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ABSTRACT
A frequent problem when dealing with data gathered from
multiple sources on the web (ranging from booksellers to
Wikipedia pages to stock analyst predictions) is that these
sources disagree, and we must decide which of their (often
mutually exclusive) claims we should accept. Current state-
of-the-art information credibility algorithms known as “fact-
finders” are transitive voting systems with rules specifying
how votes iteratively flow from sources to claims and then
back to sources. While this is quite tractable and often effec-
tive, fact-finders also suffer from substantial limitations; in
particular, a lack of transparency obfuscates their credibil-
ity decisions and makes them difficult to adapt and analyze:
knowing the mechanics of how votes are calculated does not
readily tell us what those votes mean, and finding, for ex-
ample, that a source has a score of 6 is not informative.
We introduce a new approach to information credibility, La-
tent Credibility Analysis (LCA), constructing strongly prin-
cipled, probabilistic models where the truth of each claim
is a latent variable and the credibility of a source is cap-
tured by a set of model parameters. This gives LCA models
clear semantics and modularity that make extending them
to capture additional observed and latent credibility factors
straightforward. Experiments over four real-world datasets
demonstrate that LCA models can outperform the best fact-
finders in both unsupervised and semi-supervised settings.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval—Information filtering ; I.2.m [Computing Method-
ologies]: Artificial Intelligence

General Terms
Algorithms, Experimentation, Measurement, Reliability

Keywords
Credibility, Graphical Models, Trust, Veracity

1. INTRODUCTION
Conflicts among information sources are commonplace:

Twitter users debate the effects of healthcare reform, Wikipedia
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authors provide differing populations for the same city, on-
line retailers offer discordant descriptions of the same prod-
uct, financial analysts disagree on the future price of secu-
rities, and medical blogs prescribe different courses of treat-
ment. Consequently, we need a means of discerning which
of the asserted claims are true, especially on the web, where
three of our four experimental datasets (from current, real
problems in information credibility) originate. Presently this
is addressed by simple or weighted voting or, with more so-
phisticated fact-finder algorithms (e.g. [4, 18, 14]), transitive
voting, but these methods tend to be ad hoc and difficult
to analyze and extend. Latent Credibility Analysis is a new
method of approaching the credibility problem by instead
modeling the joint probability of the sources making claims
and the unseen (latent) truth of those claims. Finding the
probability that a particular claim is true is then performed
via inference in a probabilistic graphical model using one
of the many extant exact and approximate inference algo-
rithms. Unlike those of fact-finders, the resulting credibility
decisions and the parameters capturing the credibility of the
sources are distributions and probabilities with clear seman-
tics: for example, in the SimpleLCA model we reason that
a claim is likely to be true because the probability that ev-
eryone who asserted it was lying (as given by the Honesty
parameters of the sources) is relatively small.

This transparency is important both when we need to ex-
plain the model’s decisions to users (who might otherwise
distrust the system itself) and when we adapt an LCA model
to real-world problems; in our experiments, we are able to
formulate reasonable priors and anticipate (to a degree) the
most appropriate, best performing models by understanding
the domain. Such clarity is a common trait of probabilis-
tic models, but a substantial improvement over fact-finders,
where the closest analog to priors is typically the number of
“votes” each claim is initialized with; further, fact-finders in
general have few, if any, other tunable parameters that can
be adjusted, and where present (like the Investment fact-
finder’s “growth rate” value [13]) they tend to be both ad
hoc and opaque—it is rarely possible to anticipate what val-
ues are suitable for a particular problem before evaluating
them on labeled data. LCA models are also much simpler
to modify on a more substantial level: there is a straight-
forward path from a “generative story” about why sources
assert the claims that they do to the joint distribution, and
augmenting this core (e.g. to incorporate the idea that ob-
served attributes of the sources, like academic degrees, influ-
ence their credibility) is as simple as finding a product across
several independent components. Even in experiments ig-



norant of such factors and using the fact-finders’ standard
unsupervised setting, LCA models substantially outperform
fact-finders in establishing the credibility of city population,
book authorship, stock predictions, and predictions of the
Supreme Court of the United States. Perhaps surprisingly,
this needn’t come at an exorbitant cost: two of our mod-
els scale linearly, as fact-finders do, and the remaining two,
while not linear time, nonetheless proved tractable even over
relatively large (tens of thousands of sources and claims)
datasets in our experiments.

In the remainder of this paper we first provide a more
detailed description of fact-finders. We subsequently dis-
cuss the fundamentals of LCA before introducing, in order
of increasing sophistication, four specific LCA models: Sim-
pleLCA, GuessLCA, MistakeLCA, and LieLCA, and then
explore the performance of these models in comparison to
fact-finders in our experiments.

2. BACKGROUND: FACT-FINDERS
A fact-finder takes as its input a list of assertions of the

form “source s asserts claim c” and a list of disjoint mutual
exclusion sets of claims [14]. Exactly one of the claims in
each mutual exclusion set is true, and this is what the fact-
finder endeavors to identify. This is done via an iterative
transitive voting system: starting from some initial belief
score in all the claims, the algorithm calculates the trustwor-
thiness of each information source (e.g. a Wikipedia editor,
a financial analyst, a website, a classifier, etc.) based on the
claims it makes, and then in turn calculates the belief of the
claims based on the trustworthiness of the sources asserting
it; this process then repeats for a fixed number of iterations
or until convergence.

Fact-finders are differentiated by their various update rules,
whereby the trustworthiness of sources and belief in claims
is calculated. For example, the “Sums” fact-finder is derived
from Hubs and Authorities [9], where source trustworthi-
ness can be considered the “hub” score and claim belief the
“authority” score; at each iteration i we calculate the trust-
worthiness of each source as the sum of the belief in its
claims, T i(s) =

∑
c:s→cB

i−1(c), and then the belief score of
each claim as the sum of the trustworthiness of the sources
asserting it, Bi(c) =

∑
s:s→c T

i(s). Of course, fact-finders
can be considerably more complex and varied; in the Invest-
ment and PooledInvestment [13] algorithms, sources“invest”
their credibility in the claims they make, and claim belief is
then non-linearly grown and apportioned back to the sources
based on the size of their “investment”.

