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ABSTRACT

In this paper we investigate the problem of measuring end-to-end
Incentive Compatibility (IC) regret given black-box access to an
auction mechanism. Our goal is to 1) compute an estimate for IC
regret in an auction, 2) provide a measure of certainty around the
estimate of IC regret, and 3) minimize the time it takes to arrive at
an accurate estimate. We consider two main problems, with dier-
ent informational assumptions: In the advertiser problem the goal
is to measure IC regret for some known valuation v , while in the
more general demand-side platform (DSP) problem we wish to de-
termine the worst-case IC regret over all possible valuations. The
problems are naturally phrased in an online learning model and we
design Regret-UCB algorithms for both problems. We give an on-
line learning algorithm where for the advertiser problem the error

of determining IC shrinks as O
(
|B |
T ·

(
lnT
n +

√
lnT
n

))
(where B is

the nite set of bids,T is the number of time steps, and n is number
of auctions per time step), and for the DSP problem it shrinks as

O
(
|B |
T ·

(
|B | lnT

n +

√
|B | lnT

n

))
. For the DSP problem, we also con-

sider stronger IC regret estimation and extend our Regret-UCB
algorithm to achieve better IC regret error. We validate the theoret-
ical results using simulations with Generalized Second Price (GSP)
auctions, which are known to not be incentive compatible and thus
have strictly positive IC regret.
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1 INTRODUCTION

Online advertising has grown into a massive industry, both in terms
of ads volume as well as the complexity of the ecosystem. Most
inventory is sold through auctions, and demand-side platforms
(DSPs)—such as AppNexus, Quantcast, Google’s DoubleClick and
Facebook’s Audience Network—oer advertisers the opportunity
buy inventory from many dierent publishers. In turn, publishers
themselves may run their own auctions to determine which ad to
show and what price to charge, resulting in a complicated sequence
of auction systems. While auction theory has inuenced the design
of online ad auctions, in practice not all auctions are incentive com-
patible. Practices such as sequential auctions (where the winners
of an auction on a DSP compete in further auctions on the pub-
lisher website) and “dynamic reserve prices” (where publishers use
a reserve price of e.g. 50% of the highest bid in the auction) both
violate incentive compatibility, even when individual auctions are
otherwise designed to be incentive compatible.

A lack of incentive compatibility in the ecosystem is problem-
atic both for advertisers and DSPs. Advertisers have to spend time
and energy in guring out the optimal bidding strategy for dif-
ferent placements, a process which can be quite costly especially
when incentives dier across dierent publishers. For DSPs this
is problematic because common budget management techniques,
such as multiplicative pacing, are only optimal when the individual
auctions are incentive compatible [10].

Since (the lack of) incentive compatibility impacts bidding strate-
gies for advertisers and the quality of the product that a DSP oers,
it’s important to understand the end-to-end incentive compatibility
of an ad system. But how should we think of quantifying incentive
compatibility? IC is a binary property: either a buyer maximizes
their utility by bidding truthfully or she doesn’t. However, this fails
to capture that a rst-price auction is “worse,” in some sense, than
a second-price auction with a dynamic reserve price of 50% of the
highest bid. To capture these dierences, we focus on dynamically
measuring IC regret:

IC regret(vi ) = max
bi
Eb−i [ui (bi ,b−i ) − ui (vi ,b−i )] , (1)

wherevi is the true value of advertiser i , bi the bid of i , b−i the bids
of other advertisers, and ui (·) the (expected) utility of i . IC regret
captures the dierence in utility between bidding truthfully, and
the maximum utility achievable. By denition, incentive compatible
mechanisms have IC regret 0, while higher IC regret indicates a
stronger incentive to misreport.
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In this paper we focus on measuring IC regret assuming only
black-box access to the auction mechanism. That is, for a given
advertiser bid bi we observe whether this yielded an impression xi ,
and what price pi was paid if any. While it seems restrictive to only
focus on black box access, this setting allows one to deal with the
fact that auction logic is spread out over dierent participants in
the ecosystem (e.g. a DSP and publisher may each run an auction
using proprietary code), and it even allows an advertiser who has
no access to any auction code to verify the end-to-end incentives
in the system.

