Moser Flow: Divergence-based Generative Modeling on Manifolds

Supplementary

Aditya Grover^{2,3} Yaron Lipman^{1,2} Noam Rozen¹ Maximilian Nickel² ¹Weizmann Institute of Science ²Facebook AI Research ³UCLA

Proof of Moser's Theorem. Α

We will review here the proof of Moser Theorem 1; for more details see Moser's original paper (Moser, 1965) or Lang (2012), Chapter 18 section 2. Let $\hat{\alpha}_t = \alpha_t dV$ be the time-dependent volume form over \mathcal{M} corresponding to the density interpolant α_t . Note that $\int_{\mathcal{M}} \hat{\alpha}_t = 1$. Moser's idea is to replace equation 2 with its continuous version:

$$\hat{\alpha}_0 = \Phi_t^* \hat{\alpha}_t, \quad t \in [0, 1] \tag{A1}$$

If equation A1 holds for all $t \in [0, 1]$ then plugging t = 1 leads to equation 2. Since equation A1 holds trivially for t = 0 (since Φ_0 is the identity mapping), solving it amounts to asking that $\Phi_t^* \hat{\alpha}_t$ is constant, i.e.,

$$\frac{d}{dt}\Phi_t^*\hat{\alpha}_t = 0. \tag{A2}$$

The time derivative of $\Phi_t^* \hat{\alpha}_t$ can be computed with the help of the Lie derivative (e.g., Proposition 5.2 in Lang (2012)): If Φ_t is the flow corresponding to the time dependent vector field v_t (see equation 3), and ω is a differential form then

$$\frac{d}{dt}(\Phi_t^*\omega) = \Phi_t^*(\mathfrak{L}_{v_t}\omega),$$

where \mathfrak{L} denotes the Lie derivative. The Lie derivative $\mathfrak{L}_v \omega$ of a smooth vector field v and smooth differential form ω can be computed using Cartan's "magic formula" (see e.g., Theorem 14.35 in Lee (2013)):

$$\mathfrak{L}_v\omega = i_v(d\omega) + d(i_v\omega),$$

where $i_v\omega$ is the interior multiplication of a vector field and a differential form defined by $(i_v\omega)(v_2,\ldots,v_n) = \omega(v,v_2,\ldots,v_n)$. In case ω is an *n*-form (as $\hat{\alpha}_t$ in our case) we have $d\omega = 0$ so the first term in the r.h.s. above vanishes. Lastly, we will need the following "trick":

$$\frac{d}{dt}(\Phi_t^*\hat{\alpha}_t) = \frac{d}{ds}\Big|_{s=t}(\Phi_s^*\hat{\alpha}_t) + \frac{d}{ds}\Big|_{s=t}(\Phi_t^*\hat{\alpha}_s).$$

Putting the last three equations together we get:

$$\frac{d}{dt}(\Phi_t^*\hat{\alpha}_t) = \Phi_t^*(\mathfrak{L}_{v_t}\hat{\alpha}_t) + \Phi_t^*\left(\frac{d}{dt}\hat{\alpha}_t\right) = \Phi_t^*\left(d(i_{v_t}\hat{\alpha}_t) + \frac{d}{dt}\hat{\alpha}_t\right).$$
(A3)

The theorem is proven if one can show that $v_t \in \mathfrak{X}(\mathcal{M})$ exists such that $d(i_{v_t}\hat{\alpha}_t) + \frac{d}{dt}\hat{\alpha}_t = 0$. The divergence operator is defined by the equality $d(i_w dV) = \operatorname{div}(w)dV$, for a vector field $w \in \mathfrak{X}(\mathcal{M})$. Therefore $d(i_{v_t}\hat{\alpha}_t) = \operatorname{div}(\alpha_t v_t) dV$. Denote $\hat{\gamma}_t = \frac{d}{dt}\hat{\alpha}_t$. Then we need to show that $v_t \in \mathcal{M}$ exists such that

$$d(i_{v_t}\hat{\alpha}_t) + \hat{\gamma}_t = 0. \tag{A4}$$

By the Hodge decomposition (see Theorem 4.18 in Morita (2001)) $\hat{\gamma}_t$ can be written as a sum of an exact and harmonic forms: $\hat{\gamma}_t = d\hat{\beta}_t + \hat{h}_t$. Since every harmonic form on a connected, compact,