Several fact-finders have probabilistic elements. TruthFinder
[19] calculates claim belief as 1 −

∏
s:s→c 1 − T (s), with

the idea that T (s) is the probability that s tells the truth,
so the probability that a claim is wrong is the probabil-
ity that all the (independent) sources are liars. However,
these semantics are problematic: the pseudoprobabilities
over all the claims in a mutual exclusion set will not sum
to 1 and cannot be readily normalized since the trustwor-
thiness of a source is calculated as the arithmetic mean of
those claims it makes. [17] explicitly seeks to create a fact-
finder with an (approximate) Bayesian justification, but re-
lies on substantial assumptions, the most important being
that P (s → c|True(c)) ≈ P (s → c), i.e. the probability a
source asserts a claim is independent of the truth of that
claim (which does not hold in practice). [21] is something
of an anomaly, as it, like Latent Credibility Analysis, mod-

els the credibility problem as a graphical model (a Bayesian
network), but specializes in situations where the truth is a
collection of entities (e.g. identify all the authors of a book)
and the model has the advantage of reasoning about these
directly; other approaches (including LCA) instead simply
treat these as binary claims (is “John Smith” an author of
“Book” or not?). More importantly, the model makes an im-
plicit assumption (as noted by the authors) that each source
is predominately honest, which often does not hold in real
data (e.g. vandalism in Wikipedia).

Additionally, some fact-finders have incorporated aspects
beyond source trustworthiness and claim belief into their
update rules. 3-Estimates [4] adds parameters to attempt
to capture the “difficulty” of a claim, an idea also present
in our LCA models. Fact-finders have also been applied
to instances where the claims are not extracted in a prior
step but rather snippets of textual “evidence” are effectively
clustered using similarity metrics, as applied by the Apollo
system to tweets [10] or to news articles by [16]. AccuVote
[3] attempts to identify source dependence (one source copy-
ing another) to give greater credence to more “independent”
sources, an aspect that is important in certain domains (e.g.
blog postings, which are routinely derivative) and could be
incorporated in future LCA models, although we do not con-
sider it here.

Finally, frameworks have been created capable of extend-
ing any fact-finder. [13] applies declarative prior knowledge
(in the form of first-order logic) to fact-finders by using linear
programming to constrain claim beliefs; in our experiments,
we use this method in an extremely simple form to apply
supervision to fact-finders (our constraints are of the type
“claim c is true”), which are otherwise wholly unsupervised
algorithms. For LCA models, declarative constraints may be
enforced by one of several methods for constraining the pos-
terior distributions of probabilistic models, such as Posterior
Regularization [5] or Constraint Driven Learning [1]. Fur-
ther, [14] introduces generalized fact-finders, which adapt
the bipartite unweighted graphs of standard fact-finders to
weighted, k-partite graphs, allowing such factors as source
features (e.g. “source s has a doctorate in a relevant field”)
and uncertainty in information extraction to be incorpo-
rated, essentially changing how votes flow throughout the
network. LCA models naturally support these forms of prior
knowledge and data in a principled way, as we will discuss
shortly, and can incorporate many others (such as priors
over the honesty of sources and real-valued features) that
generalized fact-finders cannot.

3. LATENT CREDIBILITY ANALYSIS

3.1 Fundamentals
A Latent Credibility Analysis model is a probabilistic model

where the true claim c in each mutual exclusion set of claims
m is a (multinomial) latent variable, ym. An observed as-
sertion is the probability of c as claimed by s, bs,c, typically
{0, 1} (e.g. “John claims Obama was born in Hawaii”), but
distributional claims are also possible (e.g. “John is 95% cer-
tain Obama was born in Hawaii and 5% certain he was born
in Alaska”). Note that ∀s,

∑
c∈m bs,c = 1. Every source s

also has a [0,∞) confidence in his assertions over the claims
in m, ws,m, again typically {0, 1} (0 if the source makes no
assertion about m, 1 if it does), but other values may be used
to express degrees of confidence with straightforward seman-



Notation Description Examples / Definition

s An information source Amazon.com; Dan Rather
c A claim President Barack Obama born in 1953
m A mutually exclusive (ME) set of claims Claimed Birth Years of Barack Obama
ym The true claim in m President Barack Obama was born in 1961
bs,c The (observed) probability of c asserted by s 0; 1; 0.7
ws,m [0,∞) confidence of s in the distribution asserted over all c ∈ m 0; 1; 4.5
Hs The probability s makes an honest, accurate assertion 0.4; 0.9

Dg/m/s The probability s knows ym (global, per-ME set, or per-source) 0.3; 0.7
S Set of all sources s = {s}
C Set of all claims c = {c}
M Set of all mutual exclusion sets m = {m}
B |S|×|C| matrix of all observed assertions b = {bs,m}
W |S|×|M | matrix of all assertion confidences w = {m}
Y Set of all true claims = {ym : m ∈M}
YU Set of all latent true claims ⊆ Y
YL Set of all observed true claims (labels) ⊂ Y
X Set of all observations (including B) = B ∪ { all other features }
θ Set of all latent model parameters e.g. {Hs : s ∈ S} ∪ {Dm : m ∈M}

Table 1: LCA Notation

tics: as can be seen from the joint distributions of our LCA
models, a ws,m of 0.5 causes assertions made by s about
claims in m to affect the log-likelihood only half as much
as sources with ws,m = 1, and ws,m = 2 is equivalent to
making the same assertions twice. This can be useful if, for
example, a source expresses abundant or reduced confidence
in his assertion, e.g. “John is 50% confident that Obama
was born in Hawaii with 95% probability...”, comparable in
function and purpose to belief and plausibility in Dempster-
Shafer theory [20, 15] and uncertainty in subjective logic [8,
7].

Since we are not interested in modeling why a source de-
cides to make an assertion about the claims in a mutual
exclusion set (and with what confidence), the confidence ma-
trix W = {ws,m} is taken as a given constant rather than
an observation. Our observations are the assertion matrix
B = {bs,c}, together with whatever observed features (such
as attributes of the sources) are relevant to the particular
model; we will collectively refer to these observed variables
as X. Similarly, we will refer to our latent variables as
Y = {ym}, and the model parameters (in the models we
describe later these include the honesty of each source and
the “difficulty factor” of identifying the true claim) as θ. Fi-
nally, when we write the joint probabilities, we assume all
mutual exclusion sets contain at least two claims; this is a
notational convenience, since any uncontested claim must
be true (there is no alternative) and the probability of a
source asserting it is thus 1 and it does not affect the joint
probability.

As an example, consider a problem with two mutual ex-
clusion sets, mp =“Obama’s Birthplace”and md =“Obama’s
Birthdate”, where we observe a source sj = “John” make a
single assertion ch = “Obama was born in Hawaii”. Then
bsj ,ch = 1, ∀c∈mp\chbsj ,c = 0, wsj ,mp = 1, and wsj ,md = 0
(rendering the values of {bsj ,c : c ∈ md} irrelevant). La-
tent variables ymp and ymd are Obama’s true birthplace and
birthdate, respectively, so ymp = “Hawaii” and ymd = “Au-
gust 4th, 1961”.

