Moser Flow: Divergence-based Generative Modeling on Manifolds
 Supplementary

Noam Rozen ${ }^{1} \quad$ Aditya Grover ${ }^{2,3}$
${ }^{1}$ Weizmann Institute of Science
Maximilian Nickel ${ }^{2} \quad$ Yaron Lipman ${ }^{1,2}$
${ }^{2}$ Facebook AI Research ${ }^{3}$ UCLA

A Proof of Moser's Theorem.

We will review here the proof of Moser Theorem 1, for more details see Moser's original paper (Moser, 1965) or Lang (2012), Chapter 18 section 2. Let $\hat{\alpha}_{t}=\alpha_{t} d V$ be the time-dependent volume form over \mathcal{M} corresponding to the density interpolant α_{t}. Note that $\int_{\mathcal{M}} \hat{\alpha}_{t}=1$. Moser's idea is to replace equation 2 with its continuous version:

$$
\begin{equation*}
\hat{\alpha}_{0}=\Phi_{t}^{*} \hat{\alpha}_{t}, \quad t \in[0,1] \tag{A1}
\end{equation*}
$$

If equation A1 holds for all $t \in[0,1]$ then plugging $t=1$ leads to equation 2 . Since equation A1 holds trivially for $t=0$ (since Φ_{0} is the identity mapping), solving it amounts to asking that $\Phi_{t}^{*} \hat{\alpha}_{t}$ is constant, i.e.,

$$
\begin{equation*}
\frac{d}{d t} \Phi_{t}^{*} \hat{\alpha}_{t}=0 \tag{A2}
\end{equation*}
$$

The time derivative of $\Phi_{t}^{*} \hat{\alpha}_{t}$ can be computed with the help of the Lie derivative (e.g., Proposition 5.2 in Lang (2012)): If Φ_{t} is the flow corresponding to the time dependent vector field v_{t} (see equation 3), and ω is a differential form then

$$
\frac{d}{d t}\left(\Phi_{t}^{*} \omega\right)=\Phi_{t}^{*}\left(\mathfrak{L}_{v_{t}} \omega\right)
$$

where \mathfrak{L} denotes the Lie derivative. The Lie derivative $\mathfrak{L}_{v} \omega$ of a smooth vector field v and smooth differential form ω can be computed using Cartan's "magic formula" (see e.g., Theorem 14.35 in Lee (2013)):

$$
\mathfrak{L}_{v} \omega=i_{v}(d \omega)+d\left(i_{v} \omega\right),
$$

where $i_{v} \omega$ is the interior multiplication of a vector field and a differential form defined by $\left(i_{v} \omega\right)\left(v_{2}, \ldots, v_{n}\right)=\omega\left(v, v_{2}, \ldots, v_{n}\right)$. In case ω is an n-form (as $\hat{\alpha}_{t}$ in our case) we have $d \omega=0$ so the first term in the r.h.s. above vanishes. Lastly, we will need the following "trick":

$$
\frac{d}{d t}\left(\Phi_{t}^{*} \hat{\alpha}_{t}\right)=\left.\frac{d}{d s}\right|_{s=t}\left(\Phi_{s}^{*} \hat{\alpha}_{t}\right)+\left.\frac{d}{d s}\right|_{s=t}\left(\Phi_{t}^{*} \hat{\alpha}_{s}\right) .
$$

Putting the last three equations together we get:

$$
\begin{equation*}
\frac{d}{d t}\left(\Phi_{t}^{*} \hat{\alpha}_{t}\right)=\Phi_{t}^{*}\left(\mathfrak{L}_{v_{t}} \hat{\alpha}_{t}\right)+\Phi_{t}^{*}\left(\frac{d}{d t} \hat{\alpha}_{t}\right)=\Phi_{t}^{*}\left(d\left(i_{v_{t}} \hat{\alpha}_{t}\right)+\frac{d}{d t} \hat{\alpha}_{t}\right) . \tag{A3}
\end{equation*}
$$