Given black-box access to the auction mechanism, our goal is
to 1) compute an estimate for IC regret in an auction, 2) provide
a measure of certainty around the estimate of IC regret, and 3)
minimize the time it takes to arrive at an accurate estimate.

We approach this problem using tools from the combinatorial
(semi-)bandit literature: to measure the IC regret in an auction
system, a bidder may enter dierent bids in dierent auctions1. By
judiciously choosing these bids, we give bounds on the dierence
between themeasured IC regret, and the true IC regret of the system
as a function of the number of auctions the bidder participated in.
This provides a trade-o between the accuracy of the IC regret
measurement, and the the amount of time (and thus money) spend
on obtaining the insight.

We consider the problem from two perspectives. The rst, which
we call the “Advertiser Problem,” consists of determining the IC re-
gret in the system for some known true valuev . This is the problem
the advertiser faces when they are participating in an online ad auc-
tion. In Section 3 we give an algorithm to select bids that determine

IC regret with an error that shrinks asO
(
|B |
T ·

(
lnT
n +

√
lnT
n

))
, where

B is the (nite) bid space, n is the number of auctions at each time
step and T is the total number of time steps. The second problem,
which we call the “DSP Problem” consists of determining IC regret
for the worst-case valuationv , i.e. the valuev that yields the highest
IC regret. This is the problem that a DSP faces if they want to ensure
that IC regret is low for all advertisers that may use their services.
In Section 4 we give an algorithm to select bids and (hypothetical)
values that determine worst-case IC regret over all possible values

where the error term shrinks as O
(
|B |
T ·

(
|B | lnT

n +

√
|B | lnT

n

))
as

the number of time steps T grows.

1.1 Related Work

Structurally, designing incentive compatible (IC) mechanisms is
well-understood: if the corresponding optimization problem can
be solved exactly then the VCG mechanism [9, 13, 19] is IC. In
cases where computing the optimal allocation is prohibitively ex-
pensive, and some approximation algorithm is used, VCG is no
longer incentive compatible [17]. At the same time, the structure
of IC mechanisms beyond optimal allocation is known, and tied to
some monotonicity property of the allocation function for single-
parameter settings [16] and more generally [18]. A weakness in
these approaches is that determining if some given mechanismM is
IC, one needs to know both the allocation function and the pricing

1In this paper, we consider the model that a bidder participates in many auctions and
partitions them into several blocks. For every auction in each block, the bidder enters
a bid and only observes the allocation and payment of the bid he enters from each
block. For more formal denition, see Section 2.2.

function. Without access to the code that computes the allocation
and pricing, the best an advertiser (or a DSP who depends on a third
party auction that’s run by a publisher) can hope to have access
to is samples from the allocation and pricing functions, not the
functions themselves.

Lahaie et al. [15] are the rst to study the problem of testing in-
centive compatibility assuming only black box access. They design
an A/B experiment to determine whether an auction is incentive
compatible in both single-shot and dynamic settings (the latter
concerns cases where an advertiser’s bid is used to set their reserve
price in later auctions). The work of Lahaie et al. [15] provides a
valuable tool for validation of incentive compatibility, but leaves
open the question of how to design an experiment that minimizes
the time required to get results with high condence. The present
paper complements [15] by giving an algorithm to select alternative
bids that minimize the error in the estimate for IC regret.

Our work is also related with No regret learning in Game Theory
and Mechanism Design [6]. However, in Game Theory and Mecha-
nism Design, most of the existing literature focuses on maximizing
revenue for the auctioneer without knowing a priori the valua-
tions of the bidders, e.g. [1, 2, 4], as well as optimizing the bidding
strategy from the bidder side, e.g. [3, 11, 20]. To the best of our
knowledge, this is the rst paper on testing IC through online
learning approach.

1.2 Contributions

There are three main contributions of this paper.