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

oriented Riemannian manifold is a constant multiple of the Riemannian volume form, cdV (see Corollary 4.14 in Morita (2001)), we have

$$0 = \frac{d}{dt} 1 = \frac{d}{dt} \int_{\mathcal{M}} \hat{\alpha}_t = \int_{\mathcal{M}} \hat{\gamma}_t = \int_{\mathcal{M}} d\hat{\beta}_t + \int_{\mathcal{M}} \hat{h}_t = \int_{\mathcal{M}} \hat{h}_t = c \int_{\mathcal{M}} dV,$$

where in the second from the right equality we used Stokes Theorem (see e.g., Theorem 16.11 in Lee (2013)) and the fact that \mathcal{M} has no boundary. This implies that c = 0, and

$$\hat{\gamma}_t = d\hat{\beta}_t. \tag{A5}$$

Using the correspondence between vector fields and d-1 forms we let $\beta_t = i_{u_t} dV$, where $u_t \in \mathfrak{X}(\mathcal{M})$, and $d\beta_t = d(i_{u_t} dV) = \operatorname{div}(u_t) dV$.

Lastly, consider v_t defined as follows:

$$v_t = -\frac{u_t}{\alpha_t}.\tag{A6}$$

With this choice equation A4 is satisfied:

$$d(i_{v_t}\hat{\alpha}_t) + \hat{\gamma}_t = -d(i_{\frac{u_t}{\alpha_t}}(\alpha_t dV)) + i_{u_t} dV = 0.$$

The theorem is proven. \Box

One comment is that for practically finding v_t , according to equation A6, we need to get u_t , which amounts to solving the Hodge decomposition equation, $\operatorname{div}(u_t)dV = \hat{\gamma}_t$, that is equivalent to the following PDE on the manifold \mathcal{M} :

$$\operatorname{div}(u_t) = \frac{d}{dt}\alpha_t.$$
(A7)

Proof of Lemma 1. The proof uses Stokes theorem:

$$\int_{\mathcal{M}} \operatorname{div}(u) dV = \int_{\mathcal{M}} d(i_u dV) = \int_{\partial \mathcal{M}} i_u dV = 0,$$

where the last equality is due to the fact that either $\partial \mathcal{M} = \emptyset$, or, for $x \in \partial \mathcal{M}$, we have that $u(x) \in T_x \partial \mathcal{M}$, and therefore $(i_u dV)(v_1, \ldots, v_{n-1}) = dV(u, v_1, \ldots, v_{n-1}) = 0$, for all $v_1, \ldots, v_{n-1} \in T_x \partial \mathcal{M}$. This implies $i_u dV = 0$.

B Other proofs

Proof of Theorem 2. As we showed in the paper, our loss can be equivalently presented (up to constant factors) as

$$l(\theta) = D(\mu, \bar{\mu}_+) + (\lambda - 1) \int_{\mathcal{M}} \bar{\mu}_- dV$$

Where the first term $D(\mu, \bar{\mu}_+)$ is the generalized KL divergence which is non-negative and equals zero iff $\bar{\mu}_+ = \mu$ and since $\lambda \ge 1$ the second term is also non-negative and equals zero iff $\mu_- = 0$ or $\lambda = 1$.

First we show that $\bar{\mu} = \mu$ is a minimizer of the loss. Since we assumed $\mu \ge \epsilon$ we have that $\bar{\mu}_+ = \max(\mu, \epsilon) = \mu$ and $\bar{\mu}_- = \bar{\mu}_+ - \bar{\mu} = 0$. So both $D(\mu, \bar{\mu}_+)$ and $\int_{\mathcal{M}} \bar{\mu}_- dV$ are minimized, which means the entire loss is minimized.

