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Abstract

In this paper, we introduce proximal gradient temporal difference learning, which provides a
principled way of designing and analyzing true stochastic gradient temporal difference learning
algorithms. We show how gradient TD (GTD) reinforcement learning methods can be formally
derived, not by starting from their original objective functions, as previously attempted, but rather
from a primal-dual saddle-point objective function. We also conduct a saddle-point error analysis
to obtain finite-sample bounds on their performance. Previous analyses of this class of algorithms
use stochastic approximation techniques to prove asymptotic convergence, and do not provide any
finite-sample analysis. We also propose an accelerated algorithm, called GTD2-MP, that uses prox-
imal “mirror maps” to yield improved convergence rate. The results of our theoretical analysis
imply that the GTD family of algorithms are comparable and may indeed be preferred over exist-
ing least squares TD methods for off-policy learning, due to their linear complexity. We provide
experimental results showing the improved performance of our accelerated gradient TD methods.

1. Introduction

Obtaining a true stochastic gradient temporal difference method has been a longstanding goal of re-
inforcement learning (RL) for almost three decades (Bertsekas & Tsitsiklis, 1996; Sutton & Barto,
1998) ever since it was discovered that the original TD method was unstable in many off-policy
applications, such as Q-learning, where the target behavior being learned and the exploratory be-
havior producing samples differ. Sutton et al. (Sutton, Szepesvári, & Maei, 2008; Sutton, Maei,
Precup, Bhatnagar, Silver, Szepesvári, & Wiewiora, 2009) proposed a family of gradient-based
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temporal difference (GTD) algorithms, which yielded several interesting properties. A key property
of this class of GTD algorithms is that they are asymptotically convergent in the off-policy setting.
However, the original derivation of these methods was somewhat ad-hoc, as the derivation from
the original loss functions involved some non-mathematical steps (such as an arbitrary decomposi-
tion of the resulting product of gradient terms). Consequently, the resulting convergence analysis
was also weakened, and limited to showing the asymptotic convergence using stochastic approxima-
tion (Borkar, 2008). Despite these shortcomings, gradient TD was a significant advance, as previous
work on off-policy methods, such as TD(�), do not have convergence guarantees in the off-policy
setting. A further appealing property of these algorithms is the first-order computational complex-
ity that allows them to scale more gracefully to high-dimensional problems, unlike the widely used
least-squares TD (LSTD) approaches (Bradtke & Barto, 1996) that only perform well with moder-
ate size reinforcement learning (RL) problems, due to their quadratic (w.r.t. the dimension of the
feature space) computational cost per iteration.

Unfortunately, despite the nomenclature, GTD algorithms are not true stochastic gradient meth-
ods with respect to their original objective functions, as pointed out by Szepesvari (Szepesvári,
2010). The reason is not surprising: the gradient of the objective function involves products of
terms, which cannot be sampled directly. Consequently, their original derivation involved a rather
ad-hoc splitting of terms, which was justified more or less from intuition. In this paper, we take a
major step forward in resolving this problem by showing a principled way of designing true stochas-
tic gradient TD algorithms by using a primal-dual saddle point objective function, derived from the
original objective functions, coupled with the powerful machinery of operator splitting (Bauschke
& Combettes, 2011). A significant advantage of our approach is that it enables undertaking a precise
finite sample analysis of convergence, which provides deeper insight into the actual running times
of the GTD methods beyond the standard asymptotic analysis.

Since in real-world applications of RL, we have access to only a finite amount of data, finite-
sample analysis of gradient TD algorithms is essential as it clearly shows the effect of the number
of samples (and the parameters that play a role in the sampling budget of the algorithm) on their
final performance. However, most of the work on the finite-sample analysis in RL has been focused
on batch RL (or approximate dynamic programming) algorithms (e.g., (Kakade & Langford, 2002;
Munos & Szepesvári, 2008; Antos, Szepesvari, & Munos, 2008; Lazaric, Ghavamzadeh, & Munos,
2010a)), especially those that are least squares TD (LSTD)-based (e.g., (Lazaric, Ghavamzadeh, &
Munos, 2010b; Ghavamzadeh, Lazaric, Maillard, & Munos, 2010; Ghavamzadeh, Lazaric, Munos,
& Hoffman, 2011; Lazaric, Ghavamzadeh, & Munos, 2012)), and more importantly restricted to
the on-policy setting. In this paper, we provide the finite-sample analysis of the GTD family of
algorithms, a relatively novel class of gradient-based TD methods that are guaranteed to converge
even in the off-policy setting, and for which, to the best of our knowledge, no finite-sample analysis
has been reported. This analysis is challenging because 1) the stochastic approximation methods that
have been used to prove the asymptotic convergence of these algorithms do not address convergence
rate analysis; 2) as we explain in detail in Section 2.1, the techniques used for the analysis of
the stochastic gradient methods cannot be applied here; 3) finally, the difficulty of finite-sample
analysis in the off-policy setting. It should also be noted that there exists very little literature on the
finite-sample analysis in the off-policy setting, even for the LSTD-based algorithms that have been
extensively studied.

The major contributions of this paper include
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• The first finite-sample analyses of the TD algorithms with linear computational complexity,
which is also one of the first few finite-sample analyses of off-policy convergent TD algo-
rithms.

• A novel framework for designing gradient-based TD algorithms with Bellman Error based
objective functions, as well as the design and analysis of several improved GTD methods
that result from our novel approach of formulating gradient TD methods as true stochastic
gradient algorithms w.r.t. a saddle-point objective function.

We then use the techniques applied in the analysis of the stochastic gradient methods to propose
a unified finite-sample analysis for the previously proposed GTD algorithms as well as our novel
gradient TD algorithms. Finally, given the results of our analysis, we study the GTD class of
algorithms from several different perspectives, including acceleration in convergence, learning with
biased importance sampling factors, etc.

2. Preliminaries

Reinforcement Learning (RL) (Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998) is a subfield
of machine learning, studying a class of problems in which an agent interacts with an unfamiliar,
dynamic and stochastic environment, with the goal of optimizing some measure of its long-term
performance. This interaction is conventionally modeled as a Markov decision process (MDP). An
MDP is defined as the tuple (S,A, P

a
ss0 , R, �), where S and A are the sets of states and actions,

P
a
ss0 is the transition kernel specifying the probability of transition from state s 2 S to state s

0 2 S
by taking action a 2 A, R(s, a) : S ⇥ A ! R is the reward function bounded by Rmax, and
0  � < 1 is a discount factor. A stationary policy ⇡ : S ⇥ A ! [0, 1] is a probabilistic mapping
from states to actions. The main objective of an RL algorithm is to find an optimal policy. In order
to achieve this goal, a key step in many algorithms is to calculate the value function of a given
policy ⇡, i.e., V ⇡ : S ! R, a process known as policy evaluation. It is known that V ⇡ is the unique
fixed-point of the Bellman operator T ⇡, i.e.,

V
⇡ = T

⇡
V

⇡ = R
⇡ + �P

⇡
V

⇡
, (1)

where R
⇡ and P

⇡ are the reward function and transition kernel of the Markov chain induced by
policy ⇡. In Eq. (1), we may imagine V

⇡ as an |S|-dimensional vector and write everything in
vector/matrix form. In the following, to simplify the notation, we often drop the dependence of T ⇡,
V

⇡, R⇡, and P
⇡ on ⇡.

Off-policy learning refers to learning about one way of behaving, termed as the target policy,
from data generated by another way of selecting actions, termed as the behavior policy. The target
policy is often a deterministic policy that approximates the optimal policy. On the other hand, the
behavior policy is often stochastic, exploring all possible actions in each state in order to find the
optimal policy. There are several benefits of learning with behavior policies. First, it allows freeing
the behavior policy from the target policy and thus has a greater variety of exploration strategies
to be used. Secondly, it enables learning from training data generated by unrelated controllers,
including manual human control, and from previously collected data. The third reason for interest
in off-policy learning is that it permits learning about multiple target policies (e.g., optimal policies
for multiple sub-goals) from a single stream of data generated by a single behavior policy, i.e.,
parallel learning is allowed for off-policy learning (Maei, 2011).
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In the paper, we denote by ⇡b, the behavior policy that generates the data, and by ⇡, the target
policy that we would like to evaluate. They are the same in the on-policy setting and different in
the off-policy setting. For each state-action pair (si, ai), such that ⇡b(ai|si) > 0, we define the
importance-weighting factor ⇢i = ⇡(ai|si)/⇡b(ai|si) with ⇢max � 0 being its maximum value over
the state-action pairs.