3.2 Inference
Information credibility problems can be classed as unsu-

pervised or semi-supervised; in the unsupervised case, we are
only given observations X and none of the ym are known,
so YU = Y and YL = ∅ (YU and YL are the sets of unlabeled
[latent] and labeled [observed] true claims, respectively). Al-
ternatively, when semi-supervised, we know the true claims
in some mutual exclusion sets, YL ⊂ Y , already and only
need to determine the remaining YU = Y \ YL. In both
cases, our goal is to infer:

P (YU |X,YL) =

∫
θ
P (YU , YL, X|θ)P (θ)∑

YU

∫
θ
P (YU , YL, X|θ)P (θ)

This is the distribution over the possible true claims for
each mutual exclusion set where the true claim is not already
known, given the observations and true claims already iden-
tified. In our experiments we solve this approximately, by
using EM [2] to find the maximum a posteriori (MAP) point
estimate of the parameters, θ∗ = argmaxθ P (X|θ)P (θ), and
then simply calculating:

P (YU |X,YL, θ∗) =
P (YU , X, YL|θ∗)∑
YU

P (YU , X, YL|θ∗)

The expectation and maximization update rules used to
find the maximum a posteriori point estimate θ∗ are:

Expectation− Step :

∀m : P (ym = c|X, θt) =
P (ym = c,X|θt)∑
v∈m P (ym = v,X|θt)

Maximization− Step :

θt+1 = argmax
θ

EY |X,θt [log(P (X,Y |θ)P (θ))]

In LCA models, the E-step is always easy, since the ym
values are independent given the observations X and the pa-
rameters θt at iteration t. The M-step can be more difficult:
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Figure 1: A plate diagram of a basic SimpleLCA model
with observed assertions as the sole features (X = B).

in SimpleLCA, θt+1 can be calculated in closed form pro-
vided that P (θ) is uniform; otherwise, gradient ascent must
be used. Where this can be done parameter-by-parameter,
the time required for the M-step scales linearly in the num-
ber of parameters; in MistakeLCA and LieLCA, joint gradi-
ent ascent requires a number of steps increasing linearly in
the number of dimensions [12] (since the Lipschitz constant
and squared diameter both increase linearly) while the cost
to compute the gradient and the function value also increase
linearly (provided the number of assertions per source and
claims per mutual exclusion set remains constant), yield-
ing O(|θ|2) complexity. However, even on our largest ex-
periments, MistakeLCA and LieLCA took no more than ∼
200 times as long as SimpleLCA and GuessLCA, far less
than suggested by this worst case quadratic bound. Exact
runtimes varied, but for concreteness LieLCA took approxi-
mately 20 minutes on the population dataset, 30 minutes on
the stock dataset (per time interval), and from 25-80 min-
utes on the books dataset (single-threaded on a 3GHz Core
2 Duo E8400); by comparison, GuessLCA was 40 seconds,
one minute, and 3-4 minutes, respectively.

3.3 SimpleLCA
SimpleLCA, as with all our models, is a joint distribution

that reflects a “story” of how sources decide which claims
to assert. For both this and subsequent LCA models, we
assume that each bs,c ∈ {0, 1} and each ws,m ∈ {0, 1}; this
matches our experimental domains (where sources assert a
single claim in a mutual exclusion set with full certainty) and
simplifies the equations for the joints by avoiding a cumber-
some normalization factor. If these assumptions are relaxed,
the joint “distributions” as written will no longer be distri-
butions and must be normalized.

In SimpleLCA, each source s has a probability of being
honest, Hs. A source then decides to assert the true claim
c in mutual exclusion set m with probability Hs; otherwise,
it chooses uniformly at random from the other claims in m

with probability 1−Hs
|m|−1

. From this intuitive idea, we can

immediately derive a joint distribution over ym and X:

P (ym, X|Hs)

= P (ym)

(Hs)
bs,ym

∏
c∈m\ym

(
1−Hs
|m|−1

)bs,cws,m

= P (ym)

(
(Hs)

bs,ym

(
1−Hs
|m|−1

)(1−bs,ym )
)ws,m

Here, P (ym) is our prior probability of ym being the true
claim in m, and ws,m will be 1 if the source asserts (with full
certainty) a claim in m, or 0 if the source says nothing about
m. In the second equation we have simplified the expression
by noting that

∑
c∈m bs,c = 1, so

∑
c∈m\ym bs,c = 1− bs,ym .

Observing that all sources make their assertions indepen-
dently and taking θ = {Hs} we can write the full joint as:

P (Y ,X|θ) =∏
m

P (ym)
∏
s

(
(Hs)

bs,ym

(
1−Hs
|m|−1

)(1−bs,ym )
)ws,m

The expected log-likelihood maximized in the M-step is
then EY |X,θt [log(P (X,Y |θ)P (θ))] =

log(P (θ)) +
∑
Y

P (Y |X, θt) log

(∏
m

P (ym)

·
∏
s

(
(Hs)

bs,ym

(
1−Hs
|m|−1

)(1−bs,ym )
)ws,m

)

= log(P (θ)) +
∑
m

∑
ym

P (ym|X, θt)

(
log(P (ym))

+
∑
s

ws,m

(
bs,ym log(Hs)+(1−bs,ym) log

(
1−Hs
|m|−1

)))
Finding the derivative with respect to each Hs ∈ θ,
δ

δHs
EY |X,θt [log(P (X,Y |θ)P (θ))] =

δP (Hs)

δHs
P (Hs)

−1

+

∑
m

∑
ym

P (ym|X, θt)ws,m(bs,ym −Hs)
Hs − (Hs)2

Now we can maximize each Hs independently in our M-
step using gradient ascent to find the new, maximizing θt+1.

However, when the priors P (Hs) are uniform (so δP (Hs)
δHs

=

0), the gradient simplifies, allowing us to set it to 0 and
solve the resulting equation explicitly for the new maximiz-
ing value of Hs at the stationary point:

Hs =

∑
m

∑
ym

P (ym|X, θt)ws,mbs,ym∑
m ws,m

As we would intuitively expect, we thus estimate the hon-
esty of a source, that is, the probability that it provides the
true claim, as essentially the expected proportion of true
claims made by the source given our current parameters.



This closed form update rule also means that SimpleLCA
with uniform honesty priors is as fast as fact-finders in prac-
tice, making it extremely scalable. When alternative priors
are used, gradient ascent requires about twice as much time
per EM iteration, but even on our largest datasets this was
a matter of seconds.

3.4 GuessLCA
SimpleLCA is indeed quite simple. But it’s also clear that,

for sources, identifying the truth in some mutual exclusion
sets is much harder than in others; for example, a source who
merely guessed randomly would be assigned an honesty of
0.5 by SimpleLCA if it only made claims in mutual exclusion
sets of size 2, and 0.25 if size 4.