The theorem is proven if one can show that $v_{t} \in \mathfrak{X}(\mathcal{M})$ exists such that $d\left(i_{v_{t}} \hat{\alpha}_{t}\right)+\frac{d}{d t} \hat{\alpha}_{t}=0$. The divergence operator is defined by the equality $d\left(i_{w} d V\right)=\operatorname{div}(w) d V$, for a vector field $w \in \mathfrak{X}(\mathcal{M})$. Therefore $d\left(i_{v_{t}} \hat{\alpha}_{t}\right)=\operatorname{div}\left(\alpha_{t} v_{t}\right) d V$. Denote $\hat{\gamma}_{t}=\frac{d}{d t} \hat{\alpha}_{t}$. Then we need to show that $v_{t} \in \mathcal{M}$ exists such that

$$
\begin{equation*}
d\left(i_{v_{t}} \hat{\alpha}_{t}\right)+\hat{\gamma}_{t}=0 . \tag{A4}
\end{equation*}
$$

By the Hodge decomposition (see Theorem 4.18 in Morita (2001)) $\hat{\gamma}_{t}$ can be written as a sum of an exact and harmonic forms: $\hat{\gamma}_{t}=d \hat{\beta}_{t}+\hat{h}_{t}$. Since every harmonic form on a connected, compact,
oriented Riemannian manifold is a constant multiple of the Riemannian volume form, $c d V$ (see Corollary 4.14 in Morita (2001)), we have

$$
0=\frac{d}{d t} 1=\frac{d}{d t} \int_{\mathcal{M}} \hat{\alpha}_{t}=\int_{\mathcal{M}} \hat{\gamma}_{t}=\int_{\mathcal{M}} d \hat{\beta}_{t}+\int_{\mathcal{M}} \hat{h}_{t}=\int_{\mathcal{M}} \hat{h}_{t}=c \int_{\mathcal{M}} d V
$$

where in the second from the right equality we used Stokes Theorem (see e.g., Theorem 16.11 in Lee (2013)) and the fact that \mathcal{M} has no boundary. This implies that $c=0$, and

$$
\begin{equation*}
\hat{\gamma}_{t}=d \hat{\beta}_{t} \tag{A5}
\end{equation*}
$$

Using the correspondence between vector fields and $d-1$ forms we let $\beta_{t}=i_{u_{t}} d V$, where $u_{t} \in$ $\mathfrak{X}(\mathcal{M})$, and $d \beta_{t}=d\left(i_{u_{t}} d V\right)=\operatorname{div}\left(u_{t}\right) d V$.
Lastly, consider v_{t} defined as follows:

$$
\begin{equation*}
v_{t}=-\frac{u_{t}}{\alpha_{t}} \tag{A6}
\end{equation*}
$$

With this choice equation A 4 is satisfied:

$$
d\left(i_{v_{t}} \hat{\alpha}_{t}\right)+\hat{\gamma}_{t}=-d\left(i_{\frac{u_{t}}{\alpha_{t}}}\left(\alpha_{t} d V\right)\right)+i_{u_{t}} d V=0
$$

The theorem is proven.
One comment is that for practically finding v_{t}, according to equation A6, we need to get u_{t}, which amounts to solving the Hodge decomposition equation, $\operatorname{div}\left(u_{t}\right) d V=\hat{\gamma}_{t}$, that is equivalent to the following PDE on the manifold \mathcal{M} :

$$
\begin{equation*}
\operatorname{div}\left(u_{t}\right)=\frac{d}{d t} \alpha_{t} \tag{A7}
\end{equation*}
$$

Proof of Lemma 1 . The proof uses Stokes theorem:

$$
\int_{\mathcal{M}} \operatorname{div}(u) d V=\int_{\mathcal{M}} d\left(i_{u} d V\right)=\int_{\partial \mathcal{M}} i_{u} d V=0
$$

where the last equality is due to the fact that either $\partial \mathcal{M}=\emptyset$, or, for $x \in \partial \mathcal{M}$, we have that $u(x) \in$ $T_{x} \partial \mathcal{M}$, and therefore $\left(i_{u} d V\right)\left(v_{1}, \ldots, v_{n-1}\right)=d V\left(u, v_{1}, \ldots, v_{n-1}\right)=0$, for all $v_{1}, \ldots, v_{n-1} \in$ $T_{x} \partial \mathcal{M}$. This implies $i_{u} d V=0$.