When S is large or infinite, we often use a linear approximation architecture for V ⇡ with pa-
rameters ✓ 2 Rd and L-bounded basis functions {'i}di=1, i.e., 'i : S ! R and maxi ||'i||1  L.
We denote by �(·) =

�
'1(·), . . . ,'d(·)

�> the feature vector and by F the linear function space
spanned by the basis functions {'i}di=1, i.e., F =

�
f✓ | ✓ 2 Rd and f✓(·) = �(·)>✓

 
. We may

write the approximation of V in F in the vector form as v̂ = �✓, where � is the |S| ⇥ d feature
matrix. When only n training samples of the form D =

��
si, ai, ri = r(si, ai), s0i

� n
i=1

, si ⇠
⇠, ai ⇠ ⇡b(·|si), s0i ⇠ P (·|si, ai), are available (⇠ is a distribution over the state space S), we may
write the empirical Bellman operator T̂ for a function in F as

T̂ (�̂✓) = R̂+ ��̂0
✓,

where �̂ (resp. �̂0) is the empirical feature matrix of size n⇥ d, whose i-th row is the feature vector
�(si)> (resp. �(s0i)

>), and R̂ 2 Rn is the reward vector, whose i-th element is ri. �(si) (resp. �(s0i))
will be denoted as � (resp. �0) for short. We denote by �i(✓) = ri + ��

0>
i ✓� �

>
i ✓, the TD error for

the i-th sample (si, ri, s0i) and define ��i = �i���
0
i. Finally, we define the matrices A and C, and

the vector b as
A := E

⇥
⇢i�i(��i)

>⇤
, b := E [⇢i�iri] , C := E[�i�

>
i ], (2)

where the expectations are w.r.t. ⇠ and P
⇡b . We also denote by ⌅, the diagonal matrix whose

elements are ⇠(s), and ⇠max := maxs⇠(s). For each sample i in the training set D, we can calculate
an unbiased estimate of A, b, and C as follows:

Âi := ⇢i�i��
>
i , b̂i := ⇢iri�i, Ĉi := �i�

>
i . (3)

2.1 Gradient-based TD Algorithms

The class of gradient-based TD (GTD) algorithms was proposed by Sutton et al. (Sutton et al., 2008,
2009). These algorithms target two objective functions: the norm of the expected TD update (NEU)
and the mean-square projected Bellman error (MSPBE), defined as (see e.g., (Maei, 2011))1

NEU(✓) = ||�>⌅(T v̂ � v̂)||2 , (4)

MSPBE(✓) = ||v̂ �⇧T v̂||2⇠ = ||�>⌅(T v̂ � v̂)||2C�1 , (5)

where C = E[�i�
>
i ] = �>⌅� is the covariance matrix defined in Eq. (2) and is assumed to

be non-singular, and for 8x 2 Rd⇥1
, ||x||2C�1 = x

>
C

�1
x. ⇧ = �(�>⌅�)�1�>⌅ is the or-

thogonal projection operator onto the function space F , i.e., for any bounded function g, ⇧g =
argminf2F ||g � f ||⇠ = argminf2F (g � f)>diag(⇠)(g � f). From Eq. (4) and Eq. (5), it is
clear that NEU and MSPBE are square unweighted and weighted by C

�1, `2-norms of the quantity
�>⌅(T v̂ � v̂), respectively, and thus, the two objective functions can be unified as

J(✓) = ||�>⌅(T v̂ � v̂)||2M�1 = ||E[⇢i�i(✓)�i]||2M�1 , (6)

1. It is important to note that T in Eq. (4) and Eq. (5) is T⇡ , the Bellman operator of the target policy ⇡.
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with M equal to the identity matrix I for NEU and to the covariance matrix C for MSPBE. The
second equality in (6) holds because of the following lemma from Section 4.2 in (Maei, 2011).

Lemma 1. (Importance-weighting for off-policy TD) Let D =
��

si, ai, ri, s
0
i

� n
i=1

, si ⇠ ⇠, ai ⇠
⇡b(·|si), s0i ⇠ P (·|si, ai) be a training set generated by the behavior policy ⇡b and T be the Bellman
operator of the target policy ⇡. Then, we have

�>⌅(T v̂ � v̂) = E
⇥
⇢i�i(✓)�i

⇤
= b�A✓.

Proof. We give a proof sketch here. Refer to Section 4.2 in (Maei, 2011) for a detailed proof.

�>⌅(T v̂ � v̂)

=
X

s,a,s0

⇠(s)⇡(a|s)P (s0|s, a)�(✓|s, a, s0)�(s)

=
X

s,a,s0

⇠(s)
⇡(a|s)
⇡b(a|s)

⇡b(a|s)P (s0|s, a)�(✓|s, a, s0)�(s)

=
X

s,a,s0

⇠(s)⇢(s, a)⇡b(a|s)P (s0|s, a)�(✓|s, a, s0)�(s)

= E[⇢t�t(✓)�t]

= b�A✓

⌅

Motivated by minimizing the NEU and MSPBE objective functions using the stochastic gradient
methods, the GTD and GTD2 algorithms were proposed with the following update rules:

GTD: yt+1 = yt + ↵t
�
⇢t�t(✓t)�t � yt

�
, (7)

✓t+1 = ✓t + ↵t⇢t��t(y
>
t �t),

GTD2: yt+1 = yt + ↵t
�
⇢t�t(✓t)� �

>
t yt
�
�t, (8)

✓t+1 = ✓t + ↵t⇢t��t(y
>
t �t).

However, it has been shown that the above update rules do not update the value function parameter
✓ in the gradient direction of NEU and MSPBE, and thus, NEU and MSPBE are not the true objec-
tive functions of the GTD and GTD2 algorithms (Szepesvári, 2010). Consider the NEU objective
function in (4). Taking its gradient w.r.t. ✓, we obtain

�1

2
rNEU(✓) = �

�
rE
⇥
⇢i�i(✓)�

>
i

⇤�
E
⇥
⇢i�i(✓)�i

⇤

= �
�
E
⇥
⇢ir�i(✓)�>

i

⇤�
E
⇥
⇢i�i(✓)�i

⇤

= E
⇥
⇢i��i�

>
i

⇤
E
⇥
⇢i�i(✓)�i

⇤
.

If the gradient can be written as a single expectation, then it is straightforward to use a stochas-
tic gradient method. However, we have a product of two expectations in (9), and unfortunately,
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due to the correlation between them, the sample product (with a single sample) won’t be an un-
biased estimate of the gradient. To tackle this, the GTD algorithm uses an auxiliary variable yt

to estimate E
⇥
⇢i�i(✓)�i

⇤
, and thus, the overall algorithm is no longer a true stochastic gradient

method w.r.t. NEU. It can be easily shown that the same problem exists for GTD2 w.r.t. the MSPBE
objective function. This prevents us from using the standard convergence analysis techniques of
stochastic gradient descent methods to obtain a finite-sample performance bound for the GTD and
GTD2 algorithms.

It should be also noted that in the original publications of GTD/GTD2 algorithms (Sutton et al.,
2008, 2009), the authors discussed handling the off-policy scenario using both importance and re-
jection sampling. In rejection sampling, which was mainly used in (Sutton et al., 2008, 2009), a
sample (si, ai, ri, s0i) is rejected and the parameter ✓ is not updated if ⇡(ai|si) = 0. This sampling
strategy is not efficient since a lot of samples will be discarded if ⇡b and ⇡ are very different.

2.2 Related Work

Before we present a finite-sample performance bound for GTD and GTD2, it would be helpful to
give a brief overview of the existing literature on the finite-sample analysis of the TD algorithms.
The convergence rate of the TD algorithms mainly depends on (d, n, ⌫), where d is the size of the
approximation space (the dimension of the feature vector), n is the number of samples, and ⌫ is the
smallest eigenvalue of the sample-based covariance matrix Ĉ = �̂>�̂, i.e., ⌫ = �min(Ĉ).

Antos et al.(Antos et al., 2008) proved an error bound of O(d log d
n1/4 ) for LSTD in bounded spaces.

Lazaric et al. (Lazaric et al., 2010b) proposed an LSTD analysis in linear spaces and obtained a

tighter bound of O(
q

d log d
n⌫ ) and later used it to derive a bound for the least-squares policy iteration

(LSPI) algorithm (Lazaric et al., 2012). Tagorti et al. (Tagorti & Scherrer, 2014) recently proposed
the first convergence analysis for LSTD(�) and derived a bound of Õ(d/⌫

p
n). The analysis is

a bit different than the one in (Lazaric et al., 2010b) and the bound is weaker in terms of d and ⌫.
Another recent result is by (Prashanth, Korda, & Munos, 2014) that uses stochastic approximation to
solve LSTD(0), where the resulting algorithm is exactly TD(0) with random sampling (samples are
drawn i.i.d. and not from a trajectory), and report a Markov design bound (the bound is computed
only at the states used by the algorithm) of O(

q
d
n⌫ ) for LSTD(0). All these results are for the on-

policy setting, except the one by (Antos et al., 2008) that also holds for the off-policy formulation.
Another result in the off-policy setting is by (Pires & Szepesvari, 2012) that uses a bounding trick
and improves the result of (Antos et al., 2008) by a log d factor. Another line of work is by (Yu,
2012), which provides error bounds of LSTD algorithms for a wide range of problems including the
scenario that ||A||⇠ is unbounded, which is beyond the scope of the aforementioned literature and
our paper.