In GuessLCA, a source has a probability of knowing and
telling the truth, Hs. Thus, with probability Hs, it asserts
the true claim. However, with probability 1−Hs, it guesses
claim c with probability Pg(c|s) (where

∑
c∈m Pg(c|s) = 1).

This gives us the joint probability:

P (X,Y |θ) =
∏
m

P (ym)∏
s

(Hs + (1−Hs)Pg(ym|s))bs,ymws,m

∏
c∈m\ym

((1−Hs)Pg(c|s))bs,cws,m

This joint can be easily understood by considering the
marginal case for each m ∈ M ; the probability that the
source asserts the true claim (bs,ym = 1) is then just Hs +
(1−Hs)Pg(ym|s), the probability of knowing the truth plus
the chance of not knowing the truth and (fortunately) guess-
ing it;

∑
c∈m bs,c = 1 ⇒ ∀c 6=ymbs,c = 0, so the product∏

c∈m\ym(. . .)bs,c = 1 is moot. Conversely, the probability

of asserting an untrue claim (bs,c6=ym = 1) can be similarly
found as the probability of not knowing the truth and guess-
ing c, (1−Hs)Pg(c|s).

Omitting the intermediate steps for brevity, we find that
the gradient of the expected log-likelihood with respect to
Hs simplifies to

δ

δHs
EY |X,θt [log(P (X,Y |θ)P (θ))] =

δP (Hs)

δHs
P (Hs)

−1

+
∑
m

∑
ym

P (ym|X, θt)ws,m

·

 bs,ym

Hs +
Pg(ym|s)

1−Pg(ym|s)

+
bs,ym − 1

1−Hs


Like SimpleLCA, the gradient with respect to each Hs

is independent of the other parameters θ \ Hs, allowing us
to maximize the expected log-likelihood in the M-step us-
ing gradient ascent parameter-by-parameter, which is very
fast in practice. The guess distribution Pg(c|s) is provided
to the model as a prior; we could, for example, set Pg(c|s)
to the distribution of sources asserting the claims in m un-
der the assumption that a guessing source chooses randomly
according to the distribution of “votes” it observes at the
time. This mitigates sources becoming trusted by asserting
obvious or well-known claims: the assessed probability of

guessing these will then be high (because a large majority
of sources already assert them, and we assume that guessers
tend to go with the crowd), so the model is free to set Hs
low as the observation can be effectively explained away by
(1−Hs)Pg(ym|s); conversely, a source asserting a true claim
with a low probability of being guessed will be attributed to
a highHs. GuessLCA thus rewards getting hard claims right
and penalizes getting easy claims wrong.

GuessLCA does require that this “difficulty” information
be provided a priori rather than learned by the model, and
while in most domains the distribution of guesses is easy
to approximate (e.g. if the sources tend to guess with the
crowd, probably the most prevalent behavior in practice, we
can use the distribution of the number of assertions made by
other sources for each alternative within the mutual exclu-
sion set, and if the sources are believed to guess randomly
we use a uniform prior over the possibilities) this cannot
capture the latent difficulty implied by, for example, the
disagreement of two highly honest sources (since honesty it-
self is latent). More significantly, the model assumes that no
source will do worse than guessing—even if Hs = 0, a source
still has a Pg(c|s) probability of guessing the correct claim c.
This assumption is violated when sources are systematically
wrong. This may be due to intentional deception, or, more
commonly, a recurring mistake: for example, there are mul-
tiple ways of defining the population of a city (metro area,
city limits, etc.) and some Wikipedia editors consistently
use definitions that disagree with the “truth” (census data).

3.5 MistakeLCA
To overcome these problems, MistakeLCA models diffi-

culty explicitly, as the probability of an honest source mak-
ing a mistake. For a source to assert the true claim it must
both intend to tell the truth with probability Hs and must
know what the truth is with probability D. D may be global
(in which case all sources have probability Dg of knowing the
truth across all mutual exclusion sets) or tied to each mutual
exclusion set (in which case sources have probability Dm of
knowing the truth in a particular mutual exclusion set); this
results in two variants of the model, which we will refer to
as MistakeLCAg and MistakeLCAm. A source thus asserts
the true claim c with probability HsD, but otherwise, with
probability 1 − HsD, chooses another claim c ∈ m \ c ac-
cording to Pe(c|c, s). Recall that, in GuessLCA, our guessing
probability Pg was not conditioned on the true claim, but
Pe specifies the distribution of mistakes a source will make
given that c is true, with Pe(c|c, s) = 0. Like Pg, Pe is pro-
vided as a prior, but conditioning on the true claim means
that it can also encode very useful information about simi-
lar or easily confused claims; for example, if there are three
claims about a person’s age, 35, 45, and 46, Pe(45|46, s) and
Pe(46|45, s) would both be high.

The joint probability is given by:

P (X,Y |θ) =
∏
m

P (ym)∏
s

(HsD)bs,ymws,m

∏
c∈m\ym

(Pe(c|ym, s)(1−HsD))bs,cws,m



The gradients of the expected log-likelihood are given by:

δ(. . .)

δHs
=
δP (Hs)

δHs
P (Hs)

−1

+
∑
m

∑
ym

P (ym|X, θt)ws,m
(
bs,ym −DmHs
Hs −DmH2

s

)

δ(. . .)

δDm
=
δP (Dm)

δDm
P (Dm)−1

+
∑
s

∑
ym

P (ym|X, θt)ws,m
(
bs,ym −DmHs
Dm −D2

mHs

)

The gradient for Dg is identical, except that we sum over
all mutual exclusion sets as well as all sources. Since all Hs
are linked by D, we must optimize all parameters jointly in
the M-step.

3.6 LieLCA
MistakeLCA makes no distinction between intentional lies

caused by a lack of honesty and“honest mistakes” that occur
with probability (1−D); we can imagine that the former case
is governed by a distribution over possible lies, whereas the
latter results in guessing. In LieLCA, a source asserts the
true claim c if it it is both honest and knows the answer (with
probability HsD). A dishonest source who knows the truth,
however, chooses a lie c with probability (1−H)DPl(c|c, s),
where Pl is the distribution over possible lies given the truth
(Pl(c|c, s) = 0). Finally, any source who does not know the
truth guesses a claim c with probability (1−D)Pg(c|s). The
D parameters may be per-source, per-mutual exclusion set,
or global, resulting in LieLCAs, LieLCAm, and LieLCAg

variants. The joint probability is thus:

P (X,Y |θ) =∏
m

P (ym)∏
s

(HsD + (1−D)Pg(ym|s))bs,ymws,m

∏
c∈m\ym

((1−Hs)DPl(c|ym, s) + (1−D)Pg(c|s))bs,cws,m

The gradients of the expected log-likelihood with respect
to Hs and D can be found as:

δ(. . .)