B Other proofs

Proof of Theorem 2. As we showed in the paper, our loss can be equivalently presented (up to constant factors) as

$$
l(\theta)=D\left(\mu, \bar{\mu}_{+}\right)+(\lambda-1) \int_{\mathcal{M}} \bar{\mu}_{-} d V
$$

Where the first term $D\left(\mu, \bar{\mu}_{+}\right)$is the generalized KL divergence which is non-negative and equals zero iff $\bar{\mu}_{+}=\mu$ and since $\lambda \geq 1$ the second term is also non-negative and equals zero iff $\mu_{-}=0$ or $\lambda=1$.
First we show that $\bar{\mu}=\mu$ is a minimizer of the loss. Since we assumed $\mu \geq \epsilon$ we have that $\bar{\mu}_{+}=\max (\mu, \epsilon)=\mu$ and $\bar{\mu}_{-}=\bar{\mu}_{+}-\bar{\mu}=0$. So both $D\left(\mu, \bar{\mu}_{+}\right)$and $\int_{\mathcal{M}} \bar{\mu}_{-} d V$ are minimized, which means the entire loss is minimized.
Now lets assume $\bar{\mu}$ is a minimizer of the loss. If $\lambda>1 \bar{\mu}$ has to minimize both terms, as we know there exists a minimizer that minimizes both of them. In particular for any $\lambda \geq 1$ we have that $\bar{\mu}$ minimizes $D\left(\mu, \bar{\mu}_{+}\right)$meaning $\bar{\mu}_{+}=\mu$. Now we have that $0=1-1=\int_{\mathcal{M}} \bar{\mu} d V-\int_{\mathcal{M}} \mu d V=\int_{\mathcal{M}} \bar{\mu}_{+} d V+$ $\int_{\mathcal{M}} \bar{\mu}_{-} d V-\int_{\mathcal{M}} \mu d V=\int_{\mathcal{M}} \bar{\mu}_{-} d V$. So we get that $\mu_{-}=0$. Finally $\bar{\mu}=\bar{\mu}_{+}+\bar{\mu}_{-}=\mu+0=\mu$.

Proof of Lemma 2. Proposition 1.2 in Lang (2012) and Definition 1 in Section 4-4 in Do Carmo (2016) imply that for submanifolds with induced metric the Riemannian covariant derivative at $\boldsymbol{x} \in \mathcal{M}$ satisfies $\nabla_{\boldsymbol{e}_{i}} u=\boldsymbol{P}_{\boldsymbol{x}} \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{e}_{i}}$, where $\boldsymbol{P}_{\boldsymbol{x}}$ is the projection matrix on $T_{\boldsymbol{x}} \mathcal{M}$ introduced above.

Then, denoting $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}, \boldsymbol{n}_{1}, \ldots, \boldsymbol{n}_{k}$ an orthonormal basis of \mathbb{R}^{d} where the first n vectors span $T_{\boldsymbol{x}} \mathcal{M}$ and the latter k span $N_{\boldsymbol{x}} \mathcal{M}$:

$$
\begin{aligned}
\operatorname{div}(\boldsymbol{u}) & =\sum_{i=1}^{n}\left\langle\nabla_{\boldsymbol{e}_{i}} \boldsymbol{u}, \boldsymbol{e}_{i}\right\rangle_{g}=\sum_{i=1}^{n}\left\langle\boldsymbol{P}_{\boldsymbol{x}} \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{e}_{i}}, \boldsymbol{e}_{i}\right\rangle=\sum_{i=1}^{n}\left\langle\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{e}_{i}}, \boldsymbol{P}_{\boldsymbol{x}} \boldsymbol{e}_{i}\right\rangle=\sum_{i=1}^{n}\left\langle\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{e}_{i}}, \boldsymbol{e}_{i}\right\rangle \\
& =\sum_{i=1}^{n}\left\langle\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{e}_{i}}, \boldsymbol{e}_{i}\right\rangle+\sum_{j=1}^{k}\left\langle\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{n}_{j}}, \boldsymbol{n}_{j}\right\rangle=\operatorname{div}_{E}(\boldsymbol{u})
\end{aligned}
$$