The line of research reported here has much in common with work on proximal reinforce-
ment learning (Mahadevan, Liu, Thomas, Dabney, Giguere, Jacek, Gemp, & Liu, 2014), which
explores first-order reinforcement learning algorithms using mirror maps (Bubeck, 2014; Juditsky,
Nemirovskii, & Tauvel, 2008) to construct primal-dual spaces. This work began originally with
a dual space formulation of first-order sparse TD learning (Mahadevan & Liu, 2012). The saddle
point formulation for off-policy TD learning was initially explored in (Liu, Mahadevan, & Liu,
2012), where the objective function is the norm of the approximation residual of a linear inverse
problem (Pires & Szepesvari, 2012). A sparse off-policy GTD2 algorithm with regularized dual
averaging is introduced by Qin et al. (Qin & Li, 2014). These studies provide different approaches

30



PROXIMAL GRADIENT TD ALGORITHMS

to formulating the problem 1) as a variational inequality problem (Juditsky et al., 2008; Mahadevan
et al., 2014), 2) as a linear inverse problem (Liu et al., 2012), or 3) as a quadratic objective function
(MSPBE) using two-time-scale solvers (Qin & Li, 2014). In this paper, we are going to explore
the true nature of the GTD algorithms as stochastic gradient algorithms w.r.t the convex-concave
saddle-point formulations of NEU and MSPBE.

3. Saddle-Point Formulation of GTD Algorithms

In this section, we show how the GTD and GTD2 algorithms can be formulated as true stochastic
gradient (SG) algorithms by writing their respective objective functions, NEU and MSPBE, in the
form of a convex-concave saddle-point. As discussed earlier, this new formulation of GTD and
GTD2 as true SG methods allows us to use the convergence analysis techniques for SGs in order
to derive finite-sample performance bounds for these RL algorithms. Moreover, it allows us to use
more efficient algorithms that have been recently developed to solve SG problems, such as stochastic
Mirror-Prox (SMP) (Juditsky et al., 2008), to derive more efficient versions of GTD and GTD2.

A particular type of convex-concave saddle-point formulation is formally defined as

min
✓

max
y

�
L(✓, y) = hb�A✓, yi+ F (✓)�K(y)

�
, (10)

where F (✓) is a convex function and K(y) is a smooth convex function such that

K(y)�K(x)� hrK(x), y � xi  LK

2
||x� y||2. (11)

Next we follow (Juditsky et al., 2008; Nemirovski, Juditsky, Lan, & Shapiro, 2009; Chen, Lan, &
Ouyang, 2013) and define the following error function for the saddle-point problem (10).

Definition 1. The error function of the saddle-point problem (10) at each point (✓0, y0) is defined as

Err(✓0, y0) = max
y

L(✓0, y)�min
✓

L(✓, y0). (12)

In this paper, we consider the saddle-point problem (10) with F (✓) = 0 and K(y) = 1
2 ||y||

2
M ,

i.e.,

min
✓

max
y

⇣
L(✓, y) = hb�A✓, yi � 1

2
||y||2M

⌘
, (13)

where A and b were defined by Eq. (2), and M is a positive definite matrix. It can be shown that
K(y) = 1

2 ||y||
2
M satisfies the condition in Eq. (11) by using the Taylor expansion of y about x, i.e.,

1

2
||y||2M �

1

2
||x||2M +M(y � x) +

LK

2
||y � x||2M

We first show in Proposition 1 that if (✓⇤, y⇤) is the saddle-point of problem (13), then ✓
⇤ will be

the optimum of NEU and MSPBE defined in Eq. (6). We then prove in Proposition 2 that GTD and
GTD2 in fact find this saddle-point.

Proposition 1. For any fixed ✓, we have 1
2J(✓) = maxy L(✓, y), where J(✓) is defined by Eq. (6).
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Readers familiar with Fenchel duality or Legendre transform can easily prove this by using
the fact that the Legendre-Fenchel convex conjugate function (Boyd & Vandenberghe, 2004) of
f = 1

2 ||Ax� b||M�1 is f⇤ = 1
2 ||Ax� b||M , and

f(x) =
1

2
||Ax� b||2M�1 = f

⇤⇤(x) = max
y

�
y
>(Ax� b)� 1

2
||y||2M

�

The second equality holds since f(x) is convex. We can also prove this via another way as follows.

Proof. Since L(✓, y) is an unconstrained quadratic program w.r.t. y, the optimal y⇤(✓) = argmaxy L(✓, y)
can be analytically computed as

y
⇤(✓) = M

�1(b�A✓).

The result follows by plugging y
⇤ into (13) and using the definition of J(✓) in Eq. (6) and Lemma 1. ⌅

Proposition 2. GTD and GTD2 are true stochastic gradient algorithms w.r.t. the objective function
L(✓, y) of the saddle-point problem (13) with M = I and M = C = �>⌅� (the covariance
matrix), respectively.

Proof. It is easy to see that the gradient updates of the saddle-point problem (13) (ascending in y

and descending in ✓) may be written as

yt+1 = yt + ↵t (b�A✓t �Myt) ,

✓t+1 = ✓t + ↵tA
>
yt.

We denote M̂ := I (resp. M̂ := Ĉ) for GTD (resp. GTD2). We may obtain the update rules of
GTD and GTD2 by replacing A, b, and C in (14) with their unbiased estimates Â, b̂, and Ĉ from
Eq. (3), which completes the proof. ⌅

4. Finite-Sample Analysis

In this section, we provide a finite-sample analysis for a revised version of the GTD/GTD2 algo-
rithms. We first describe the revised GTD algorithms in Section 4.1 and then dedicate the rest of
Section 4 to their sample analysis. Note that from now on we use the M matrix (and its unbiased
estimate M̂t) to have a unified analysis of GTD and GTD2 algorithms. As described earlier, M is
replaced by the identity matrix I in GTD and by the covariance matrix C (and its unbiased estimate
Ĉt) in GTD2.

4.1 The Revised GTD Algorithms

The revised GTD algorithms that we analyze in this paper (see Algorithm 1) have three differences
with the standard GTD algorithms of Eqs. (7) and (8) (and Eq. (14)).

• We guarantee that the parameters ✓ and y remain bounded by projecting them onto bounded
convex feasible sets ⇥ and Y defined in Assumption 2. In Algorithm 1, we denote by ⇧⇥ and
⇧Y , the projection onto sets ⇥ and Y , respectively. This is standard in stochastic approxima-
tion algorithms and has been used in off-policy TD(�) (Yu, 2012) and actor-critic algorithms
(e.g., (Bhatnagar, Sutton, Ghavamzadeh, & Lee, 2009)).
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• After n iterations (n is the number of training samples in D), the algorithms return the
weighted (by the step size) average of the parameters at all the n iterations (see Eq. (15)).

• The step-size ↵t is selected as described in the proof of Proposition 3 in the Appendix. Note
that this fixed step size of O(1/

p
n) is required for the high-probability bound in Proposition 3

(see (Nemirovski et al., 2009) for more details).

Algorithm 1 Revised GTD Algorithms
1: for t = 1, . . . , n do

2: Update parameters

yt+1 = ⇧Y

⇣
yt + ↵t(b̂t � Ât✓t � M̂tyt)

⌘

✓t+1 = ⇧⇥

⇣
✓t + ↵tÂ

>
t yt

⌘

3: end for

4: OUTPUT

✓̄n :=

Pn
t=1 ↵t✓tPn
t=1 ↵t

, ȳn :=

Pn
t=1 ↵tytPn
t=1 ↵t

(15)

4.2 Assumptions

In this section, we make several assumptions on the MDP and basis functions that are used in our
finite-sample analysis of the revised GTD algorithms. These assumptions are quite standard and are
similar to those made in the prior work on GTD algorithms (Sutton et al., 2008, 2009; Maei, 2011)
and those made in the analysis of SG algorithms (Nemirovski et al., 2009).

Assumption 2. (Feasibility Sets) We define the bounded closed convex sets ⇥ ⇢ Rd and Y ⇢ Rd as
the feasible sets in Algorithm 1. We further assume that the saddle-point (✓⇤, y⇤) of the optimization
problem (13) belongs to ⇥⇥ Y . We also define D✓ :=

⇥
max✓2⇥ ||✓||22 �min✓2⇥ ||✓||22

⇤1/2, Dy :=
⇥
maxy2Y ||y||22 �miny2Y ||y||22

⇤1/2, and R = max
�
max✓2⇥ ||✓||2,maxy2Y ||y||2

 
.

Assumption 3. (Non-singularity) We assume that the covariance matrix C = E[�i�
>
i ] and matrix

A = E
⇥
⇢i�i(��i)>

⇤
are non-singular.

Assumption 4. (Boundedness) We assume the features (�i,�
0
i) have uniformly bounded second

moments. This together with the boundedness of features (by L) and importance weights (by ⇢max)
guarantees that the matrices A and C, and vector b are uniformly bounded.

This assumption guarantees that for any (✓, y) 2 ⇥⇥Y , the unbiased estimators of b�A✓�My

and A
>
y, i.e.,

E[b̂t � Ât✓ � M̂ty] = b�A✓ �My,

E[Â>
t y] = A

>
y,
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all have bounded variance, i.e.,

E
⇥
||b̂t � Ât✓ � M̂ty � (b�A✓ �My)||2

⇤
 �

2
1,

E
⇥
||Â>

t y �A
>
y||2
⇤
 �

2
2, (16)

where �1 and �2 are non-negative constants. We further define

�
2 = �

2
1 + �

2
2. (17)

Assumption 4 also gives us the following “light-tail” assumption. There exist constants M⇤,✓ and
M⇤,y such that

E[exp{||b̂t � Ât✓ � M̂ty||2

M2
⇤,✓

}]  exp{1},

E[exp{||Â
>
t y||2

M2
⇤,y

}]  exp{1}. (18)

This “light-tail” assumption is equivalent to the assumption in Eq. 3.16 in (Nemirovski et al., 2009)
and is necessary for the high-probability bound of Proposition 3. We will show how to compute
M⇤,✓,M⇤,y in the Appendix.