δHs
=
δP (Hs)

δHs
P (Hs)

−1

+
∑
m

∑
ym

P (ym|X, θt)ws,m

 bs,ymD

(1−D)Pg(ym|s) +DHs

−
∑

c∈m\ym

bs,ymDPl(c|ym, s)
(1−D)Pg(c|s) +D(1−Hs)Pl(c|ym, s)


δ(. . .)

δDg
=
δP (Dg)

δDg
P (Dg)

−1

+
∑
m,s

∑
ym

P (ym|X, θt)ws,m

 bs,ym(Hs − Pg(ym|s))
HsDg + (1−Dg)Pg(ym|s)

+
∑

c∈m\ym

bs,c((1−Hs)Pl(c|ym, s)− Pg(c|s))
(1−Dg)Pg(c|s) +Dg(1−Hs)Pl(c|ym, s)



Again, the gradients for Dm and Ds are identical, except∑
m,s is replaced by

∑
s and

∑
m, respectively. It is inter-

esting to note that LieLCAs is a special case since each pair
of (Hs, Ds) parameters may be optimized independently of
the others, with the same linearly scaling complexity as Sim-
pleLCA and GuessLCA; otherwise, like MistakeLCA, the
parameters must be optimized jointly.

It is important to note that we are abusing language some-
what here; in LiarLCA, a “lie” is an intentional, incorrect
assertion by a source who knows the truth, but it need not
imply malice or an intent to deceive. A Wikipedia editor
who (perhaps out of ignorance) accurately lists the popu-
lation of cities by their greater metro area rather than by
their city limits when the latter is held to be the true mea-
sure would not normally be considered a liar, even though
the model considers their assertions to be “lies” (and in this
particular case those “lies” may be quite informative since
we know they will be drawn from values strictly greater than
the true population such that Pl(c|c, s) > 0 iff c ≥ c).

3.7 Discussion

3.7.1 Model Complexity and Semantics
Given that we have presented a series of increasingly com-

plex models it might be tempting to think of these hier-
archically along the lines of SimpleLCA ⊂ GuessLCA ⊂
MistakeLCA ⊂ LieLCA. However, this is incorrect: it is
easy to see that there are some worlds that SimpleLCA can
model (a source with an honesty of 0 who always asserts
the wrong claim) that, for example, GuessLCA cannot (at
worst a source will still sometimes guess the truth). We
can similarly observe that the Hs parameters have subtly
different meanings in each model: in SimpleLCA, it is sim-
ply the probability that a source asserts the correct claim;
in GuessLCA, it is the probability that it both knows and
asserts it; and in MistakeLCA and LieLCA, it is the proba-
bility the source intends to tell the truth. Such distinctions
are of practical importance: because each model tells a dif-
ferent story with different semantics, we should not expect,
for instance, that the more sophisticated LieLCA will nec-
essarily outperform the SimpleLCA model given sufficient
data (as we might if SimpleLCA were indeed subsumed by
LieLCA); rather, we expect that relative performance will
depend on which model more closely reflects the actual be-
havior of sources within a particular domain. That said, our
experiments showed that, indeed, some models appear to be
more plausible than others, and the more complex models
are vulnerable to overfitting: in particular, GuessLCA per-
forms substantially better than SimpleLCA overall and is
competitive with MistakeLCA and LieLCA, especially where
these models overfit (e.g. on the stocks dataset).

3.7.2 Extensions
A key benefit of LCA is its flexibility and transparency rel-

ative to fact-finders. Bayesian priors over the parameters,
claims, and other phenomena (such as the mistake distribu-
tion, Pe) provide a straightforward way of encoding domain
knowledge, but many extensions are also possible.

The modularity of LCA can be illustrated by an example:
consider a case where we have features Xf (such as the qual-
ity of a source’s website, his academic degrees, years of ex-
perience, etc.) associated with the credibility of our sources.
By assuming that these features are independent from the



sources’ assertions given their credibility, we can create a
new model by simply concatenating two joint distributions:
P (X,Y |θ) = PLCA(Xb, Y |θ)Pf (Xf |θ), where PLCA(Xb, Y |θ)
is an LCA model over observed assertions Xb and Pf (Xf |θ)
is the probability of observing features Xf given the credi-
bility of the sources (captured by parameters θ).

Additionally, LCA models (and fact-finders) will normally
only give credibility to claims that are known to exist and
asserted by at least one source (an unknown alternative ob-
viously cannot be explicitly considered in the set of possibili-
ties m, and the models infer a distribution over the possible
values of ym ∈ m). However, we can easily create a new
“none of the above” claim u and assign it a prior probability
P (u); believing one of the known, asserted claims will then
depend on the evidence outweighing our prior inclination
towards doubt.

4. EXPERIMENTS
We evaluate our models on two unsupervised datasets,

book authorship [19] and city populations [13], and two semi-
supervised datasets, stock predictions and U.S. Supreme
Court decision predictions1. Our evaluation compares our
four basic LCA models with several top-performing fact-
finders found in the literature: TruthFinder [19], Invest-
ment, PooledInvestment, and Average-Log [13], Sums [9], 3-
Estimates [4], as well as simple voting (choose the claim with
the most sources asserting it). For Investment and Pooled-
Investment we used the same values for g as [13], 1.2 and
1.4, respectively. We run both the fact-finders and EM (for
LCA) until convergence (within 50 iterations in our experi-
ments). Additionally, we supplement our real-world exper-
iments with synthetic data from sampled from SimpleLCA
joint distributions to more carefully analyze the relative per-
formance of the LCA models in a controlled context.

4.1 Books
The books dataset [19] is a collection of 14,287 claims

of the authorship of various books by 894 websites, with
an evaluation set of 605 true claims collected by examining
the books’ covers. We used uniform priors for the param-
eters P (θ). For for the claim priors P (c) and guess priors
Pg(c|s) we used“voted”priors corresponding to the distribu-
tion of sources asserting each claim relative to the number
of sources asserting any claim within the mutual exclusion

set:
|{t:wt,m=bt,c=1}|∑

v∈m|{t:wt,m=bt,v=1}| . Finally, the mistake and lie pri-

ors Pe(c|c, s) were also “voted”, computed as Pl(c|c, s) =
|{t:wt,m=bt,c=1}|∑

v∈m\c|{t:wt,m=bt,v=1}| [for c 6= c]); this is the proportion of

sources asserting c relative to the total number of sources
asserting any claim in m other than c. For simplicity, the
distributions are the same for all sources s. For LieLCAs,
LieLCAm, and MistakeLCAm, the Ds or Dm parameters in
the model are much more variable than a single global Dg
(which tends to be high), resulting in greater emphasis on
the voted Pe priors and making voted claim priors P (c) ef-
fectively redundant; to correct this, we instead use uniform
claim priors on these models.