(1) We build an online learning model to measure IC regret with
only black-box access to the auction mechanism. We present
algorithms that nd IC regret with an error that shrinks as

O
(
|B |
T ·

(
lnT
n +

√
lnT
n

))
for a known valuation v , and an

error that shrinks as O
(
|B |
T ·

(
|B | lnT

n +

√
|B | lnT

n

))
for all

possible valuations v . In the above, B is the (nite) bid space,
n is the number of auctions at each time step and T is the
total number of time steps. We also extend our Regret-UCB
algorithm to handle stronger IC regret estimation and shrink
the error as O

(
|B |2(lnT )2/3

n2/3T

)
.

(2) We present a combinatorial semi-bandit algorithm for the
setting where the "observed reward" is the max over several
arms selected at each time while the benchmark is the stan-
dard optimal arm with highest expected reward. To under-
stand this mismatch between the benchmark and observed
reward, we analyze the Pseudo-Regret of the algorithm and
uncover its trade-o with the number of arms selected at
each time. This analysis may be of independent interest to
the combinatorial (Semi-)Bandits literature.

(3) Simulations suggest that, (1) there is a trade-o between
Pseudo-Regret and the number of blocks to partition auctions,
i.e. we would like to choose the number of blocks to be
neither very small nor very large, (2) the Pseudo-Regret (near
linearly) decays when the number of auctions accessed at
each time grows, and (3) our designed algorithm performs
better than naive Random-Bids algorithm and ϵ-Greedy
algorithm.



2 MODEL AND PRELIMINARIES

In this section, we formally dene the model we considered in this
paper and present some important preliminaries. For simplifying
description, we introduce "test bidder" to model both the advertiser
and DSP.
2.1 Auctions for a Test Bidder

Consider a test bidder i who is eligible for n auctions every day.
In each auction, they submit a bid bi , the auction is run and the
outcome is determined by the allocation rule дi : bi → [0, 1] and
the payment rule pi : b → R≥0 (where дi and pi are conditioned
on the competition in the auction). We assume a single-parameter
quasilinear utility model ui (vi ,bi ) = дi (bi ) · vi − pi (bi ) for some
true value vi ∈ R≥0. LetU be a bound on the utility of a buyer, i.e.
the utility function is bounded by [−U ,U ].

Since there is a large number of auctions and other bidders
in the ecosystem, we model the randomness in the system using
a stationarity assumption where the conditional allocation and
pricing functions are drawn from the same underlying distribution
for each auction k :

Assumption 2.1 (Stochastic Assumption). For each auction
k , the allocation rule дi and payment rule pi of the test bidder i are

drawn from an unknown distribution F , i.e. (дi ,pi )k
i.i.d.
∼ F .

2.2 Online Learning Model

At every time step t ∈ [T ], the test bidder participates n auctions
and randomly partitions them intom + 1 blocks of equal size.2 For
j ∈ [m + 1], let Aj be the set of auctions in block j.3 For every
auction in each block j , the test bidder submits a bid b jt ∈ B, where
B is a nite set of bids.4

At the end of time t , in each block j ∈ [m], the test bidder
observes the average allocation probability д̃jt (b

j
t ) and average pay-

ment p̃ jt (b
j
t ) over all auctions in block j. Let ®bt = {b1t ,b

2
t , · · · ,b

m
t }

be the bids of the test bidder at time t . For block m + 1, the test
bidder bids their true value v and observes the average allocation
д̃m+1t (v) and payment p̃m+1t (v). Without loss of generality, we also
assume v ∈ B. The average utility of the test bidder in each block
j ∈ [m + 1] is ũ jt (v,b

j
t ) ≡ д̃

j
t (b

j
t ) · v − p̃

j
t (b

j
t ).