4.3 Finite-Sample Performance Bounds

The finite-sample performance bounds that we derive for the GTD algorithms in this section are for
the case that the training set D has been generated as discussed in Section 2. We further discriminate
between the on-policy (⇡ = ⇡b) and off-policy (⇡ 6= ⇡b) scenarios. The sampling scheme used to
generate D, in which the first state of each tuple, si, is an i.i.d. sample from a distribution ⇠, also
considered in the original GTD and GTD2 papers is for the analysis of these algorithms, and not
used in the experiments (Sutton et al., 2008, 2009). Another scenario that can motivate this sampling
scheme is when we are given a set of high-dimensional data generated either in an on-policy or off-
policy manner, and d is so large that the value function of the target policy cannot be computed
using a least-squares method (that involves matrix inversion), and iterative techniques similar to
GTD/GTD2 are required.

We first derive a high-probability bound on the error function of the saddle-point problem (13)
at the GTD solution (✓̄n, ȳn). Before stating this result in Proposition 3, we report the following
lemma that is used in its proof.

Lemma 2. The induced `2-norm of matrix A and the `2-norm of vector b are bounded by

||A||2  (1 + �)⇢maxL
2
d, ||b||2  ⇢maxLRmax.

Proof. See the Appendix. ⌅
Proposition 3. Let (✓̄n, ȳn) be the output of the GTD algorithm after n iterations (see Eq. (15)).
Then, with probability at least 1� �, we have

Err(✓̄n, ȳn) 
r

5

n
(8 + 2 log

2

�
)R2 (19)

⇥
✓
⇢maxL

⇣
2(1 + �)Ld+

Rmax

R

⌘
+ ⌧ +

�

R

◆
,

34



PROXIMAL GRADIENT TD ALGORITHMS

where Err(✓̄n, ȳn) is the error function of the saddle-point problem (13) defined by Eq. (12), R is
defined in Assumption 2, � is from Eq. (17), and ⌧ = �max(M) is the largest singular value of M ,
which means ⌧ = 1 for GTD and ⌧ = �max(C) for GTD2.

Proof. We give a proof sketch here. The proof of Proposition 3 heavily relies on Proposition 3.2
in (Nemirovski et al., 2009). We just need to map our convex-concave stochastic saddle-point
problem in Eq. (13), i.e.,

min
✓2⇥

max
y2Y

✓
L(✓, y) = hb�A✓, yi � 1

2
||y||2M

◆

The details of verifying the conditions are in the Appendix. Note that in (Nemirovski et al., 2009)
the robust stochastic approximation technique is used, mainly by combining aggressive step-sizes
(i.e., large constant step-sizes) and iterative averaging (Polyak & Juditsky, 1992) (also termed as
Polyak’s averaging). The choice of the constant step-size is described in the Appendix and the
iterative averaging is shown in Eq. (15). ⌅
Theorem 1. Let ✓̄n be the output of the GTD algorithm after n iterations (see Eq. (15)). Then, with
probability at least 1� �, we have

1

2
||A✓̄n � b||2⇠  ⌧⇠max Err(✓̄n, ȳn).

Proof. From Proposition 1, for any ✓, we have

max
y

L(✓, y) =
1

2
||A✓ � b||2M�1 .

Given Assumption 3, the system of linear equations A✓ = b has a solution ✓
⇤, i.e., the (off-policy)

fixed-point ✓⇤ exists, and thus, we may write

min
✓

max
y

L(✓, y) = min
✓

1

2
||A✓ � b||2M�1

=
1

2
||A✓⇤ � b||2M�1 = 0.

In this case, we also have2

min
✓

L(✓, y)  max
y

min
✓

L(✓, y)  min
✓

max
y

L(✓, y)

=
1

2
||A✓⇤ � b||2M�1 = 0. (20)

From Eq. (20), for any (✓, y) 2 ⇥⇥ Y including (✓̄n, ȳn), we may write

Err(✓̄n, ȳn) = max
y

L(✓̄n, y)�min
✓

L(✓, ȳn)

� max
y

L(✓̄n, y) =
1

2
||A✓̄n � b||2M�1 .

2. We may write the second inequality as an equality for our saddle-point problem defined by Eq. (13).
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Since ||A✓̄n � b||2⇠  ⌧⇠max ||A✓̄n � b||2M�1 , where ⌧ is the largest singular value of M , we have

1

2
||A✓̄n � b||2⇠ 

⌧⇠max

2
||A✓̄n � b||2M�1  ⌧⇠max Err(✓̄n, ȳn). (21)

The proof follows by combining Eq. (21) and Proposition (3). ⌅

With the results of Proposition 3 and Theorem 1, we are now ready to derive finite-sample
bounds on the performance of GTD/GTD2 in both on-policy and off-policy settings.

4.3.1 ON-POLICY PERFORMANCE BOUND

In this section, we consider the on-policy setting in which the behavior and target policies are equal,
i.e., ⇡b = ⇡, and the sampling distribution ⇠ is the stationary distribution of the target policy ⇡ (and
the behavior policy ⇡b). We use Lemma 3 to derive our on-policy bound. The proof of this lemma
can be found in (Geist, Scherrer, Lazaric, & Ghavamzadeh, 2012).

Lemma 3. For any parameter vector ✓ and corresponding v̂ = �✓, the following equality holds

V � v̂ = (I � �⇧P )�1
⇥
(V �⇧V ) + �C�1(b�A✓)

⇤
.

Using Lemma 3, we derive the following performance bound for GTD/GTD2 in the on-policy
setting.

Proposition 4. Let V be the value of the target policy and v̄n = �✓̄n, where ✓̄n defined by (15), be
the value function returned by on-policy GTD/GTD2. Then, with probability at least 1� �, we have

||V � v̄n||⇠ 
1

1� �

✓
||V �⇧V ||⇠ +

L

⌫

q
2d⌧⇠maxErr(✓̄n, ȳn)

◆

where Err(✓̄n, ȳn) is upper-bounded by Eq. (19) in Proposition 3, with ⇢max = 1 (on-policy setting).

Proof. See the Appendix. ⌅

Remark: It is important to note that Proposition 4 shows that the error in the performance of the

GTD/GTD2 algorithm in the on-policy setting is of O

 
L2d

q
⌧⇠max log 1

�

n1/4⌫

!
. Also note that the term

⌧
⌫ in the GTD2 bound is the conditioning number of the covariance matrix C.

4.3.2 OFF-POLICY PERFORMANCE BOUND

In this section, we consider the off-policy setting in which the behavior and target policies are
different, i.e., ⇡b 6= ⇡, and the sampling distribution ⇠ is the stationary distribution of the behavior
policy ⇡b. We assume that off-policy fixed-point solution exists, i.e., there exists a ✓

⇤ satisfying
A✓

⇤ = b. Note that this is a direct consequence of Assumption 3 in which we assumed that the
matrix A in the off-policy setting is non-singular. We use Lemma 4 to derive our off-policy bound.
The proof of this lemma can be found in (Kolter, 2011). Note that (D̄) in his proof is equal top
⇢max in our paper.
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Lemma 4. If ⌅ satisfies the following linear matrix inequality


�>⌅� �>⌅P�
�>

P
>⌅� �>⌅�

�
⌫ 0 (22)

and let ✓⇤ be the solution to A✓
⇤ = b, then we have

||V � �✓⇤||⇠ 
1 + �

p
⇢max

1� �
||V �⇧V ||⇠. (23)

Note that the condition on ⌅ in Eq. (22) guarantees that the behavior and target policies are not
too far away from each other. Using Lemma 4, we derive the following performance bound for
GTD/GTD2 in the off-policy setting.

Proposition 5. Let V be the value of the target policy and v̄n = �✓̄n, where ✓̄n is defined by (15),
be the value function returned by off-policy GTD/GTD2. Also let the sampling distribution ⌅ satisfy
the condition in Eq. (22). Then, with probability at least 1� �, we have

||V � v̄n||⇠ 
1 + �

p
⇢max

1� �
||V �⇧V ||⇠ (24)

+

s
2⌧C⌧⇠max

�min(A>M�1A)
Err(✓̄n, ȳn),

where ⌧C = �max(C).

Proof. See the Appendix. ⌅

4.4 Accelerated Algorithm

As discussed at the beginning of Section 3, this saddle-point formulation not only gives us the
opportunity to use the techniques for the analysis of SG methods to derive finite-sample performance
bounds for the GTD algorithms, as we showed in Section 4, but it also allows us to use the powerful
algorithms that have been recently developed to solve the SG problems and derive more efficient
versions of GTD and GTD2. Stochastic Mirror-Prox (SMP) (Juditsky et al., 2008) is an “almost
dimension-free” non-Euclidean extra-gradient method that deals with both smooth and non-smooth
stochastic optimization problems (see (Juditsky & Nemirovski, 2011) and (Bubeck, 2014) for more
details). Using SMP, we propose a new version of GTD/GTD2, called GTD-MP/GTD2-MP, with
the following update formula:3

y
m
t = yt + ↵t(b̂t � Ât✓t � M̂tyt), ✓

m
t = ✓t + ↵tÂ

>
t yt,

yt+1 = yt + ↵t(b̂t � Ât✓
m
t � M̂ty

m
t ), ✓t+1 = ✓t + ↵tÂ

>
t y

m
t .