Now lets assume $\bar{\mu}$ is a minimizer of the loss. If $\lambda > 1 \bar{\mu}$ has to minimize both terms, as we know there exists a minimizer that minimizes both of them. In particular for any $\lambda \ge 1$ we have that $\bar{\mu}$ minimizes $D(\mu, \bar{\mu}_+)$ meaning $\bar{\mu}_+ = \mu$. Now we have that $0 = 1 - 1 = \int_{\mathcal{M}} \bar{\mu} dV - \int_{\mathcal{M}} \mu dV = \int_{\mathcal{M}} \bar{\mu}_+ dV + \int_{\mathcal{M}} \bar{\mu}_- dV - \int_{\mathcal{M}} \mu dV = \int_{\mathcal{M}} \bar{\mu}_- dV$. So we get that $\mu_- = 0$. Finally $\bar{\mu} = \bar{\mu}_+ + \bar{\mu}_- = \mu + 0 = \mu$. \Box

Proof of Lemma 2. Proposition 1.2 in Lang (2012) and Definition 1 in Section 4-4 in Do Carmo (2016) imply that for submanifolds with induced metric the Riemannian covariant derivative at $x \in \mathcal{M}$ satisfies $\nabla_{e_i} u = P_x \frac{\partial u}{\partial e_i}$, where P_x is the projection matrix on $T_x \mathcal{M}$ introduced above.

Then, denoting $e_1, \ldots, e_n, n_1, \ldots, n_k$ an orthonormal basis of \mathbb{R}^d where the first *n* vectors span $T_x \mathcal{M}$ and the latter *k* span $N_x \mathcal{M}$:

$$\operatorname{div}(\boldsymbol{u}) = \sum_{i=1}^{n} \langle \nabla_{\boldsymbol{e}_{i}} \boldsymbol{u}, \boldsymbol{e}_{i} \rangle_{g} = \sum_{i=1}^{n} \left\langle \boldsymbol{P}_{\boldsymbol{x}} \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{e}_{i}}, \boldsymbol{e}_{i} \right\rangle = \sum_{i=1}^{n} \left\langle \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{e}_{i}}, \boldsymbol{P}_{\boldsymbol{x}} \boldsymbol{e}_{i} \right\rangle = \sum_{i=1}^{n} \left\langle \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{e}_{i}}, \boldsymbol{e}_{i} \right\rangle$$
$$= \sum_{i=1}^{n} \left\langle \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{e}_{i}}, \boldsymbol{e}_{i} \right\rangle + \sum_{j=1}^{k} \left\langle \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{n}_{j}}, \boldsymbol{n}_{j} \right\rangle = \operatorname{div}_{E}(\boldsymbol{u}),$$

Proof of Theorem 3. From Theorem 6.24 in Lee (2013) there exists a neighbourhood $\Omega \subset \mathbb{R}^d$ of \mathcal{M} such that the projection $\pi : \Omega \to \mathcal{M}$ is smooth over $\overline{\Omega}$ (i.e., can be extended to a smooth function over a neighborhood of $\overline{\Omega}$). Since \mathcal{M} is compact, $\overline{\Omega}$ is also compact. According to Theorem 1 there exists a vector field $u^* \in \mathfrak{X}(\mathcal{M})$ so that $\mu = \nu - \operatorname{div}(u^*)$. We extend u^* to $\overline{\Omega}$ by setting $u^*(x) = u^*(\pi(x))$, for $x \notin \mathcal{M}$. Note that for $x \in \mathcal{M}$ this definition coincides with the former u^* defined over \mathcal{M} . Similarly to equation 18 we have that $u^*(x) = P_{\pi(x)}u^*(\pi(x))$.

Corollary 3.4 in Hornik et al. (1990) shows that given a target smooth function $f: \overline{\Omega} \to \mathbb{R}$ and $\epsilon > 0$, there exists an MLP with *l*-finite smooth activation that uniformly approximate the first $0 \le m \le l$ derivatives of f over $\overline{\Omega}$ with error at most ϵ . An activation $\sigma : \mathbb{R} \to \mathbb{R}$ is *l*-finite if it is *l*-times continuously differentiable and satisfies $0 < \int_{-\infty}^{\infty} |\sigma^{(l)}| < \infty$. Note that sigmoid and tanh are *l*-finite for all $l \ge 1$, and Softplus is *l*-finite for $l \ge 2$.