With the setting dened, we can instantiate an empirical version
of the IC regret from Equation (1) for a given true value v and bids
®bt :

Denition 2.2 (empirical IC regret).

r̃дt t (v,
®bt ) = max

j ∈[m]

{
ũ
j
t (v,b

j
t ) − ũ

m+1
t (v,v)

}
. (2)

For notational simplicity, we restate д∗ , E[д̃jt ] and p
∗ , E[p̃

j
t ]

for each block j at time t .5 Similarly, dene u∗(v,b) , E[ũ jt (v,b)] ≡
д∗(b) · v − p∗(b). Given these denitions, IC-regret for a particular
true value v and bid b is:
2The number of blocksm is a variable that will be xed later. The choice of which
m to use will trade o the number of dierent bids we get information on and the
accuracy of the outputs for each bid. Throughout the paper, we assumem < |B |.
3We let [n] = {1, 2, 3, ..., n } be the set of positive integers up to and including n.
4While in theory the bid space is continuous, in practice outcomes for dierent bids are
relatively smooth, see e.g. the plots in [15], so discretizing the bid space is a reasonable
simplication.
5Throughout this paper, the expectation E is over all the randomness (e.g., randomiza-
tion over payment and allocation distribution and randomization over algorithm).

Denition 2.3 (IC-regret). rдt(v,b) = u∗(v,b) − u∗(v,v).

Thus far, in Denitions 2.2 and 2.3 we’ve considered the regret
that a buyer has for bidding their true value v compared to a par-
ticular alternative bid b. The quantity that we’re really interested
in (cf. Equation (1)) is the worst-case IC regret with respect to dif-
ferent possible bids. For the Advertiser Problem (which we treat in
Section 3) this is with respect to some known true value v , whereas
for the DSP Problem (which we treat in Section 4) we consider the
worst-case IC regret over all possible true values v . To summarize,
the learning task of the test bidder is to design an ecient learning
algorithm to generate vt and bt in order to minimize the following
Pseudo-Regret, the dierence between cumulative empirical regret
and benchmark.6

Denition 2.4 (Pseudo-Regret [5]).

E[R(T )] = max
v,b ∈B

T∑
t=1

rдt(v,b) − E

[ T∑
t=1

r̃дt t (vt ,
®bt )

]
(3)

Given the above Pseudo-Regret denition, we can dene the error
of determining IC regret, which is to measure the distance between
the optimal IC regret and the average empirical IC regret over time.

Denition 2.5 (IC Regret Error). E(T ) = E[R(T )]T

2.3 More Related work

The online learning model in our work is also related to Combi-
natorial (Semi)-bandits literature [8, 12, 14]. Chen et al. [8] rst
proposed the general framework and Combinatorial Multi-Armed
Bandit problem, and our model lies in this general framework (i.e.
the bids are generated from a super arm at each time step). However,
in our model the test bidder can observe feedback from multiple
blocks at each time step, which is similar to the combinatorial
semi-bandits feedback model. Gai et al. [12] analyze the combi-
natorial semi-bandits problem with linear rewards, and Kveton
et al. [14] provides the tight regret bound for the same setting. The
Regret-UCB algorithm in our paper is similar and inspired by the
algorithm in [12, 14]. However, in our model, the reward function
is not linear and has a “max”, which needs more work to address
it. Chen et al. [7] rstly consider the general reward function in
Combinatorial Bandits problem and can handle “max” in reward
function, however, there is a mismatch between the benchmark
and observed reward in our model (see more in "Contribution").

3 THE ADVERTISER PROBLEM

In this section, we focus on the special case of measuring the IC
regret for a known true valuev . The learning problem in this setting
is to select, for each timestep t , a bid prole ®bt ofm bids to be used
in them auction blocks at that time. The bids ®bt should be selected
to minimize the Pseudo-Regret dened in Equation 3.

We propose the Regret-UCB algorithm, given in Algorithm 1,
which is inspired by theCombUCB1 algorithm [12, 14].Regret-UCB
works as follows: at each timestep t , the algorithm performs three
operations. First, it computes the upper condence bound (UCB) on

6Where in the case of the Advertiser Problem, we dene Pseudo-Regret with respect
to a given value v analogously.



the expected utility of each bid b ∈ B given v ,

UCBut (v,b) = д̂t−1(b) · v − p̂t−1(b) + 2U

√
2(m + 1) ln t
nt−1(b) · n

, (4)

where д̂s (b) is the average allocation probability of bid b up to time
s , ns (b) is the number of times that bid b has been submitted in s
steps andU is the bound of utility (i.e. utility is bounded by [−U ,U ]).
Second, the algorithm chooses them bids that correspond to the
largest UCBut values; call this bid vector ®bt . The algorithm uses the
m bids ®bt in the rstm blocks of auctions, and in the nal block of
auctions, it uses the bidder’s true value v . Finally, for each of the
blocks, the algorithm observes the average allocation probability
and payment, and it uses that to update the estimates of allocation
д̂ and payment p̂.