After T iterations, these algorithms return ✓̄T :=
PT

t=1 ↵t✓tPT
t=1 ↵t

and ȳT :=
PT

t=1 ↵tytPT
t=1 ↵t

. The details of the
algorithm are shown in Algorithm 2, and the experimental comparison study between GTD2 and
GTD2-MP is reported in Section 7.

3. For simplicity, we only describe mirror-prox GTD methods where the mirror map is identity, which can also be
viewed as extragradient (EG) GTD methods. (Mahadevan et al., 2014) gives a more detailed discussion of a broad
range of mirror maps in RL.
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Algorithm 2 GTD2-MP
1: for t = 1, . . . , n do

2: Update parameters

�t(✓t) = rt � ✓
>
t ��t

y
m
t = yt + ↵t(⇢t�t � �

>
t yt)�t

✓
m
t = ✓t + ↵t⇢t��t(�

>
t yt)

�
m
t (✓mt ) = rt � (✓mt )>��t

yt+1 = yt + ↵t(⇢t�
m
t � �

>
t y

m
t )�t

✓t+1 = ✓t + ↵t⇢t��t(�
>
t y

m
t )

3: end for

4: OUTPUT

✓̄n :=

Pn
t=1 ↵t✓tPn
t=1 ↵t

, ȳn :=

Pn
t=1 ↵tytPn
t=1 ↵t

5. Further Analysis

In this section, we discuss different aspects of the proximal gradient TD framework from several
perspectives, such as acceleration, learning with inexact importance weight factor ⇢t, finite-sample
analysis with Markov sampling condition, and discussion of TDC algorithm.

5.1 Acceleration Analysis

In this section, we are going to discuss the convergence rate of the accelerated algorithms using
off-the-shelf accelerated solvers for saddle-point problems. For simplicity, we will discuss the error
bound of 1

2 ||A✓ � b||2M�1 , and the corresponding error bound of 1
2 ||A✓ � b||2⇠ and kV � v̄n||⇠ can

be likewise derived. As can be seen from the above analysis, the convergence rate of the GTD
algorithms family is

(GTD/GTD2) : O

✓
⌧ + ||A||2 + �p

n

◆

In this section, we raise an interesting question: what is the “optimal” GTD algorithm? To answer
this question, we review the convex-concave formulation of GTD2. According to convex program-
ming complexity theory (Juditsky et al., 2008), the un-improvable convergence rate of the stochastic
saddle-point problem in Eq. (13) is

(Optimal) : O

✓
⌧

n2
+

||A||2
n

+
�p
n

◆

There are many readily available stochastic saddle-point solvers, such as the stochastic Mirror-Prox
(SMP) (Juditsky et al., 2008) algorithm, which leads to our proposed GTD2-MP algorithm. GTD2-
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MP is able to accelerate the convergence rate of our gradient TD method to:

(GTD2�MP) : O

✓
⌧ + ||A||2

n
+

�p
n

◆
.

5.2 Learning with Biased ⇢t

The importance weight factor ⇢t is lower bounded by 0, but yet may have an arbitrarily large upper
bound. In real applications, the importance weight factor ⇢t may not be estimated exactly, i.e., the
estimation ⇢̂t is a biased estimation of the true ⇢t. To this end, the stochastic gradient we obtained is
not the unbiased gradient of L(✓, y) anymore. This falls into a broad category of learning with inex-
act stochastic gradient, or termed as stochastic gradient methods with an inexact oracle (Devolder,
2011). Given the inexact stochastic gradient, the convergence rate and performance bound become
much worse than the results with exact stochastic gradient. Based on the analysis by (Juditsky et al.,
2008), we have the error bound for inexact estimation of ⇢t.

Proposition 6. Let ✓̄n be defined as above. Assume at the t-th iteration, ⇢̂t is the estimation of the
importance weight factor ⇢t with bounded bias such that E[⇢̂t � ⇢t]  ✏. The convergence rates of
GTD/GTD2 algorithms with iterative averaging are as follows,

||A✓̄n � b||2M�1  O

✓
⌧ + ||A||2 + �p

n

◆
+O(✏)

This implies that the inexact estimation of ⇢t may cause disastrous estimation error, which
implies that an exact estimation of ⇢t is very important.

5.3 Finite-Sample Analysis of Online Learning

Another more challenging scenario is the online learning scenario, where the samples are inter-
actively generated by the environment, or by an interactive agent. The difficulty lies in that the
sample distribution does not follow the i.i.d sampling condition anymore, but follows an underlying
Markov chain M. If the Markov chain M’s mixing time is small enough, i.e., the sample distri-
bution reduces to the stationary distribution of ⇡b very fast, our analysis still applies. However, it
is usually the case that the underlying Markov chain’s mixing time ⌧mix is not small enough. The
analysis can be conducted by extending the result of recent work (Duchi, Agarwal, Johansson, &
Jordan, 2012) from strongly convex loss functions to saddle-point problems. Following this line of
research, Wang et al. (Wang, Chen, Liu, Ma, & Liu, 2017) conducted the finite-sample analysis of
GTD2(0) algorithms in the Markov noise setting, which is the same in convergence rate order but
different in the constant factors.

5.4 Discussion of TDC Algorithm

Now we discuss the limitation of our analysis with regard to the temporal difference with cor-
rection (TDC) algorithm (Sutton et al., 2009). Interestingly, the TDC algorithm seems not to
have an explicit saddle-point representation, since it incorporates the information of the optimal
y
⇤
t (✓t) into the update of ✓t, a quasi-stationary condition which is commonly used in two-time-

scale stochastic approximation approaches. An intuitive answer to the advantage of TDC over
GTD2 is that the TDC update of ✓t can be considered as incorporating the prior knowledge into
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the update rule: for a stationary ✓t, if the optimal y⇤t (✓t) has a closed-form solution or is easy to
compute, then incorporating this y⇤t (✓t) into the update law tends to accelerate the algorithm’s con-
vergence performance. For the GTD2 update, note that there is a sum of two terms where yt appears,
which are ⇢t(�t � ��

0
t)(y

>
t �t) = ⇢t�t(y>t �t) � �⇢t�

0
t(y

>
t �t). Replacing yt in the first term with

y
⇤
t (✓t) = E[�t�

>
t
]�1E[⇢t�t(✓t)�t], we have the TDC update rule. There are two key factors that

impedes the finite-sample analysis of TDC algorithm with the saddle-point approach. Firstly, in
contrast to GTD/GTD2, TDC is a two-time scale algorithm where lim

t!1
↵t
�t

= 0. Secondly, note
that TDC does not minimize any objective functions, thus does not have a stochastic primal-dual
formulation as GTD and GTD2, and the asymptotic convergence of TDC requires more restrictions
than GTD2 as shown by (Sutton et al., 2009).

5.5 Recent Results of Related Work

The proximal gradient temporal difference learning framework introduces many stochastic opti-
mization techniques that facilitate theoretical analysis of reinforcement learning algorithms, such as
Polyak’s iterative averaging, projections, and constant stepsizes, which were first introduced by Liu
et al. (2012). We briefly review several significant research advances on the finite-sample analysis of
linear temporal difference learning algorithms since the finite-sample analysis of GTD algorithms
which was first published (Liu, Liu, Ghavamzadeh, Mahadevan, & Petrik, 2015). The first line of
work is the analysis of GTD algorithm family (Dalal, Szörényi, Thoppe, & Mannor, 2018a; Dalal,
Thoppe, Szorenyi, & Mannor, 2018b) with different learning settings. Dalal et al. (2018b) con-
ducted a finite-sample analysis of the two-time-scale GTD, GTD2, and TDC algorithms using a
concentration bound for stochastic approximation methods via Alekseev’s Formula (Kamal, 2010;
Thoppe & Borkar, 2015). Using this approach, the convergence rate of GTD2 w.r.t mean-square
error (MSE) ||V � v̂n||2⇠ proposed in (Dalal et al., 2018b) is Õ(n�(1��) 23 ), where � is a tuning
parameter that influences the stepsizes used by the algorithms, and a special “sparse projection” is
used (Dalal et al., 2018a). This framework enables the finite-sample analysis of the TDC algorithm,
which cannot be analyzed from the saddle-point perspective, as explained in Section 5.4. The other
work (Wang et al., 2017) investigates the convergence rate assuming a Markov sampling condition
and Robbins-Monro stepsizes. Table 1 presents a comparison of existing approaches. It should be
noted that all of the analyses are for algorithms employing projections and iterative averaging. Lak-
shminarayanan et al. (Lakshminarayanan & Szepesvari, 2018) also studied the impact of constant
stepsizes and Polyak’s iterative averaging on the TD algorithm with projections in the i.i.d setting,
yet the result has not been extended to GTD algorithm family yet.