Using this approximation result (adapted to vector valued MLP) there exists an MLP $v_{\theta} : \mathbb{R}^d \to \mathbb{R}^d$ such that each coordinate of u^* and v_{θ} are ϵ close in value and first partial derivatives over $\overline{\Omega}$.

Now for arbitrary $oldsymbol{x} \in \mathcal{M}$ we have

$$\begin{split} \bar{\mu}(\boldsymbol{x}) &= \nu(\boldsymbol{x}) - \operatorname{div}_{E}(\boldsymbol{P}_{\pi(\boldsymbol{x})}\boldsymbol{v}_{\theta}(\pi(\boldsymbol{x}))) \\ &= \nu(\boldsymbol{x}) - \operatorname{div}_{E}\left(\boldsymbol{P}_{\pi(\boldsymbol{x})}\boldsymbol{v}_{\theta}(\pi(\boldsymbol{x})) - \boldsymbol{P}_{\pi(\boldsymbol{x})}\boldsymbol{u}^{\star}(\pi(\boldsymbol{x}))\right) - \operatorname{div}(\boldsymbol{u}^{\star}(\boldsymbol{x})) \\ &= \mu(\boldsymbol{x}) - \operatorname{div}_{E}\left(\boldsymbol{P}_{\pi(\boldsymbol{x})}\left[\boldsymbol{v}_{\theta}(\pi(\boldsymbol{x})) - \boldsymbol{u}^{\star}(\pi(\boldsymbol{x}))\right]\right) \\ &= \mu(\boldsymbol{x}) - \operatorname{div}_{E}\left(\boldsymbol{P}_{\pi(\boldsymbol{x})}\boldsymbol{e}(\boldsymbol{x})\right), \end{split}$$

where we denote $e(x) = v_{\theta}(\pi(x)) - u^{\star}(\pi(x))$. We will finish the proof by showing that

$$\operatorname{div}_E \left(\boldsymbol{P}_{\pi(\boldsymbol{x})} \boldsymbol{e}(\boldsymbol{x}) \right) \Big| < c \epsilon$$

for some constant c > 0 depending only on \mathcal{M} . Note that the l.h.s. of this equation is a sum of terms of the form $\frac{\partial}{\partial x^i} \left((\mathbf{P}_{\pi(\mathbf{x})})_{i,j} \mathbf{e}(\mathbf{x})_j \right)$, where $(\mathbf{P}_{\pi(\mathbf{x})})_{i,j}$ is the (i, j)-th entry of the matrix $\mathbf{P}_{\pi(\mathbf{x})}$ and $\mathbf{e}(\mathbf{x})_j$ is the *j*-th entry of $\mathbf{e}(\mathbf{x})$. Since the value and first partial derivatives of π and \mathbf{P} (as the differential of π) over \mathcal{M} can be bounded, depending only on \mathcal{M} , the theorem is proved.

C Laplacian eigen function calculation

Given a triangular surface mesh \mathcal{M}' , we wish to calculate the k-th eigenfunction of the (discrete) Laplace-Beltrami operator over \mathcal{M}' . We will use the standard (cotangent) discretization of the Laplacian over meshes (Botsch et al., 2010). That is, we define L to be the cotangent-Laplacian matrix of the graph defined by \mathcal{M}' , and M the mass matrix of \mathcal{M}' , i.e., a diagonal matrix where M_{ii} is the area of the the Voroni cell of the *i*-th vertex in the mesh. We then calculate the eigenfunctions as the solution to the generalized eigenvalue problem $Lx = \lambda_k Mx$ where λ_k is the k-th eigenvalue. We sample these \mathcal{M}' piecewise-linear functions at centroids of faces.