The results are shown in Table 2; we calculate confidence
intervals with the simplifying assumption that the predic-

1The Supreme Court, city population, and book authorship
datasets are available at http://lotho.cs.illinois.edu/data/
Unfortunately, we are unable to release the stock predictions
data due to licensing restrictions.

tion over each mutual exclusion set is independent from the
others. The only fact-finder to do better than any of the
LCA models is PooledInvestment, still more than 3% be-
low LieLCAs. The LieLCAs generative story fits especially
well with what we know about online booksellers a priori:
some sources will consistently corrupt, abbreviate or omit
authors names (in other words, they consistently “lie” with
a low Hs), while others“guess”by copying prevailing sources
since they tend not to research the information themselves
(low Ds).

4.2 Population
The population dataset [13] contains 44,761 claims about

the population of a city in a specific year made by 171,171
Wikipedia editors in infoboxes, with an evaluation set of 274
true claims identified from U.S. census data. Our evaluation
set is marginally smaller than [13] because when an editor
made multiple claims about the population of a city in the
same year, we kept only the most recent edit and discarded
the rest; this resulted in some true claims becoming uncon-
tested and thus eliminated from the evaluation set. Our
priors remained the same as before, except that the claim
priors followed the distribution of the number of revisions
a claim was present in, rather than the number of sources
asserting it, as per [13]. Additionally, we noticed that some
models could achieve better results if we knew exactly when
to stop them prior to convergence (which is not possible
given the unsupervised setting); Investment is the most ex-
treme example of this, as at 20 iterations its accuracy is
86.86%, but it ultimately converges to 75.55%.

There is a wide variance in the the cities in this dataset;
some, like Ventura, California are relatively contentious (49
edits asserted a population of 105,000 in 2006, while 68 as-
serted 106,744), while in others things are more lopsided
(in Springfield the split was 202 edits vs. 10). As a conse-
quence, some cities can be considered much “harder” than
others, since an overwhelming majority for one option over
the others means both that the answer is well-known and
that an editor needs only follow the crowd to identify it.
Given this, we would expect those models that are capable
of capturing this variable difficulty to perform the best, and
this matches our experiments exactly: GuessLCA (which at-
tributes greater honesty [Hs] to sources that assert true but
hard-to-guess claims and less to those that assert false, easy-
to-guess claims) and LieLCAm and MistakeLCAm (which
model the variable difficulty of each city directly with Dm
parameters) are the best performing among the LCA mod-
els. TruthFinder also does quite well, but the opaque nature
of fact-finders precludes an explanation why, or a prediction
of the domains where it might similarly perform well in the
future. LieLCAm’s top performance, however, is a result of
having both Dm parameters to model latent difficulty (e.g.
as demonstrated by incorrect assertions by highly honest
sources) and guessing priors to incorporate the more obvi-
ous situations of lopsided and even votes where the difficulty
is apparent even without having an estimate of the honesty
of the sources involved.

4.3 Predicting Stock Returns
We took the set of stocks that were in the S&P 500 Index

on January 1st, 2000 (the index changes composition over
time) and followed them through February 1st, 2012. Our
results average predictive accuracy across 10 dates, at July



Model Books Populations Stocks Supreme Court
Unsupervised Unsupervised Semi-Supervised Semi-Supervised

Voting 84.95 ± 2.85 79.93 ± 4.74 47.14 ± 4.13 54.72 ± 13.40
Sums 82.87 ± 3.00 82.12 ± 4.54 48.93 ± 4.14 56.60 ± 13.34

3-Estimates 85.12 ± 2.84 74.45 ± 5.16 47.14 ± 4.13 52.83 ± 13.44
TruthFinder 86.16 ± 2.75 85.04 ± 4.22 47.14 ± 4.13 58.49 ± 13.27
Average-Log 85.47 ± 2.81 81.02 ± 4.64 46.61 ± 4.13 52.83 ± 13.44
Investment 80.10 ± 3.18 75.55 ± 5.09 51.61 ± 4.14 75.47 ± 11.58

PooledInvestment 87.72 ± 2.62 79.93 ± 4.74 48.93 ± 4.14 77.36 ± 11.27
SimpleLCA 86.51 ± 2.72 82.48 ± 4.50 56.96 ± 4.10 79.25 ± 10.92
GuessLCA 89.10 ± 2.48 83.58 ± 4.39 56.25 ± 4.11 88.68 ± 8.53

MistakeLCAg 86.33 ± 2.74 82.12 ± 4.54 55.54 ± 4.12 N/A
MistakeLCAm 88.58 ± 2.53 86.13 ± 4.09 50.89 ± 4.14 N/A

LieLCAg 89.62 ± 2.43 81.39 ± 4.61 57.86 ± 4.09 N/A
LieLCAm 87.89 ± 2.60 83.94 ± 4.35 51.61 ± 4.14 N/A
LieLCAs 90.83 ± 2.30 82.85 ± 4.46 53.39 ± 4.13 N/A

Table 2: Experimental Results (N/A: Not Available).
Values are percent accuracy (proportion of true claims correctly identified) and 95% confidence interval. The best LCA
models outperform the best fact-finders with statistical significance in the Books, Stocks and Supreme Court datasets.

1st, 2011 and every two weeks thereafter. We pretend that
each of these dates is the present time and interpret stock
analysts’ buy or sell predictions as claims about whether
each stock will yield a return higher or lower than the base-
line S&P 500 return over the next 60 days. For example,
when we pretend that the date is July 1st, 2011 and are
considering Microsoft stock we know the buy or sell recom-
mendations analysts have made over the previous two weeks
(in late June), and the latent truth we seek to identify is,
of course, whether or not the stock will actually outper-
form the S&P 500 over the next 60 days. As a technical
detail, stocks are assumed to be bought piecemeal over a
week, starting on the subsequent day, and then sold piece-
meal over a week, starting 60 days later (this reduces the
day-to-day price variance). At each of these dates, we also
know which recommendations analysts made more 60 days
ago were proven true, and this observed truth of whether
each stock went up or down is our labeled data. Similarly,
the remainder of the predictions (those recommendations
made in the last 60 days) are effectively unlabeled data,
since we do not know if they will be proven true yet. In
total, there are approximately 4K distinct analysts and 80K
distinct stock predictions, and our evaluation set consists of
560 true claims about stocks where analysts disagreed.