The second line of work aims to adopt new stochastic saddle-point solvers into the proximal
gradient TD framework and proposes new algorithms for acceleration, regularization and variance
reduction. Mahadevan et al. (2014) investigated proximal gradient TD with an `1-regularizer to
enhance sparsity. Du et al. (Du, Chen, Li, Xiao, & Zhou, 2017) introduced the stochastic variance
reduced saddle-point solver (Palaniappan & Bach, 2016) to reach a linear convergence rate for a
fixed set of samples. The third line of work focuses on the analysis of gradient temporal differ-
ence learning algorithms with eligibility traces (Yu, 2017). To the best of our knowledge, the only
asymptotic convergence analysis for GTD(lambda) with � > 0 is proposed by Yu (2017), and the
finite-sample analysis still remains an open problem. Comprehensive studies of different temporal
difference learning algorithms with eligibility traces have been conducted in (Dann, Neumann, &
Peters, 2014; White & White, 2016).
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Method GTD2 (Liu et al., 2015) GTD2 (Wang et al., 2017) GTD2 (Dalal et al., 2018b)

Sampling i.i.d Markov i.i.d
Stepsize’s time-scale single-time-scale single-time-scale two-time-scale

Stepsize choice constant Robbins-Monro
↵n = 1/n1��

,

�n = 1/n(1��) 23

Projection Y Y Y
Iterative averaging Y Y Y
Conv. rate of MSE Õ(1/

p
n) Õ(

⌃n
t=1↵

2
t

⌃n
t=1↵t

) Õ(n�2(1��)/3)

Table 1: Comparison of Existing Methods

6. Control Learning Extension

In this section, we are going to discuss the control learning extension of the family of proximal
gradient algorithms. To this end, we will first present a lemma bridging the connection between
the forward-view and backward-view perspectives. Then based on the GQ (Maei & Sutton, 2010)
algorithm, we propose the control learning extension of the GTD2-MP algorithm, which is termed
as the GQ-MP algorithm.

6.1 Extension to Eligibility Trace

The T operator looks one-step ahead, but it would be beneficial to look multiple steps ahead (Sutton
& Barto, 1998), which gives rise to the multiple-step Bellman operator T �, otherwise known as the
�-weighted Bellman operator (Sutton & Barto, 1998), which is an arithmetic mean of the power
series of T , i.e.,

T
� = (1� �)

X1

i=0
�
i
T
i+1

,� 2 (0, 1)

Correspondingly, the multiple-step TD error, also termed as the �-TD error �� w.r.t ✓ is defined as

E[��(✓)] = T
�
v̂ � v̂ = T

��✓ � �✓

The objective function as in Eq. (6) is changed accordingly as follows by replacing T with T
� ,

J(✓) = ||�>⌅(T �
v̂ � v̂)||2M�1 = ||E[⇢i�i�

�
i (✓)]||2M�1 (25)

This is called the forward view since it calls for looking multiple steps ahead, which is difficult to
implement in practice. To this end, the backward view using eligibility traces is easy to implement.
The eligibility trace is defined in a recursive way as

e0 =0

et =⇢t��et�1 + �t

We will introduce Theorem 2 to bridge the gap between the backward and forward view.

Theorem 2. (Maei, 2011; Geist & Scherrer, 2014) There is an equivalence between the forward
view and backward view such that

E[�i�
�
i (✓)] = E[ei�i(✓)] (26)
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The details of the forward view and the backward view can be seen in (Sutton & Barto, 1998),
Theorem 11 in (Maei, 2011), and Proposition 6 in (Geist & Scherrer, 2014). A natural extension to
Eq. (26) multiplies the importance ratio factor on both sides of the equality as follows,

E[⇢i�i�
�
i (✓)] = E[⇢iei�i(✓)]

6.2 Greedy-GQ(�) Algorithm

With the help of Theorem 2, we can convert the objective formulation in Eq. (25) to

J(✓) = ||E[⇢iei�i(✓)]||2M�1 .

The corresponding primal-dual formulation is

J(✓) = max
y

✓
hE[⇢iei�i(✓)], yi �

1

2
||y||2M

◆

and thus the new algorithm can be derived as

✓t+1 =✓t + ↵t⇢t��t(e
>
t yt)

yt+1 =yt + ↵t (⇢t�tet �Mtyt) .

Correspondingly, Greedy-GQ(�) with importance sampling can be derived. Here we present the
Greedy-GQ(�) algorithm. and GQ-MP-LEARN algorithm, which is the core step of Greedy-GQ

Algorithm 3 Greedy-GQ(�)
Initialize et = 0, starting from s0.

1: repeat

2: Take at according to ⇡b, and arrive at st+1

3: Compute a
⇤
t = argmaxa✓>�(st, a). If at = a

⇤
t , then ⇢t =

1
⇡b(at|st) ; otherwise ⇢t = 0.

4: Compute ✓t+1, yt+1 according to GQ-MP-LEARN Algorithm.
5: Choose action at, and get st+1, rt+1

6: Set t t+ 1;
7: until st is an absorbing state;
8: Compute ✓̄t, ȳt

algorithm.

7. Empirical Evaluation

In this section, we compare the previous GTD2 method with our proposed GTD2-MP method using
various domains with regard to their value function approximation performance.
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Algorithm 4 GQ-MP-LEARN

et = ��⇢tet�1 + �t

�t = rt + ✓
>
t ��t

y
m
t = yt + ↵t

⇣
⇢tet�t � (�>

t yt)�t

⌘

✓
m
t = ✓t + ↵t⇢t��t(e

>
t yt)

�
m
t = rt + ✓

m>
t ��t

yt+1 = yt + ↵t

⇣
⇢tet�

m
t � (�>

t y
m
t )�t

⌘

✓
m
t = ✓t + ↵t⇢t��t(e

>
t y

m
t )

7.1 Baird Domain

The Baird example (Baird, 1995) is a well-known example to test the performance of off-policy
convergent algorithms. Constant stepsizes ↵ = 0.005 for GTD2 and ↵ = 0.004 for GTD2-MP
are chosen via comparison studies as in (Dann et al., 2014). Figure 1 shows the MSPBE curve
of GTD2, GTD2-MP of 8000 steps averaged over 200 runs. We can see that GTD2-MP gives
a significant improvement over the GTD2 algorithm wherein both the MSPBE and variance are
substantially reduced.

Figure 1: Off-Policy Convergence Comparison

7.2 50-State Chain Domain

The 50 state chain (Lagoudakis & Parr, 2003) is a standard MDP domain. There are 50 discrete
states {si}50i=1 and two actions moving the agent left si ! smax(i�1,1) and right si ! smin(i+1,50).
The actions succeed with probability 0.9; failed actions move the agent in the opposite direction.
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Figure 2: Chain Domain

The discount factor is � = 0.9. The agent receives a reward of +1 when in states s10 and s41.
All other states have a reward of 0. In this experiment, we compare the performance of the value
approximation w.r.t different stepsizes ↵ = 0.0001, 0.001, 0.01, 0.1, 0.2, · · · , 0.9 using the BEBF
basis (Parr, Painter-Wakefield, Li, & Littman, 2007). Figure 2 shows the value function approxima-
tion result where the cyan curve is the true value function, the red dashed curve is the GTD result,
and the black curve is the GTD2-MP result. From the figure, one can see that GTD2-MP is much
more robust w.r.t. stepsize choice than the GTD2 algorithm.

7.3 Energy Management Domain

In this experiment, we compare the performance of the algorithms on an energy management do-
main. The decision maker must decide how much energy to purchase or sell subject to stochastic
prices. This problem is relevant in the context of utilities as well as in settings such as hybrid vehi-
cles. The prices are generated by a Markov chain process. The amount of available storage is limited
and degrades with use. The degradation process is based on the physical properties of lithium-ion
batteries and discourages fully charging or discharging the battery. The energy arbitrage problem is
closely related to the broad class of inventory management problems, with the storage level corre-
sponding to the inventory. However, there are no known results describing the structure of optimal
threshold policies in energy storage.

Note that since this is an off-policy evaluation problem, the formulated A✓ = b does not have
a solution, and thus the optimal MSPBE(✓⇤) (resp. MSBE(✓⇤) ) does not reduce to 0. The result is
averaged over 200 runs, and ↵ = 0.001 for both GTD2 and GTD2-MP is chosen via comparison
studies for each algorithm. As can be seen from Figure 3, GTD2-MP performs much better than
GTD2 in the transient state. Then after reaching the steady state, as can be seen from Table 2, we
can see that GTD2-MP reaches a better steady-state solution than the GTD algorithm. From the
steady-state reported in Table 2, we can see that GTD-MP and GTD2-MP usually reach a far better
final solution than TD and GTD/GTD2 algorithms.
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Figure 3: Energy Management Example

Algorithm MSPBE MSBE
TD 46.743 80.050

GTD 164.378 231.569
GTD2 77.139 111.19

GTD-MP 30.170 44.627
GTD2-MP 27.891 41.028

Table 2: Steady State Performance Comparison of Battery Management Domain
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Figure 4: Energy Management Example

7.4 Bicycle Balancing and Riding Task

The bicycle balancing and riding domain (Randløv & Alstrøm, 1998) is a complicated domain. The
goal is to learn to balance and ride a bicycle to a target position from the starting location.