D Linearization of the projection operator π

Since we only sample and derivate the projection operator $\pi : \mathbb{R}^d \to \mathcal{M}$ over \mathcal{M} , implementing equation 18 does not require knowledge of the full projection π . Rather, it is enough to use its first

order expansion over \mathcal{M} . For $x_0 \in \mathcal{M}$

$$\pi(m{x}) pprox \pi(m{x}_0) + m{P}_{m{x}_0}(m{x} - m{x}_0) = m{x}_0 + m{P}_{m{x}_0}(m{x} - m{x}_0) = \hat{\pi}(m{x}_0,m{x}).$$

Now since $\pi(\cdot)$ and $\hat{\pi}(\boldsymbol{x}_0, \cdot)$ have the same value and first partial derivatives at \boldsymbol{x}_0 we can replace equation 18 for each sample point $\boldsymbol{x}_0 \in \mathcal{X} \cup \mathcal{Y}$, with

$$oldsymbol{u}(oldsymbol{x}) = oldsymbol{P}_{\hat{\pi}(oldsymbol{x}_0,oldsymbol{x})}oldsymbol{v}_ heta(\hat{\pi}(oldsymbol{x}_0,oldsymbol{x})).$$

E Unnormalized densities

As described in section 4, our formulation of the loss is dependent on knowing the volume of the manifold \mathcal{M} . For simple cases like the flat torus or the sphere, we have a closed form formula for this volume. For more general cases, we can show that we don't actually require to know this value, since we can work with unnormalized density functions:

$$\ell(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \log \max \left\{ \epsilon, \nu(\boldsymbol{x}_{i}) - \operatorname{div}_{E} \boldsymbol{u}(\boldsymbol{x}_{i}) \right\} \\ + \frac{V(\mathcal{M})\lambda_{-}}{l} \sum_{j=1}^{l} \left(\epsilon - \min \left\{ \epsilon, \nu(\boldsymbol{y}_{j}) - \operatorname{div}_{E} \boldsymbol{u}(\boldsymbol{y}_{j}) \right\} \right) \\ = \log V(\mathcal{M}) - \frac{1}{m} \sum_{i=1}^{m} \log \max \left\{ \epsilon', \nu'(\boldsymbol{x}_{i}) - \operatorname{div}_{E} \boldsymbol{u}'(\boldsymbol{x}_{i}) \right\} \\ + \frac{\lambda_{-}}{l} \sum_{j=1}^{l} \left(\epsilon' - \min \left\{ \epsilon', \nu'(\boldsymbol{y}_{j}) - \operatorname{div}_{E} \boldsymbol{u}'(\boldsymbol{y}_{j}) \right\} \right),$$

where $\nu' = V(\mathcal{M})\nu \equiv 1$, $u' = V(\mathcal{M})u$, $\epsilon' = V(\mathcal{M})\epsilon'$, and $\log V(\mathcal{M})$ is a constant. Lastly note that the definition of v_t is invariant to this scaling and can be computed with the unnormalized quantities.

F Additional Experimental Details

We used an internal academic cluster with NVIDIA Quadro RTX 6000 GPUs. Every run and seed configuration required 1 GPU. All other experimental details are mentioned in the main paper. Our codebase, implemented in PyTorch, is attached in the supplementary materials. We will open-source it post the review process.

References

- Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., and Lévy, B. (2010). *Polygon mesh processing*. CRC press.
- Do Carmo, M. P. (2016). *Differential geometry of curves and surfaces: revised and updated second edition*. Courier Dover Publications.
- Hornik, K., Stinchcombe, M., and White, H. (1990). Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. *Neural networks*, 3(5):551–560.
- Lang, S. (2012). Fundamentals of differential geometry, volume 191. Springer Science & Business Media.
- Lee, J. M. (2013). Smooth manifolds. In Introduction to Smooth Manifolds, pages 1-31. Springer.

Morita, S. (2001). Geometry of differential forms. Number 201. American Mathematical Soc.

Moser, J. (1965). On the volume elements on a manifold. *Transactions of the American Mathematical Society*, 120(2):286–294.

Figure A1: Comparing learned density and generated samples with MF and FFJORD at different times (in k-sec); top right shows NLL scores for both MF and FFJORD at different times; bottom right shows time per iteration (in log-scale, sec) as a function of total running time (in sec); FFJORD iterations take longer as training progresses. Flickr images (license CC BY 2.0): Bird by Flickr user "lakeworth" https://www.flickr.com/photos/lakeworth/46657879995/; Flower by Flickr user "daiyaan.db" https://www.flickr.com/photos/daiyaandb/23279986094/.