Algorithm 1 Regret-UCB Algorithm for a known valuation v .

Input: A nite set of bids B, parameterm,n. ∀b ∈ B,n0(b) = 1
Initialize: Run Init(B,m,n) algorithm to get д̂0 and p̂0.
for t = 1, · · · ,T do

Update UCBu terms (Eq. (4)) of each bid b.
Generate a sequence of dierentm bids ®bt ∈ Bm to maximize∑

b ∈®bt

UCBut (v,b) (5)

for j = 1, · · · ,m do

nt (b
j
t ) ← nt−1(b

j
t ) + 1

Observe д̃jt (b
j
t ) and p̃

j
t (b

j
t )

д̂t (b
j
t ) ←

[
д̂t−1(b

j
t ) · nt−1(b

j
t ) + д̃

j
t (b

j
t )

] /
nt (b

j
t )

p̂t (b
j
t ) ←

[
p̂t−1(b

j
t ) · nt−1(b

j
t ) + p̃

j
t (b

j
t )

] /
nt (b

j
t )

for b < ®bt do
nt (b) ← nt−1(b), д̂t (b) ← д̂t−1(b), p̂t (b) ← p̂t−1(b)

Algorithm 2 Init algorithm to get д̂0 and p̂0.
Input: A nite set of bids B, parameterm and n
for b in B do

Randomly participate in n
m+1 auctions and submit bid b for

each auction.
Observe the average allocation д̃(b) and payment p̃(b).
д̂0(b) ← д̃(b), p̂0(b) ← p̃(b).

Given a xed valuation v , dene b∗ to be the best-response bid:

b∗ , argmax
b ∈B

rдt(v,b) = argmax
b ∈B

u∗(v,b).

and denote ∆(b) , u∗(v,b∗) − u∗(v,b). The following theorem
bounds the worst case Pseudo-Regret of the Regret-UCB algorithm
for known valuation v .

Theorem 3.1. Regret-UCB achieves pseudo-regret at most∑
b ∈B:u∗(v,b)<u∗(v,b∗)

32(m + 1)U 2 lnT
n∆(b)

+
π 2

3
·
∆(b)

m

To prove the theorem, we rely on the following lemma, which is
widely used in stochastic bandit literature. We refer the reader to
check [5] for more material.

Lemma 3.2 ([5]). Fix a valuation v and an iteration t − 1 (where
t ≥ 2). If a bid b , b∗ (i.e. u∗(v,b) < u∗(v,b∗)) has been observed

nt−1(b) ≥
8(m+1)(2U )2 ln t

n∆(b)2 times, then with probability of at least

1 − 2
t 2 , UCB

u
t (v,b) ≤ UCBut (v,b

∗).

3.1 Discussion

The Regret-UCB algorithm can also be used to implement a low-
regret bidding agent: Consider an advertiser who knows the val-
uation v and wants to maximize the expected utility u∗(v,b) by
seeking for a best response bid b. Indeed, the advertiser can adopt
the exact same algorithm – Regret-UCB to maximize the utility.
The analysis for regret bound in Theorem 3.1 also works when we
change the reward function from IC regret to utility.

The termm appears in both terms in Theorem 3.1, hence we can
pick it to minimize the asymptotic Pseudo-Regret:

Corollary 3.3. Let ∆ , maxb ∈B ∆(b) and ∆ , minb ∈B ∆(b).

Choosingm = π
4U

√
n∆∆
6 lnT , the error of determining IC regret achieved

by Regret-UCB algorithm for known valuation setting is upper bounded
by

E(T ) ≤ O

(
|B |

T
·

(
lnT
n
+

√
lnT
n

))
.

The big-Oh notation assumes ∆ and ∆ to be constants.