Proof of Theorem 3 From Theorem 6.24 in Lee (2013) there exists a neighbourhood $\Omega \subset \mathbb{R}^{d}$ of \mathcal{M} such that the projection $\pi: \Omega \rightarrow \mathcal{M}$ is smooth over Ω (i.e., can be extended to a smooth function over a neighborhood of $\bar{\Omega}$). Since \mathcal{M} is compact, $\bar{\Omega}$ is also compact. According to Theorem 1 there exists a vector field $\boldsymbol{u}^{\star} \in \mathfrak{X}(\mathcal{M})$ so that $\mu=\nu-\operatorname{div}\left(\boldsymbol{u}^{\star}\right)$. We extend \boldsymbol{u}^{\star} to $\bar{\Omega}$ by setting $\boldsymbol{u}^{\star}(\boldsymbol{x})=\boldsymbol{u}^{\star}(\pi(\boldsymbol{x}))$, for $\boldsymbol{x} \notin \mathcal{M}$. Note that for $\boldsymbol{x} \in \mathcal{M}$ this definition coincides with the former \boldsymbol{u}^{\star} defined over \mathcal{M}. Similarly to equation 18 we have that $\boldsymbol{u}^{\star}(\boldsymbol{x})=\boldsymbol{P}_{\pi(\boldsymbol{x})} \boldsymbol{u}^{\star}(\pi(\boldsymbol{x}))$.

Corollary 3.4 in Hornik et al. (1990) shows that given a target smooth function $f: \bar{\Omega} \rightarrow \mathbb{R}$ and $\epsilon>0$, there exists an MLP with l-finite smooth activation that uniformly approximate the first $0 \leq m \leq l$ derivatives of f over $\bar{\Omega}$ with error at most ϵ. An activation $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ is l-finite if it is l-times continuously differentiable and satisfies $0<\int_{-\infty}^{\infty}\left|\sigma^{(l)}\right|<\infty$. Note that sigmoid and tanh are l-finite for all $l \geq 1$, and Softplus is l-finite for $l \geq 2$.
Using this approximation result (adapted to vector valued MLP) there exists an MLP $\boldsymbol{v}_{\theta}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that each coordinate of \boldsymbol{u}^{\star} and \boldsymbol{v}_{θ} are ϵ close in value and first partial derivatives over $\bar{\Omega}$.
Now for arbitrary $\boldsymbol{x} \in \mathcal{M}$ we have

$$
\begin{aligned}
\bar{\mu}(\boldsymbol{x}) & =\nu(\boldsymbol{x})-\operatorname{div}_{E}\left(\boldsymbol{P}_{\pi(\boldsymbol{x})} \boldsymbol{v}_{\theta}(\pi(\boldsymbol{x}))\right) \\
& =\nu(\boldsymbol{x})-\operatorname{div}_{E}\left(\boldsymbol{P}_{\pi(\boldsymbol{x})} \boldsymbol{v}_{\theta}(\pi(\boldsymbol{x}))-\boldsymbol{P}_{\pi(\boldsymbol{x})} \boldsymbol{u}^{\star}(\pi(\boldsymbol{x}))\right)-\operatorname{div}\left(\boldsymbol{u}^{\star}(\boldsymbol{x})\right) \\
& =\mu(\boldsymbol{x})-\operatorname{div}_{E}\left(\boldsymbol{P}_{\pi(\boldsymbol{x})}\left[\boldsymbol{v}_{\theta}(\pi(\boldsymbol{x}))-\boldsymbol{u}^{\star}(\pi(\boldsymbol{x}))\right]\right) \\
& =\mu(\boldsymbol{x})-\operatorname{div}_{E}\left(\boldsymbol{P}_{\pi(\boldsymbol{x})} \boldsymbol{e}(\boldsymbol{x})\right)
\end{aligned}
$$