To make a fair comparison, the parameter settings are identical to the parameter settings in (Lagoudakis
& Parr, 2003). The samples are generated via the random walk, after which, we compare the value
function approximation results of TD, GTD2, and GTD2-MP algorithm. From Figure 4, we can
see that both the GTD2 and GTD2-MP algorithms reach a much better learning curve than the TD
algorithm with significantly reduced variance. Besides, the GTD2 and GTD2-MP algorithms reach
better steady-state solutions than the TD algorithm, as shown in Table 3.

7.5 Comparison with Other First-Order Policy Evaluation Algorithms

Here we give an experimental comparison between the gradient-based TD algorithms and the TD
algorithm. Based on the experimental results shown above, we make the following empirical con-
clusions:
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Algorithm MSPBE MSBE
TD 0.0423 0.0547

GTD2 0.0244 0.0300
GTD2-MP 0.0238 0.0297

Table 3: Steady State Performance Comparison of Bicycle Domain

• Of all the gradient-based algorithms, GTD2-MP is the clear winner.

• For small and medium scale problems, TD is an ideal choice as it converges faster at the
initial stage. On the other hand, GTD2-MP often reaches a better steady-state solution given
more number of iterations.

• For large-scale problems, GTD2-MP is the clear winner over the TD method with both
reduced variance and better final solution, as shown in the bicycle and energy management
domain.

• There exist some domains where the T operator is not differentiable, and thus only TD-
based algorithms can be applied, such as the optimal stopping problem in (Choi & Van Roy,
2006).

Figure 5: Summary of Comparisons between TD and GTD algorithm family

7.6 Energy Management Domain (Revisited): Control Learning

Here, we compare the TD, TDC, and GTD-MP variants of GQ-Learning on the battery manage-
ment domain. Using the same domain settings as in (Liu et al., 2015; Liu, Liu, Ghavamzadeh,
Mahadevan, & Petrik, 2016), we train the three methods on a uniformly random behavior policy for
7, 000 iterations. We then evaluate the policy, ✓t, learned by each algorithm every 100 time steps
by computing the total reward accumulated by following that policy for 10, 000 iterations, averaged
over 10 runs (see Figure 6).

All methods were run with ✓0 initialized to the zeros vector. The TD variant was run with a step
size of .0001 to avoid divergence of MSBE while the TDC and GTD-MP variants remained stable
in terms of MSBE with a step size of 0.001 (see Figure 7).

8. Summary

In this paper, we showed how gradient TD methods can be shown to be true stochastic gradient
methods with respect to a saddle-point primal-dual objective function, which paved the way for
the finite-sample analysis of off-policy convergent gradient-based temporal difference learning al-
gorithms such as GTD and GTD2. Both error bound and performance bound are provided, which
shows that the value function approximation bound of the GTD algorithms family is O

⇣
d

n1/4

⌘
.

Furthermore, two revised algorithms, namely the projected GTD2 algorithm and the accelerated
GTD2-MP algorithm, are proposed.
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Figure 6: Average total accumulated reward for learned policies at step t. Shaded regions around
mean total reward denote 1 standard deviation.

Figure 7: MSBE diverges for TD variant with step size of 0.001. MSBE is plotted on a log scale.
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There are many interesting directions for future research. Our framework can be easily used to
design regularized sparse gradient off-policy TD methods.

There are several promising future research directions with our proposed proximal gradient TD
learning framework. The first promising direction is to explore other compound operator splitting
techniques other than primal-dual splitting. As we have shown in previous chapters, new algorithms
can be designed if there exist methods that can split the operator so that the product of expectations
can be avoided, and this operator splitting formulation does not have to be the primal-dual for-
mulation. We have explored two primal-dual formulations, one is based on the convex conjugate
function, and the other is based on dual norm representation. It would be interesting to see if there
are any other compound operator splitting techniques that will lead to a family of new algorithms
along with possibly faster convergence rate.

Another interesting future direction is to explore proximal gradient TD algorithms with trans-
fer RL. Given multiple different but related tasks, knowledge transfer is desirable and will help
faster learning, less sample complexity, and better generalization ability. There are various types
of transfer learning at different levels, such as instance-level transfer, feature-level transfer, and
parameter-level transfer. As we know, from a transfer learning perspective, off-policy learning is
instance level transfer learning. It would be interesting to see if other transfer RL problems can be
formulated as saddle-point problems and if there is similar finite-sample analysis as well. Another
interesting direction is to design new objective functions for TD learning. Since Bellman error is an
expectation function (of the TD error), both MSPBE and NEU are (weighted) norm of expectations
of the TD error. This is where the biased sampling problem comes from. It would be desirable if a
new set of objectives can be designed, in which the biased sampling problem can be avoided. How
to combine model-free temporal difference learning and learning with a generative model (Chen,
Li, & Wang, 2018) is another interesting question to explore.
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Appendix A. Proof of Lemma 2

Proof. From the boundedness of the features (by L) and the rewards (by Rmax), we have

||A||2 = ||E[⇢t�t��
>
t ]||2

 maxs||⇢(s)�(s)(��(s))>||2
 ⇢maxmaxs||�(s)||2maxs||�(s)� ��

0(s)||2
 ⇢maxmaxs||�(s)||2maxs

�
||�(s)||2 + �||�0(s)||2

�

 (1 + �)⇢maxL
2
d.

The second inequality is obtained by the consistent inequality of matrix norm, the third inequality
comes from the triangular norm inequality, and the fourth inequality comes from the vector norm
inequality ||�(s)||2  ||�(s)||1

p
d  L

p
d. The bound on ||b||2 can be derived in a similar way as

follows.

||b||2 = ||E[⇢t�trt]||2
 max

s
||⇢(s)�(s)r(s)||2

 ⇢maxmaxs||�(s)||2maxs||r(s)||2
 ⇢maxLRmax.

It completes the proof. ⌅

Appendix B. Proof of Proposition 3

Proof. The proof of Proposition 3 mainly relies on Proposition 3.2 in (Nemirovski et al., 2009). We
just need to map our convex-concave stochastic saddle-point problem in Eq. (13), i.e.,

min
✓2⇥

max
y2Y

✓
L(✓, y) = hb�A✓, yi � 1

2
||y||2M

◆

to the one in Section 3 of (Nemirovski et al., 2009) and show that it satisfies all the conditions
necessary for their Proposition 3.2. Assumption 2 guarantees that our feasible sets ⇥ and Y satisfy
the conditions in (Nemirovski et al., 2009), as they are non-empty bounded closed convex subsets
of Rd. We also see that our objective function L(✓, y) is convex in ✓ 2 ⇥ and concave in y 2 Y ,
and also Lipschitz continuous on ⇥ ⇥ Y . It is known that in the above setting, our saddle-point
problem in Eq. (13) is solvable, i.e., the corresponding primal and dual optimization problems:
min✓2⇥

⇥
maxy2Y L(✓, y)

⇤
and maxy2Y

⇥
min✓2⇥ L(✓, y)

⇤
are solvable with equal optimal values,

denoted L
⇤, and pairs (✓⇤, y⇤) of optimal solutions to the respective problems from the set of saddle-

points of L(✓, y) on ⇥⇥ Y .
For our problem, the stochastic sub-gradient vector G is defined as

G(✓, y) =


G✓(✓, y)
�Gy(✓, y)

�
=


�Â>

t y

�(b̂t � Ât✓ � M̂ty)

�
.

This guarantees that the deterministic sub-gradient vector
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g(✓, y) =


g✓(✓, y)
�gy(✓, y)

�
=


E
⇥
G✓(✓, y)

⇤

�E
⇥
Gy(✓, y)

⇤
�

is well-defined, i.e., g✓(✓, y) 2 @✓L(✓, y) and gy(✓, y) 2 @yL(✓, y).
We also consider the Euclidean stochastic approximation (E-SA) setting in (Nemirovski et al.,

2009) in which the distance generating functions !✓ : ⇥! R and !y : Y ! R are simply defined
as

!✓ =
1

2
||✓||22, !y =

1

2
||y||22,

modulus 1 w.r.t. || · ||2, and thus, ⇥o = ⇥ and Y
o = Y (see pp. 1581 and 1582 in (Nemirovski et al.,

2009)). This allows us to equip the set Z = ⇥⇥ Y with the distance generating function

!(z) =
!✓(✓)

2D2
✓

+
!y(y)

2D2
y
,

where D✓ and Dy are defined in Assumption 2.
Now that we consider the Euclidean case and set the norms to `2-norm, we can compute upper-

bounds on the expectation of the dual norm of the stochastic sub-gradients

E
⇥
||G✓(✓, y)||2⇤,✓

⇤
M

2
⇤,✓, E

⇥
||Gy(✓, y)||2⇤,y

⇤
M

2
⇤,y,

where || · ||⇤,✓ and || · ||⇤,y are the dual norms in ⇥ and Y , respectively. Since we are in the Euclidean
setting and use the `2-norm, the dual norms are also `2-norm, and thus, to compute M⇤,✓, we need
to upper-bound E

⇥
||G✓(✓, y)||22

⇤
and E

⇥
||Gy(✓, y)||22

⇤
.