4 THE DSP PROBLEM

In this section, we consider the problem of determining the worst-
case IC regret over all possible valuations v . Let v∗ and b∗ be
the value and bid combination that yields the highest IC regret,7
i.e. (v∗,b∗) = argmaxv,b ∈B rдt(v,b), We modify our previous
Regret-UCB algorithm in this setting and show the pseudocode in
Algorithm 3.

At each time t , the algorithm rst computes the UCBs on the
expected IC regret of each valuation and bid pair (v,b).

UCBrgtt (v,b) = r̂дt t (v,b) + 4U

√
3(m + 1) ln t

n ·
(
nt−1(v) ∧ nt−1(b)

) (6)

where r̂дt t (v,b) = д̂t (b) · v − p̂t (b) −
(
д̂t (v) · v − p̂t (v)

)
, "∧" is the

min function, and the other notations д̂t , p̂t , nt−1(b), nt−1(v), and
U are identical to Section 3. Then the algorithm selects (vt ,b1t ) to
maximize the UCBrgtt term. Given the valuation vt , the algorithm
chooses otherm − 1 bids to achieve the (m − 1)−largest UCBut (vt , ·)
terms dened in Equation (4). The rest of update steps in the algo-
rithm are exactly the same as in Algorithm 1.

We denote ∆(v,b) , rдt(v∗,b∗)−rдt(v,b) and start with the fol-
lowing lemma that gives the concentration property of the UCBrgt
terms.

7We assume, without loss of generality, that this optimal combination is unique
throughout the paper.
8We choose the remainingm − 1 bids be dierent with each other and b1

t .



Algorithm 3 Regret-UCB Algorithm for unknown valuation.

Input: A nite set of bids B, parameterm,n. ∀b ∈ B,n0(b) = 1
Initialize: Run Init(B,m,n) algorithm to get д̂0 and p̂0.
for t = 1, · · · ,T do

Update UCBrgt terms (Eq. (6)) of every (v,b) pair
Choose (vt ,b1t ) ∈ B × B to maximize UCBrgtt (v,b)
if m ≥ 2 then

Choose remainingm − 1 bids {b2t , · · · ,b
m
t } to maximize8∑

b ∈®bt \b1
t

UCBu(vt ,b)

for b ∈ ®bt ∪vt do
nt (b) ← nt−1(b) + 1
Observe д̃t (b) and p̃t (b) (omit subscript j for each block),

д̂t (b) ←
[
д̂t−1(b) · nt−1(b) + д̃

j
t (b)

] /
nt (b)

p̂t (b) ←
[
p̂t−1(b) · nt−1(b) + p̃

j
t (b)

] /
nt (b)

for b < ®bt do
nt (b) ← nt−1(b)

Lemma 4.1. At iteration t−1, (t ≥ 2), for a (value, bid) pair (v,b) ,
(v∗,b∗), where v and b are both observed at least 48(m+1)(2U )2 ln t

n∆(v,b)2

times, thenwith probability at least 1− 4
t 2 ,UCB

rgt
t (v,b) ≤ UCBrgtt (v

∗,b∗).

Utilizing Lemma 4.1, we show the worst case Pseudo-Regret
bound for IC-testing in non-xed valuation setting in Theorem 4.2.

Theorem 4.2. Regret-UCB algorithm for unknown valuation set-
ting (DSP problem) achieves pseudo-regret at most∑
v,b ∈B,

(v,b),(v∗,b∗)

384(m + 1)U 2 lnT
n∆(v,b)

+
2π 2∆(v,b)

3
·

(
1
{
v , v∗

}
+
1
{
v = v∗

}
m

)
Following the same argument in Section 3, if we choosem ap-

propriately, we will get the following asymptotic bound.

Corollary 4.3. Let∆ , maxv,b ∈B ∆(v,b) and∆ , minv,b ∈B ∆(v,b).

Choosingm = π
24U

√
n∆∆
|B | lnT , the asymptotic error of determining IC

regret achieved by Regret-UCB algorithm is upper bounded by

E(T ) ≤ O

(
|B |

T
·

(√
|B | lnT

n
+
|B | lnT

n

))
.

