of the right-hand digits only during the entry of “tomorrow with”. The vertical lines indicate

how a letter (shown at the top of the plot) was activated. The markers indicate the ground truth of whether a touch

event was intended (green), or a coactivation (red). A vertical line with no corresponding marker indicates the letter

was activated by the left hand. Beside each marker is the system’s coactivation prediction for the touch event. Figure

8(a) shows the original text typed, “tomoorrokw wipth” and shows the system correctly identifying the coactivations

“o”, “k” and “p”. Removing these letters would return the correct phrase “tomorrow with”. This figure also highlights

that the system can correctly identify coactivations by different digits, as the features are digit independent.
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The promising behavior observed from the isolated detection module and illustrated in Figure 8(a) motivated its

complete integration with an existing statistical decoder. The decoder integration operates as follows: at each touch

event the probability that the event is a coactivation is calculated. If the probability is greater than a certain threshold

the character is removed from the input field. The system can also be configured to remove this observation from the

set passed to the decoder. If the character is not removed, the weighted coactivation probability is combined with the

likelihood that the character is an insertion error. This is done for each observation until a space or other word delimiter

is activated to force a decode. We are interested in the effect that coactivation detection can have on reducing the

character error rate (CER) when typing. The CER is calculated based on how many insertion, deletion or substitution

corrections are needed to convert the final text into the stimulus text the user was trying to replicate. It is normalized by

the length of the stimulus text. Using the same cross validation partitioning described in subsection 6.2, we determine

appropriate hyperparameter values from the training sets and evaluate the resulting CER with the corresponding test

sets. Approximate hyperparameters were first found using Bayesian optimization, followed by grid search to fine tune

the parameters.

7.1 Eliminating Errors in Typing

The dataset upon which the models are trained and evaluated with cross-validation involved typing using a simulated

decoder with no facility for error correction. Therefore subsequent error values should be interpreted as uncorrected

error rates. The mean CER and standard deviation of the final hyperparameter setting of the decoder across the four

folds of the cross validation were calculated with and without the coactivation module enabled. These values are

summarized in Table 3. Also included in Table 3 is the CER without auto-correct and the relaxed error rate, a metric

introduced by Dudley et al. [6] based on a distance tolerance attached to each target key that can only be calculated if

the system has complete knowledge of what the user is trying to type. The CER without auto-correct reflects direct

interpretation of observations based on the closest key to the touch point and therefore serves as a pessimistic baseline.

By contrast, the relaxed error rate reflects the performance under the oracle decoder, which allows for a high degree of

touch inaccuracy, and therefore serves as an optimistic baseline. The Full Dataset column lists the results for all typed

phrases (i.e. 1,020 phrases per fold). The Coactivation Subset column reports the subset of phrases where coactivations

are present (n = [531,547,519,659] across the four folds).

The results show that with the coactivation module enabled in the statistical decoder a further reduction in character

error rates by approximately 10% relative and 0.9% absolute can be achieved. This improvement is more significant

when the dataset is restricted to just samples containing coactivations, achieving character error rate reductions

of approximately 18% relative and 2.0% absolute. Figure 8(b) illustrates the keyboard behavior with the integrated

coactivation module. Figure 8(b) shows the keyboard state just as the stream of characters, ‘nop’, have been entered

using the right index (1.), middle (2.) and ring (3.) fingers. The user is trying to type ‘notes’ but has caused a coactivation

Error Metric Full Dataset Coactivation Subset

CER without auto-correct 10.7 ± 0.5% 13.8 ± 1.0%

CER with auto-correct but without coactivation detection 8.7 ± 0.5% 11.0 ± 1.1%

CER with auto-correct and coactivation detection 7.8 ± 0.7% 9.0 ± 1.1%

Relaxed Error Rate 7.7 ± 0.2% 10.7 ± 0.5%

Table 3. Resulting error rates under different decoder configurations (± 1 standard deviation).
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with their ring finger and inserted the ‘p’ into the input field. The coactivation module subsequently identifies and

removes the coactivated ‘p’ character (4.). The remaining characters, ‘tee’, are entered (5.), before the literal input,

‘notee’, is corrected to the desired word, ‘notes’, by the decoder (6.) upon typing the period.

8 DISCUSSION

This investigation has shown that identification and removal of coactivations from a text input stream can be completed

with simple lightweight features. Four features have been identified that can aid the detection of coactivations. Combined,

these features can achieve a detection accuracy exceeding 97%. The module integrated into the input decoder also

demonstrates how coactivation detection can effectively reduce typing error rates. The simplest and most effective

feature is the interval between touch events. This feature suggests that a naïve strategy for mitigating coactivations

could rely on simply enforcing a minimum time (50–100 ms) before the next letter can be selected.

Despite the immediate demonstrated efficacy of the coactivation detection strategy presented, limitations and

opportunities for future work remain. First, the model is limited by its simplicity and relatively small number of features.

This was a design choice based on the size of the dataset and the challenge in collecting a large representative dataset

for this application context. As a result, most of the raw digits’ motion is unavailable to the model or is only available

in a condensed form. While it would be theoretically possible to overcome the data sparseness issue with representative

synthetic coactivation data, this would necessitate a generative model capturing both physical and neuromuscular

behaviours encountered while typing. This would, however, be a challenging research project in its own right. Second,

as described in section 4 we exclude pre-intended-coactivations from consideration due to the pursuit of streamlined

online detection. Although pre-intended-coactivations are a very small proportion of all coactivations, there is potential

value in robustly detecting all spurious input events. Related to this point, the choice of features was also constrained

to those available up until the current time step (see section 6.1). More advanced strategies that continually reassess

past potential coactivations as new data streams in are feasible but would require more complex accounting and

event handling functionality, and therefore likely tighter coupling between the coactivation detection module and the

decoding framework. A specific design objective in this work was to avoid tight coupling of components, however, a

more flexible strategy for handling coactivation detection that can propagate backwards to recent events is a promising

avenue for future work.

In general, it would likely be fruitful to extend the model to include prior probabilities of digits causing coactivations

and characters becoming coactivated. The potential contribution of this prior information is clearly illustrated in

Figure 4 and could be readily incorporated. Finally, the current pandemic has prevented the execution of a user study to

evaluate the potential benefit of coactivation detection and mitigation during ‘live’ text entry.

9 CONCLUSIONS

In this paper, we presented a detailed characterisation of coactivations encountered in ten finger mid-air typing in

VR. The most informative features of coactivations were found to be: inter-key interval, key depth, key velocity, and

inter-key velocity correlation. We showed that coactivations can indeed be effectively detected. The final models

successfully identified 97 ± 1% of coactivations while only incorrectly labelling 2 ± 1% of intended touch points as

coactivations. As 4% of characters typed were coactivations, this equates to a 2 ± 1% reduction in errors. Finally, we

demonstrated how coactivation detection can be integrated into a statistical decoding framework to achieve a reduction

in uncorrected CER of approximately 10% relative and 0.9% absolute.
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