where we denote $\boldsymbol{e}(\boldsymbol{x})=\boldsymbol{v}_{\theta}(\pi(\boldsymbol{x}))-\boldsymbol{u}^{\star}(\pi(\boldsymbol{x}))$. We will finish the proof by showing that

$$
\left|\operatorname{div}_{E}\left(\boldsymbol{P}_{\pi(\boldsymbol{x})} \boldsymbol{e}(\boldsymbol{x})\right)\right|<c \epsilon
$$

for some constant $c>0$ depending only on \mathcal{M}. Note that the l.h.s. of this equation is a sum of terms of the form $\frac{\partial}{\partial x^{i}}\left(\left(\boldsymbol{P}_{\pi(\boldsymbol{x})}\right)_{i, j} \boldsymbol{e}(\boldsymbol{x})_{j}\right)$, where $\left(\boldsymbol{P}_{\pi(\boldsymbol{x})}\right)_{i, j}$ is the (i, j)-th entry of the matrix $\boldsymbol{P}_{\pi(\boldsymbol{x})}$ and $\boldsymbol{e}(\boldsymbol{x})_{j}$ is the j-th entry of $\boldsymbol{e}(\boldsymbol{x})$. Since the value and first partial derivatives of π and \boldsymbol{P} (as the differential of π) over \mathcal{M} can be bounded, depending only on \mathcal{M}, the theorem is proved.

C Laplacian eigen function calculation

Given a triangular surface mesh \mathcal{M}^{\prime}, we wish to calculate the k-th eigenfunction of the (discrete) Laplace-Beltrami operator over \mathcal{M}^{\prime}. We will use the standard (cotangent) discretization of the Laplacian over meshes (Botsch et al. 2010). That is, we define L to be the cotangent-Laplacian matrix of the graph defined by \mathcal{M}^{\prime}, and \boldsymbol{M} the mass matrix of \mathcal{M}^{\prime}, i.e., a diagonal matrix where $\boldsymbol{M}_{i i}$ is the area of the the Voroni cell of the i-th vertex in the mesh. We then calculate the eigenfunctions as the solution to the generalized eigenvalue problem $\boldsymbol{L} \boldsymbol{x}=\lambda_{k} \boldsymbol{M} \boldsymbol{x}$ where λ_{k} is the k-th eigenvalue. We sample these \mathcal{M}^{\prime} piecewise-linear functions at centroids of faces.

D Linearization of the projection operator π

Since we only sample and derivate the projection operator $\pi: \mathbb{R}^{d} \rightarrow \mathcal{M}$ over \mathcal{M}, implementing equation 18 does not require knowledge of the full projection π. Rather, it is enough to use its first
order expansion over \mathcal{M}. For $\boldsymbol{x}_{0} \in \mathcal{M}$

$$
\pi(\boldsymbol{x}) \approx \pi\left(\boldsymbol{x}_{0}\right)+\boldsymbol{P}_{\boldsymbol{x}_{0}}\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)=\boldsymbol{x}_{0}+\boldsymbol{P}_{\boldsymbol{x}_{0}}\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)=\hat{\pi}\left(\boldsymbol{x}_{0}, \boldsymbol{x}\right)
$$

Now since $\pi(\cdot)$ and $\hat{\pi}\left(\boldsymbol{x}_{0}, \cdot\right)$ have the same value and first partial derivatives at \boldsymbol{x}_{0} we can replace equation 18 for each sample point $x_{0} \in \mathcal{X} \cup \mathcal{Y}$, with

$$
\boldsymbol{u}(\boldsymbol{x})=\boldsymbol{P}_{\hat{\pi}\left(\boldsymbol{x}_{0}, \boldsymbol{x}\right)} \boldsymbol{v}_{\theta}\left(\hat{\pi}\left(\boldsymbol{x}_{0}, \boldsymbol{x}\right)\right) .
$$