The big-Oh notation assumes ∆ and ∆ to be constants.

Note in the DSP problem, since we consider determining the
worst-case IC regret over all possible valuations v , our asymptotic
error bound quadratically grows as |B |, while for the advertiser
problem the error linearly grows as |B | since the benchmark we
consider there is weaker than it in the DSP problem.

5 EXTENSION: STRONGER IC REGRET

In Section 4, we assume the test bidder (DSP) only chooses one
valuation vt at every time step t to empirically estimate IC regret.

However, in practice, for each (value, bid) pair, the test bidder can
switch the roles of bid and value to better estimate the IC regret.

Since there is no conceptual dierence between bid and value in
this setting, at time step t , the test bidder also submits a "bid" bm+1t
for every auction in blockm + 1. We still denote the bids submitted
at time t be ®bt =

{
b1t ,b

2
t , · · · ,b

m+1
t

}
. The only dierence between

this case and our standard model is from the denition of empirical
IC regret, we dene the modied empirical IC regret in this setting
as below,

Denition 5.1 (modied empirical IC regret).

r̃дt t (
®bt ) = max

i, j ∈[m+1],i,j

{
ũ
j
t (b

i
t ,b

j
t ) − ũ

i
t (b

i
t ,b

i
t )

}
The learning task in this setting is to design an ecient algorithm

to generatem+ 1 bids at every time step to minimize Pseudo-Regret,

E [R(T )] , max
v,b ∈B

T∑
t=1

rдt(v,b) − E

[ T∑
t=1

r̃дt t (
®bt )

]
We extend our Regret-UCB algorithm for unknown valuation (Al-
gorithm 3) for this setting.

At each time step t , we update the UCBrgt terms dened in Equa-
tion (6) for every (b1,b2) bids pair. Given these UCBrgt terms, we
runGenerate-Bids algorithm proposed in Algorithm 4 to generate
m + 1 bids and update p̂t (b) and д̂t (b) for any chosen b at time t .

Algorithm 4 Generate-Bids Algorithm for generating bids given
UCBrgt terms.

Input: A nite set of bids B, UCBrgt terms for every (b1,b2) bids
pair, where b1,b2 ∈ B. Initialize a set B0 = {}.
while |B0 | < m + 1 do

Choose the largest UCBrgt(b1,b2) such at b1 < B0 or b2 < B0.
Update B0 ← B0 ∪ {b1,b2}. 9

We call the above algorithm for stronger IC regret estimation
Regret-UCB∗, of which the Pseudo-Regret is shown in Theorem 5.2.

Theorem 5.2. Regret-UCB∗ algorithm for DSP problem using
stronger IC regret estimation achieves pseudo-regret at most∑

b1,b2∈B,
(b1,b2),(v∗,b∗)

192(m + 1)U 2 lnT
n∆(b1,b2)

+
2π 2∆(b1,b2)

3(m + 1)2

Note the Pseudo-Regret bound achieved by Regret-UCB∗ algo-
rithm is always better than it achieved by Algorithm 3 for any
m. Then we can always get a better asymptotic error bound by
Regret-UCB∗ algorithm for the DSP problem.

Corollary 5.3. Choosingm = O
(

n
lnT

)1/3
the asymptotic error

of determining IC regret achieved by Regret-UCB algorithm is upper
bounded by10

E(T ) ≤ O

(
|B |2(lnT )2/3

n2/3T

)
9If the two bids chosen in the last round are both not in B0 , we randomly choose one
to add it in B0 .
10This asymptotic error bound can be achieved if the optimalm can be chosen to
satisfy the constraint thatm < |B |.
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Figure 1: Pseudo-Regret of Regret-UCB algorithm for

known valuation v = 9.5 (Algorithm 1).

6 SIMULATIONS

In this section, we run some simulations with Generalized Second
Price (GSP) auctions to validate our theoretical results. Every ex-
periment is repeated for 10 times and the dash area represents the
95% condence intervals of Pseudo-Regret at each time step.