One thing we can quickly observe is that analysts are, in
fact, usually wrong, as reflected by the 47.14% accuracy of
voting. We therefore used uniform claim priors, which are a
better alternative to the voted priors of our previous experi-
ments; all other priors remain the same. Given the difficulty
of the problem (as the oft-cited efficient market hypothesis
that consistent risk-adjusted returns relative to the market
are impossible would suggest [11]) we would expect no ana-
lyst to be especially good (otherwise they would presumably
be running a hedge fund) nor any stock to be especially easy
to predict; modeling these features, then, would offer little
benefit but substantial risk of overfitting, as we observe in
LieLCAm, MistakeLCAm, and LieLCAs, the three lowest-
performing LCA models. Conversely, LieLCAg, balancing
the overall difficulty of stock prediction with each source’s
ability (captured by Hs), does the best (Dg essentially serves

as a latent, universal cap on how accurate any analyst can
be at the task). Amusingly, the (aptly-named) Investment
is the only fact-finder to do better than 50%, although it
surpasses only one LCA model (MistakeLCAm).

Given the practical importance of this domain, a natu-
ral question to ask is if these models would work in prac-
tice as an investment strategy, given the ∼ 58% accuracy
of LieLCAg. It is important to observe, however, that we
considered only binary outperform and underperform labels
and, critically, not how much would have been gained (or
lost) on each stock; overall excess return relative to the mar-
ket as a whole is likely to be minor. Furthermore, since the
market changes over time, there is no guarantee that a strat-
egy that works on historical data would continue to work in
the future, nor can we easily quantify this risk (and unex-
pected, unlikely events can collectively pose a major hazard
to any strategy, e.g. the collapse of Long-Term Capital Man-
agement [6]).

4.4 Predicting Supreme Court Decisions
Finally, we considered the FantasySCOTUS project; here,

1138 people (largely law students) have made predictions
about the outcome of 53 U.S. Supreme Court cases that have
already been decided, and 24 that have not been. Using the
same priors as the Books experiment (based on voting), we
evaluated with 10-fold cross-validation. Within each fold,
Investment, PooledInvestment, SimpleLCA and GuessLCA
were tuned by nested 4-fold cross-validation. For Investment
and PooledInvestment, the growth parameter (from 1 to 2
in increments of .1), was tuned, whereas for SimpleLCA and
GuessLCA the parameter priors P (Hs) were tuned over sets
of 10 possible Beta distributions. Since the votes for most
cases are nearly tied, we concluded that most sources did
little better than guessing, and selected Beta distributions
biased toward 0 for GuessLCA (such that the prior on the
probability of doing better than guessing is low), and biased
towards 1/2 for SimpleLCA (such that the prior probabil-
ity of asserting the truth is near random). The other fact-
finders were not tuned because they lacked tunable param-
eters; LieLCA and MistakeLCA results are omitted because



the experiments were not feasible; 10-fold cross-validation
with 4-fold nested cross-validated tuning across 10 possi-
ble distributions of the priors of P (Hs) and P (D) is 4000
times as expensive as a normal run (and running a greatly
reduced cross-validation regimen with just a few alternative
priors for each parameter would underestimate performance
relative to our other LCA results). This is a tradeoff for
the greater sophistication of the LieLCA and MistakeLCA
models: not only are there an additional set of parameters
(the D’s) to select priors for, the M-step requires a substan-
tially more expensive optimization (up to about 200 times
as expensive as that for SimpleLCA or GuessLCA as pre-
viously discussed; a single, normal run of LieLCA on this
dataset takes 20-30 minutes). However, we note that this
cross-validated tuning is parallelizable, and a real-world im-
plementation could handle the task by splitting it over a
cluster of machines.

4.5 Synthetic Results and Analysis
In our experimental results, our understanding of the do-

mains allowed us to regularly anticipate which models would
be most appropriate: in the books domain, the propensity of
different booksellers to copy each others’ claims (“guessing”)
or systematically disagree with the truth (“lying”, e.g. an
idiosyncratic way of abbreviating author names) suggested
that LieLCAs was the best fit. For Wikipedia population
claims, LieLCAm and MistakeLCAm captured the widely
varying difficultly of identifying the true population among
the cities. In predicting stocks we could expect LieLCAm

and MistakeLCAm to not work because predicting stocks
is more-or-less uniformly challenging across companies and
per-company difficulty parameters merely worsens the chance
of overfitting. Finally, in the Supreme Court domain, we
know that historically some sources have been much more
accurate than others, but given the even split of votes in
most cases it’s clear that other sources (a majority) are
more-or-less guessing; here we would expect LieLCAm (which
models both guessing and varying difficulty amongst mutual
exclusion sets) to perform best, although it’s similarly clear
why GuessLCA outperforms SimpleLCA.

However, these are qualitative judgements, and while they
certainly help us narrow down the set of potential models, it
is not always clear precisely which should be used, particu-
larly when partial supervision is not available to empirically
estimate performance; e.g. in city populations it is not ob-
vious why MistakeLCAm outperforms LieLCAm. Arguably,
since both of these models do well (and are presumably both
reasonably good approximations to the collection of highly
varied processes that sources really do follow in generating
claims) we could acknowledge that either would be a satis-
factory choice. Still, we also wanted briefly investigate the
idea of model fit quantitatively, empirically observing how
well these models perform given varying quantities of data
and a precise knowledge of how the data were really gen-
erated (as opposed to real word datasets, where we are left
to speculate using our knowledge of the domain). To do so,
we generated data using the SimpleLCA joint distribution
with the intent of obtaining a simple underlying process that
would allow us to focus on the models’ behavior.

4.5.1 SimpleLCA Generation
We ran two sets of experiments using a SimpleLCA model

to generate data; SimpleLCA does not incorporate guess-

ing, mistake or lie prior probabilities, so in the first set we
give GuessLCA, MistakeLCA and LieLCA uniform proba-
bilities. In the second set, however, we generate these priors
randomly2, with the idea that this will give some insight
into the effect of a poor model choice when mixed with a
bad (random and independent of reality) priors. In each
experiment we had 100 sources and 100 mutual exclusion
sets, each containing between 2 and 5 claims (selected uni-
formly at random). The number of claims made by each
source was fixed at 3, 5, 10, or 20, and increasing this effec-
tively increased the amount of data provided to the models.
To mitigate statistical noise, every experiment was repeated
100 times with 100 different generated datasets, and the re-
ported accuracies are an average of those runs (and, within
each experiment, the same 100 randomly-generated datasets
were used to test each model).