E Unnormalized densities

As described in section 4, our formulation of the loss is dependent on knowing the volume of the manifold \mathcal{M}. For simple cases like the flat torus or the sphere, we have a closed form formula for this volume. For more general cases, we can show that we don't actually require to know this value, since we can work with unnormalized density functions:

$$
\begin{aligned}
\ell(\theta)=- & \frac{1}{m} \sum_{i=1}^{m} \log \max \left\{\epsilon, \nu\left(\boldsymbol{x}_{i}\right)-\operatorname{div}_{E} \boldsymbol{u}\left(\boldsymbol{x}_{i}\right)\right\} \\
& +\frac{V(\mathcal{M}) \lambda_{-}}{l} \sum_{j=1}^{l}\left(\epsilon-\min \left\{\epsilon, \nu\left(\boldsymbol{y}_{j}\right)-\operatorname{div}_{E} \boldsymbol{u}\left(\boldsymbol{y}_{j}\right)\right\}\right) \\
= & \log V(\mathcal{M})-\frac{1}{m} \sum_{i=1}^{m} \log \max \left\{\epsilon^{\prime}, \nu^{\prime}\left(\boldsymbol{x}_{i}\right)-\operatorname{div}_{E} \boldsymbol{u}^{\prime}\left(\boldsymbol{x}_{i}\right)\right\} \\
& +\frac{\lambda_{-}}{l} \sum_{j=1}^{l}\left(\epsilon^{\prime}-\min \left\{\epsilon^{\prime}, \nu^{\prime}\left(\boldsymbol{y}_{j}\right)-\operatorname{div}_{E} \boldsymbol{u}^{\prime}\left(\boldsymbol{y}_{j}\right)\right\}\right)
\end{aligned}
$$

where $\nu^{\prime}=V(\mathcal{M}) \nu \equiv 1, \boldsymbol{u}^{\prime}=V(\mathcal{M}) \boldsymbol{u}, \epsilon^{\prime}=V(\mathcal{M}) \epsilon^{\prime}$, and $\log V(\mathcal{M})$ is a constant. Lastly note that the definition of \boldsymbol{v}_{t} is invariant to this scaling and can be computed with the unnormalized quantities.

F Additional Experimental Details

We used an internal academic cluster with NVIDIA Quadro RTX 6000 GPUs. Every run and seed configuration required 1 GPU . All other experimental details are mentioned in the main paper. Our codebase, implemented in PyTorch, is attached in the supplementary materials. We will open-source it post the review process.

References

Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., and Lévy, B. (2010). Polygon mesh processing. CRC press.

Do Carmo, M. P. (2016). Differential geometry of curves and surfaces: revised and updated second edition. Courier Dover Publications.

Hornik, K., Stinchcombe, M., and White, H. (1990). Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural networks, 3(5):551-560.

Lang, S. (2012). Fundamentals of differential geometry, volume 191. Springer Science \& Business Media.

Lee, J. M. (2013). Smooth manifolds. In Introduction to Smooth Manifolds, pages 1-31. Springer.
Morita, S. (2001). Geometry of differential forms. Number 201. American Mathematical Soc.
Moser, J. (1965). On the volume elements on a manifold. Transactions of the American Mathematical Society, 120(2):286-294.

Figure A1: Comparing learned density and generated samples with MF and FFJORD at different times (in k-sec); top right shows NLL scores for both MF and FFJORD at different times; bottom right shows time per iteration (in log-scale, sec) as a function of total running time (in sec); FFJORD iterations take longer as training progresses. Flickr images (license CC BY 2.0): Bird by Flickr user "lakeworth" https://www.flickr.com/photos/lakeworth/46657879995/; Flower by Flickr user "daiyaan.db"https://www.flickr.com/photos/daiyaandb/23279986094/.