To bound these two quantities, we use the following equality that holds for any random variable
x:

E[||x||22] = E[||x� µx||22] + ||µx||22,

where µx = E[x]. Here is how we bound E
⇥
||G✓(✓, y)||22

⇤
,

E
⇥
||G✓(✓, y)||22

⇤
= E[||Â>

t y||22]
= E[||Â>

t y �A
>
y||22] + ||A>

y||22
 �

2
2 + (||A||2||y||2)2

 �
2
2 + ||A||22R2

,

where the first inequality is from the definition of �2 in Eq. (16) and the consistent inequality of
the matrix norm, and the second inequality comes from the boundedness of the feasible sets in
Assumption 2. Similarly we bound E

⇥
||Gy(✓, y)||22

⇤
as follows:

E[||Gy(✓, y)||22] = E[||b̂t � Ât✓ � M̂ty||22]
= ||b�A✓ +My||22
+ E[||b̂t � Ât✓ � M̂ty � (b�A✓ �My)||22]
 (||b||2 + ||A||2||✓||2 + ⌧ ||y||2)2 + �

2
1


�
||b||2 + (||A||2 + ⌧)R

�2
+ �

2
1,
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where these inequalities come from the definition of �1 in Eq. (16) and the boundedness of the
feasible sets in Assumption 2. This means that in our case we can compute M

2
⇤,✓,M

2
⇤,y as

M
2
⇤,✓ = �

2
2 + ||A||22R2

,

M
2
⇤,y =

�
||b||2 + (||A||2 + ⌧)R

�2
+ �

2
1,

and as a result

M
2
⇤ = 2D2

✓M
2
⇤,✓ + 2D2

yM
2
⇤,y = 2R2(M2

⇤,✓ +M
2
⇤,y)

= R
2
⇣
�
2 + ||A||22R2 +

�
||b||2 + (||A||2 + ⌧)R

�2⌘


�
R

2 (2||A||2 + ⌧) +R(� + ||b||2)
�2
,

where the inequality comes from the fact that 8a, b, c � 0, a2 + b
2 + c

2  (a + b + c)2. Thus, we
may write M⇤ as

M⇤ = R
2 (2||A||2 + ⌧) +R(� + ||b||2). (27)

Now we have all the pieces ready to apply Proposition 3.2 in (Nemirovski et al., 2009) and obtain
a high-probability bound on Err(✓̄n, ȳn), where ✓̄n and ȳn (see Eq. (15)) are the outputs of the
revised GTD algorithm in Algorithm 1. From Proposition 3.2 in (Nemirovski et al., 2009), if we set
the step-size in Algorithm 1 (our revised GTD algorithm) to ↵t =

2c
M⇤

p
5n

, where c > 0 is a positive
constant, M⇤ is defined by Eq. (27), and n is the number of training samples in D, with probability
of at least 1� �, we have

Err(✓̄n, ȳn) 
r

5

n
(8 + 2 log

2

�
)R2

✓
2||A||2 + ⌧ +

||b||2 + �

R

◆
. (28)

Note that we obtain Eq. (28) by setting c = 1 and the “light-tail” assumption in Eq. (18) guarantees
that we satisfy the condition in Eq. 3.16 in (Nemirovski et al., 2009), which is necessary for the
high-probability bound in their Proposition 3.2 to hold. The proof is complete by replacing ||A||2
and ||b||2 from Lemma 2. ⌅

Appendix C. Proof of Proposition 4

Proof. From Lemma 3, we have

V � v̄n = (I � �⇧P )�1⇥
⇥
(V �⇧V ) + �C�1(b�A✓̄n)

⇤
.

Applying `2-norm w.r.t. the distribution ⇠ to both sides of this equation, we obtain

||V � v̄n||⇠ ||(I � �⇧P )�1||⇠⇥ (29)
�
||V �⇧V ||⇠ + ||�C�1(b�A✓̄n)||⇠

�
.

Since P is the kernel matrix of the target policy ⇡ and ⇧ is the orthogonal projection w.r.t. ⇠, the
stationary distribution of ⇡, we may write

||(I � �⇧P )�1||⇠ 
1

1� �
.
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Moreover, we may upper-bound the term ||�C�1(b�A✓̄n)||⇠ in (29) using the following inequali-
ties:

||�C�1(b�A✓̄n)||⇠
 ||�C�1(b�A✓̄n)||2

p
⇠max

 ||�||2||C�1||2||(b�A✓̄n)||M�1

p
⌧⇠max

 (L
p
d)(

1

⌫
)
q
2Err(✓̄n, ȳn)

p
⌧⇠max

=
L

⌫

q
2d⌧⇠maxErr(✓̄n, ȳn),

where the third inequality is the result of upper-bounding ||(b�A✓̄n)||�1
M using Eq. (21) and the fact

that ⌫ = 1/||C�1||22 = 1/�max(C�1) = �min(C) (⌫ is the smallest eigenvalue of the covariance
matrix C). ⌅

Appendix D. Proof of Proposition 5

Proof. Using the triangle inequality, we may write

||V � v̄n|||⇠  ||v̄n � �✓⇤||⇠ + ||V � �✓⇤||⇠. (30)

The second term on the right-hand side of Eq. (30) can be upper-bounded by Lemma 4. Now we
upper-bound the first term as follows:

||v̄n � �✓⇤||2⇠
= ||�✓̄n � �✓⇤||2⇠
= ||✓̄n � ✓

⇤||2C
 ||✓̄n � ✓

⇤||2A>M�1A||(A
>
M

�1
A)�1||2||C||2

= ||A(✓̄n � ✓
⇤)||2M�1 ||(A>

M
�1

A)�1||2||C||2
= ||A✓̄n � b||2M�1

⌧C

�min(A>M�1A)
,

where ⌧C = �max(C) is the largest singular value of C, and �min(A>
M

�1
A) is the smallest

singular value of A>
M

�1
A. Using the result of Theorem 1, with probability at least 1� �, we have

1

2
||A✓̄n � b||2M�1  ⌧⇠maxErr(✓̄n, ȳn).

Thus,

||v̄n � �✓⇤||2⇠ 
2⌧C⌧⇠max

�min(A>M�1A)
Err(✓̄n, ȳn) (31)

From Eqs. (30), (23), and (31), the result of Eq. (24) can be derived, which completes the proof. ⌅
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Appendix E. Battery Domain

The problem represents an energy arbitrage model with multiple finite known price levels and a
stochastic evolution given a limited storage capacity. In particular, the storage is assumed to be an
electrical battery that degrades when energy is stored or retrieved. Energy prices are governed by
a Markov process with states ⇥. There are two energy prices in each time step: p

i : ⇥ ! R is
the purchase (or input) price and p

o : ⇥ ! R is the sell (or output) price. The parameter ✓ vary
between 0 and 10 and their evolution is governed by a martingale with a normal distribution around
the mean.

We use s to denote the available battery capacity with s0 denoting the initial capacity. The
current state of charge is denoted by x or y and must satisfy that 0  xt  st at any time step t. The
action is the amount of energy to charge or discharge, which is denoted by u. Positive u indicates
that energy is purchased to charge the battery; negative u indicates the sale of energy.

The battery storage degrades with use. The degradation is a function of the battery capacity
when charged or discharged. We use a general model of battery degradation with a specific focus
on Li-ion batteries. The degradation function d(x, u) 2 R represent the battery capacity loss after
starting at the state of charge x � 0 and charging (discharging if negative) by u with �x  u  s0.
This function indicates the loss of capacity, such that:

st+1 = st � d(xt, ut)

The state set in the Markov decision problem is composed of (x, s, ✓) where x is the state of
charge, s is the battery capacity, and ✓ 2 ⇥ is the state of the price process. The available actions in a
state (x, s, ✓) are u such that�x  u  s�x. The transition is from (xt, st, ✓t) to (xt+1, st+1, ✓t+1)
given action ut is:

xt+1 = xt + ut

st+1 = st � d(xt, ut)

The probability of this transition is given by P [✓t+1|✓t]. The reward for this transition is:

r((xt, st, ✓t), ut) =

(
�ut · pi � c

d · d(xt, ut) if ut � 0

�ut · po � c
d · d(xt, ut) if ut < 0

.

That is, the reward captures the monetary value of the transaction minus a penalty for degradation
of the battery. Here, cd represents the cost of a unit of lost battery capacity.

The Bellman optimality equations for this problem are:

qT (x, s, ✓) = 0

vt(x, s, ✓t) = min
�
p
i
✓t [u]+ + p

o
✓t [u]�+

+ c
d
d(x, u)+

+ qt(x+ u, s� d(x, u), ✓t) :

: u 2 [�x, s� x]
 

qt(x, s, ✓t) = � · E[vt+1(x, s, ✓t+1)]

where the expectation E[vt+1(x, s, ✓t+1)] is taken over P (✓t+1|✓t).
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The value function is approximated using piece-wise linear features of three types �
1, �2, �3

defined as a function of the MDP state as follows:

�
1
w,q(x, s, ✓) =

(
[x� w]+ if ✓ = q

0 otherwise

�
2
w,q(x, s, ✓) =

(
[s� w]+ if ✓ = q

0 otherwise

�
3
w,q(x, s, ✓) =

(
[s+ x� w]+ if ✓ = q

0 otherwise

Here, w 2 {0, 0.1, . . . , 0.9, 1} and q 2 ⇥.
These features can be conveniently used to approximate a piece-wise linear function.
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