6.1 Settings

At each time t , the test bidder randomly participates n GSP auctions.
Each auction has 5 slots and 20 bidders, each bidder’s bid is i.i.d
generated from U [0, 10]. The click-through-rate sequence of each
auction is generated from descending ordered Beta(2, 5) distribu-
tion11. We consider a nite bids space B , {0.01, 0.02, · · · , 10}.

6.2 The advertiser problem

We test the performance of Regret-UCB algorithm for known val-
uation v = 9.5. First, we x the number of blocks be 16 (i.e.m = 15)
and plot the Pseudo-Regret achieved by Regret-UCB with dierent
n = 16, 64, 256, 1024 (Figure 1(a)). We observe that the Pseudo-Regret
decays linearly withnwhich is consistent with our analysis. Second,
we x n = 1024 and test the performance of the algorithm with dif-
ferent number of blocks, such asm = 1, 3, 7, 15, 31, 63 (Figure 1(a)).
We ndm = 7 (8 blocks) achieves the lowest Pseudo-Regret. When
m is too large, the Pseudo-Regret curve incurs some shocks and
suers high variance because of the noisy observed information at
each time.

6.3 The DSP problem

We test the performance of Regret-UCB for unknown valuation
case (i.e., the DSP problem). Similarly, we show the Pseudo-Regret
curve for dierent n given m = 15 and dierent m given n =
1024 in Figure 2. Figure 2(a) validates that Pseudo-Regret decays
when n grows and we observe m = 3 (4 blocks) gives the best
Pseudo-Regret. This corresponds to our theory that the optimalm
in the DSP problem should be smaller than the optimalm in the
advertiser problem for the same auction setting when |B | is large
(see Corollary (3.3) and (4.3)).

6.4 Eciency of Regret-UCB algorithm

We rst introduce two standard baselines, Random-Bids algorithm
and ϵ-Greedy algorithm.

Random-Bids. At each time step t , the advertiser uniformly
randomly choose m bids bt , while the DSP uniformly randomly
choosem bids bt and a valuation vt from B.

11Click-through-rate of each slot is rst i.i.d generated from Beta(2, 5) and then
arranged by descending order.
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Figure 2: Pseudo-Regret plot of Regret-UCB algorithm for

unknown valuation. (a): Algorithm 3 for dierent n, (b): Al-
gorithm 3 for dierentm and (c): a semi-logarithmic Pseudo-
Regret to compare Algorithm 3 and Regret-UCB

∗
.
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Figure 3: Pseudo-Regret with Random-Bids, ϵ-Greedy and

Regret-UCB for the advertiser problem (a) and DSP prob-

lem (b).

ϵ-Greedy. For the advertiser problem with known valuation
v , at each time step, the advertiser uniformly randomly choosesm
bids from B with probability ϵ , otherwise, chooses them bids that
correspond to the largest average utility û(v, ·) terms.12 For the DSP
problem, at each time step t , the DSP uniformly randomly choose
m bids bt and a valuationvt with probability ϵ . Otherwise, the DSP
chooses the (vt ,b1t ) pair corresponds to the largest r̂дt terms and
the restm − 1 bids associated with the largest û(vt , ·) terms.

We compare the performance of our Regret-UCB algorithm
with the above two baselines for the advertiser problem and the DSP
problem. For the both settings, Regret-UCB algorithm performs
better than two baselines for dierent number of blocks.

6.5 Regret-UCB for stronger IC regret

Moreover, we compare the performance of Algorithm 3 andRegret-UCB∗
algorithm for dierent m given n = 1024 in Figure 2(c) to val-
idate the theory that allowing switching value and bid leads to
lower Pseudo-Regret.13 In addition, we also observe the tradeo
between Pseudo-Regret andm of Regret-UCB∗ algorithm. Among
m = 1, 15, 63, the optimal m is 15 (16 blocks) for Regret-UCB∗
algorithm. If we choosem too large, likem = 63, Pseudo-Regret is
worse than them = 1 case and incurs high variance.
12In the experiments, we x ϵ = 0.1
13Based on our observation in the experiments, sometimes switching value and bid
may "over-estimate" the IC regret, i.e. the empirical estimation of IC regret is sometimes
larger than worst case IC regret.
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