The distribution of Hs was Beta(7, 3); this prior over Hs
was used in all models in both experiment sets, despite Hs
having somewhat different semantics in each model (the in-
tent is to observe performance when the models do not fit
the data in a well-understood way). The results of our syn-
thetic experiments may be found in Table 3.

There are a number of interesting phenomena that we may
observe in these results:

• Surprisingly, with uniform priors, two of the models
(GuessLCA and LieLCAg) consistently outperform Sim-
pleLCA on data generated by a SimpleLCA process. In
SimpleLCA, the model tends to conclude that, given a
disagreement between sources, one is perfectly honest
(Hs = 1) and the other is constantly wrong (Hs = 0).
Other models avoid this with guessing, such that even
the worst source can always make a lucky guess, which
prevents the model from disregarding their claims en-
tirely.

• With sufficient data this overfitting is avoided entirely.

• MistakeLCAg versus MistakeLCAm: the latter fares
quite poorly in all experiments, while the former does
quite well, reflecting a substantial difference in the
models in practice despite a similar joint distribution.
MistakeLCAg’s global Dg parameter controls the fre-
quency sources make mistakes, again creating an al-
ternative explanation for a source’s error other than
complete dishonesty (since some of their inaccuracy
will be attributed to“honest mistakes” rather than dis-
honesty).

• MistakeLCAm, by contrast, has far more freedom to
set its 100 Dm parameters to extreme values (overfit-
ting).

• With randomized priors handicapping the other mod-
els, SimpleLCA leads the pack, as expected.

2We generated these distributions by drawing a [0,1] value
uniformly for each claim and then normalizing over the
mutual exclusion set for Pg(c|s) and normalizing over the
claims in the mutual set excluding ym for Pl(c|ym, s) and
Pe(c|ym, s). This results in a rather complex distribution:
for example, given two claims A and B, the probability of
guessing A is taken as a

a+b
, where a is the value drawn for

claim A, and b is the value drawn for claim B. Marginalizing
out b gives Pg(A) = a(log(a+ 1)− log(a))).



Pg, Pe, Pl Uniform Randomized
Claims per Source 3 5 10 20 3 5 10 20

SimpleLCA 79.92 87.80 95.83 99.54 79.92 87.80 95.83 99.54
GuessLCA 80.10 88.14 95.96 99.54 77.67 84.73 92.51 96.27

MistakeLCAg 79.90 88.08 96.00 99.52 78.03 86.38 94.52 99.10
MistakeLCAm 75.48 78.08 78.87 80.45 70.53 68.99 60.33 56.60

LieLCAg 80.10 88.06 96.01 99.54 78.83 86.96 95.20 99.28
LieLCAm 79.90 87.92 95.85 99.53 76.14 82.24 89.59 94.51
LieLCAs 78.35 86.89 95.58 99.52 75.23 84.54 94.94 99.29

Table 3: Performance of LCA Models with Synthetic Data from a SimpleLCA Process.
Each experiment was run over 100 random datasets and the results averaged.

• With randomized priors, MistakeLCAm suffers from
worsening performance as more assertions are made in
each mutual exclusion set, increasing the Dm gradi-
ents relative to those of Hs and pushing Dm to lower
values (it is easier to “explain away” bad assertions by
decreasing the Dm for the mutual exclusion set than
decreasing the Hs for many sources). This then places
greater weight on the (random) mistake priors.

• The other models prove remarkably robust given their
completely incorrect priors, although its clear that this
does cap the possible performance of GuessLCA and
LieLCAm a bit, whereas MistakeLCAg and LieLCAg

can simply set a high Dg, eliminating or reducing their
influence, respectively.

In our real-world data, SimpleLCA was often among the
least accurate LCA models; the synthetic results here sug-
gest that, indeed, even in an artificial best-case scenario
other models are able to perform almost as well. How-
ever, SimpleLCA remains easy to implement, easy to under-
stand, and very tractable, and so should not be discounted
entirely. It is also apparent that MistakeLCAm may face
severe difficulty in some cases; whereas LieLCAm can be-
lieve a source will assert the correct claim by guessing even
if the Dm parameter for the relevant mutual exclusion set
is 0, MistakeLCAm has no “safety valve” of this sort: if
Dm is 0, the source must always get the claim wrong (this
creates a sort of perverse “anti-vote”, whereby the claim
with the fewest assertions is likely to be believed). This
danger manifests itself in the high variance we see in the
model’s real-world performance; while the top performer in
the population domain, it is also the lowest performer in
the stocks domain. Care must therefore be taken to ensure
that MistakeLCAm is a reasonably good fit to the domain,
whereas the other models are much more forgiving.

4.5.2 Discussion
Our synthetic experiments are limited in scope, but they

do inform our approach to real-world problems. MistakeLCAm

can sometimes yield the best results, but LieLCAm has a
similar generative story and is a less variable choice that

This research was sponsored in part by the Army Re-
search Laboratory (ARL) under agreement W911NF-09-2-
0053. Any opinions, findings, conclusions or recommenda-
tions are those of the authors and do not necessarily reflect
the view of the ARL.

can do well in the same domains without MistakeLCAm’s
risk of overfitting. A second lesson is that these models can
be remarkably resistant to bad priors (when the underlying
process generating the data is simple), and uniform priors
are a good choice even if the generating process is quite
different from the model being applied. GuessLCA in par-
ticular does quite well with uniform priors in our synthetic
experiments, and, moreover, performs consistently well in
the real-world experiments, too. This consistency is partly
due to its simplicity (little danger of overfitting) and partly
because it manages to at least approximately model the
important “difficulty” aspect of claims; not as precisely as
the more sophisticated LieLCA or MistakeLCA models, of
course, but also without their computational cost. LieLCA
and MistakeLCA are, on the other hand, more appropriate
where the behavior of sources is well understood (e.g. the
books domain) and where partial supervision can be used to
avoid overfitting (e.g. the stocks domain).

5. CONCLUSION
Latent Credibility Analysis is a flexible and powerful ap-

proach to modeling the information credibility problem; al-
though we have really only begun to explore its potential in
our experiments so far, we have nonetheless seen that the
performance of LCA models surpasses that of fact-finders on
both semi-supervised and unsupervised real-world datasets,
often substantially. GuessLCA in particular is promising
due to its consistently strong performance and tractability,
scaling linearly with the size of the problem as fact-finders
do, although other, more expressive (and expensive) LCA
models can achieve better results when used judiciously. Fu-
ture work should extend the LCA framework, capturing phe-
nomena such as source dependency and real-valued claims
that will allow it to model an even wider range of domains;
for now, however, LCAs are a new approach to credibility
that is already both semantically appealing and of substan-
tial practical utility.
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